Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (645)

Search Parameters:
Keywords = multi-phase exploration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 8280 KiB  
Article
Constructing an Ecological Spatial Network Optimization Framework from the Pattern–Process–Function Perspective: A Case Study in Wuhan
by An Tong, Yan Zhou, Tao Chen and Zihan Qu
Remote Sens. 2025, 17(15), 2548; https://doi.org/10.3390/rs17152548 - 22 Jul 2025
Abstract
Under the continuous disturbance of ecosystems driven by urbanization, landscape fragmentation and the disruption of ecological processes and functions are key challenges in optimizing ecological networks (EN). This study aims to examine the spatiotemporal evolution of topological patterns, ecological processes, and ecosystem services [...] Read more.
Under the continuous disturbance of ecosystems driven by urbanization, landscape fragmentation and the disruption of ecological processes and functions are key challenges in optimizing ecological networks (EN). This study aims to examine the spatiotemporal evolution of topological patterns, ecological processes, and ecosystem services (ES) in Wuhan from the “pattern–process–function” perspective. To overcome the lag in research concerning the coupling of ecological processes, functions, and spatial patterns, we explore the long-term dynamic evolution of ecosystem structure, process, and function by integrating multi-source data, including remote sensing, enabling comprehensive spatiotemporal analysis from 2000 to 2020. Addressing limitations in current EN optimization approaches, we integrate morphological spatial pattern analysis (MSPA), use circuit theory to identify EN components, and conduct spatial optimization accurately. We further assess the effectiveness of two scenario types: “pattern–function” and “pattern–process”. The results reveal a distinct “increase-then-decrease” trend in EN structural attributes: from 2000 to 2020, source areas declined from 39 (900 km2) to 37 (725 km2), while corridor numbers fluctuated before stabilizing at 89. Ecological processes and functions exhibited phased fluctuations. Among water-related indicators, water conservation (as a core function), and modified normalized difference water index (MNDWI, as a key process) predominantly drive positive correlations under the “pattern–function” and “pattern–process” scenarios, respectively. The “pattern–function” scenario strengthens core area connectivity (24% and 4% slower degradation under targeted/random attacks, respectively), enhancing resistance to general disturbances, whereas the “pattern–process” scenario increases redundancy in edge transition zones (21% slower degradation under targeted attacks), improving resilience to targeted disruptions. This complementary design results in a gradient EN structure characterized by core stability and peripheral resilience. This study pioneers an EN optimization framework that systematically integrates identification, assessment, optimization, and validation into a closed-loop workflow. Notably, it establishes a quantifiable, multi-objective decision basis for EN optimization, offering transferable guidance for green infrastructure planning and ecological restoration from a pattern–process–function perspective. Full article
(This article belongs to the Special Issue Application of Remote Sensing in Landscape Ecology)
Show Figures

Figure 1

15 pages, 1711 KiB  
Article
Ajuforrestin A Inhibits Tumor Proliferation and Migration by Targeting the STAT3/FAK Signaling Pathways and VEGFR-2
by Sibei Wang, Yeling Li, Mingming Rong, Yuejun Li, Yaxin Lu, Shen Li, Dongho Lee, Jing Xu and Yuanqiang Guo
Biology 2025, 14(8), 908; https://doi.org/10.3390/biology14080908 - 22 Jul 2025
Viewed by 36
Abstract
Natural products, characterized by their structural novelty, multi-target capabilities, and favorable toxicity profiles, represent a prominent reservoir for the discovery of innovative anticancer therapeutics. In the current investigation, we identified ajuforrestin A, a diterpenoid compound extracted from Ajuga lupulina Maxim, as a potent [...] Read more.
Natural products, characterized by their structural novelty, multi-target capabilities, and favorable toxicity profiles, represent a prominent reservoir for the discovery of innovative anticancer therapeutics. In the current investigation, we identified ajuforrestin A, a diterpenoid compound extracted from Ajuga lupulina Maxim, as a potent agent against lung cancer. In vitro, this compound markedly curtailed the proliferation of A549 cells. Mechanistic explorations revealed that ajuforrestin A could arrest A549 cells in the G0/G1 phase of the cell cycle, provoke apoptosis in cancer cells, and impede their migration by modulating the STAT3 and FAK signaling cascades. Angiogenesis is indispensable for tumor formation, progression, and metastatic dissemination. Vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 are established as crucial mediators in tumor neovascularization, a process fundamental to both the expansion of tumor cells and the development of new blood vessels within the tumor milieu. Through the combined application of a Tg(fli1:EGFP) zebrafish model and SPR experimentation, we furnished strong evidence for the ability of ajuforrestin A to obstruct tumor angiogenesis via selective engagement with VEGFR-2. Finally, a zebrafish xenograft tumor model demonstrated that ajuforrestin A could effectively restrain tumor growth and metastasis in vivo. Ajuforrestin A therefore shows considerable promise as a lead compound for the future development of therapies against non-small cell lung cancer (NSCLC). Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Graphical abstract

32 pages, 7424 KiB  
Review
Gas Migration in Low-Permeability Geological Media: A Review
by Yangyang Mo, Alfonso Rodriguez-Dono, Ivan Puig Damians, Sebastia Olivella and Rémi de La Vaissière
Geotechnics 2025, 5(3), 49; https://doi.org/10.3390/geotechnics5030049 - 21 Jul 2025
Viewed by 128
Abstract
This article provides a comprehensive review of gas flow behavior in low-permeability geological media, focusing on its implications for the long-term performance of engineered barriers in underground radioactive waste repositories. Key mechanisms include two-phase flow and gas-driven fracturing, both critical for assessing repository [...] Read more.
This article provides a comprehensive review of gas flow behavior in low-permeability geological media, focusing on its implications for the long-term performance of engineered barriers in underground radioactive waste repositories. Key mechanisms include two-phase flow and gas-driven fracturing, both critical for assessing repository safety. Understanding the generation and migration of gas is crucial for the quantitative assessment of repository performance over extended timescales. The article synthesizes the current research on various types of claystone considered as potential host rocks for repositories, providing a comprehensive analysis of gas transport mechanisms and constitutive models. In addressing the challenges related to multi-field coupling, the article provides practical insights and outlines potential solutions and areas for further research, underscoring the importance of interdisciplinary collaboration to tackle these challenges and push the field forward. In addition, the article evaluates key research projects, such as GMT, FORGE, and DECOVALEX, shedding light on their methodologies, findings, and significant contributions to understanding gas migration in low-permeability geological media. In this context, mathematical modeling becomes indispensable for predicting long-term repository performance under hypothetical future conditions, enhancing prediction accuracy and supporting long-term safety assessments. Finally, the growing interest in gas-driven fracturing is explored, critically assessing the strengths and limitations of current numerical simulation tools, such as TOUGH, the phase-field method, and CODE_BRIGHT. Noteworthy advancements by the CODE_BRIGHT team in gas injection simulation are highlighted, although knowledge gaps remain. The article concludes with a call for innovative approaches to simulate gas fracturing processes more effectively, advocating for advanced modeling techniques and rigorous experimental validation to address existing challenges. Full article
(This article belongs to the Special Issue Recent Advances in Geotechnical Engineering (3rd Edition))
Show Figures

Figure 1

14 pages, 3713 KiB  
Article
Titin’s Intrinsically Disordered PEVK Domain Modulates Actin Polymerization
by Áron Gellért Altorjay, Hedvig Tordai, Ádám Zolcsák, Nikoletta Kósa, Tamás Hegedűs and Miklós Kellermayer
Int. J. Mol. Sci. 2025, 26(14), 7004; https://doi.org/10.3390/ijms26147004 - 21 Jul 2025
Viewed by 94
Abstract
The multi-domain muscle protein titin provides elasticity and mechanosensing functions to the sarcomere. Titin’s PEVK domain is intrinsically disordered due to the presence of a large number of prolines and highly charged residues. Although PEVK does not have canonical actin-binding motifs, it has [...] Read more.
The multi-domain muscle protein titin provides elasticity and mechanosensing functions to the sarcomere. Titin’s PEVK domain is intrinsically disordered due to the presence of a large number of prolines and highly charged residues. Although PEVK does not have canonical actin-binding motifs, it has been shown to bind F-actin. Here, we explored whether the PEVK domain may also affect actin assembly. We cloned the middle, 733-residue-long segment (called PEVKII) of the full-length PEVK domain, expressed in E. coli and purified by using His- and Avi-tags engineered to the N- and C-termini, respectively. Actin assembly was monitored by the pyrene assay in the presence of varying PEVKII concentrations. The structural features of PEVKII-associated F-actin were studied with atomic force microscopy. The added PEVKII enhanced the initial and log-phase rates of actin assembly and the peak F-actin quantity in a concentration-dependent way. However, the critical concentration of actin polymerization was unaltered. Thus, PEVK accelerates actin polymerization by facilitating its nucleation. This effect was highlighted in the AFM images of F-actin–PEVKII adsorbed to the supported lipid bilayer. The sample was dominated by radially symmetric complexes of short actin filaments. PEVK’s actin polymerization-modulating effect may, in principle, have a function in regulating sarcomeric actin length and turnover. Altogether, titin’s PEVK domain is not only a non-canonical actin-binding protein that regulates sarcomeric shortening, but one that may modulate actin polymerization as well. Full article
(This article belongs to the Special Issue Biomolecular Structure, Function and Interactions: 2nd Edition)
Show Figures

Figure 1

45 pages, 11380 KiB  
Article
Application of Multi-Strategy Controlled Rime Algorithm in Path Planning for Delivery Robots
by Haokai Lv, Qian Qian, Jiawen Pan, Miao Song, Yong Feng and Yingna Li
Biomimetics 2025, 10(7), 476; https://doi.org/10.3390/biomimetics10070476 - 19 Jul 2025
Viewed by 288
Abstract
As a core component of automated logistics systems, delivery robots hold significant application value in the field of unmanned delivery. This research addresses the robot path planning problem, aiming to enhance delivery efficiency and reduce operational costs through systematic improvements to the RIME [...] Read more.
As a core component of automated logistics systems, delivery robots hold significant application value in the field of unmanned delivery. This research addresses the robot path planning problem, aiming to enhance delivery efficiency and reduce operational costs through systematic improvements to the RIME optimization algorithm. Through in-depth analysis, we identified several major drawbacks in the standard RIME algorithm for path planning: insufficient global exploration capability in the initial stages, a lack of diversity in the hard RIME search mechanism, and oscillatory phenomena in soft RIME step size adjustment. These issues often lead to undesirable phenomena in path planning, such as local optima traps, path redundancy, or unsmooth trajectories. To address these limitations, this study proposes the Multi-Strategy Controlled Rime Algorithm (MSRIME), whose innovation primarily manifests in three aspects: first, it constructs a multi-strategy collaborative optimization framework, utilizing an infinite folding Fuch chaotic map for intelligent population initialization to significantly enhance the diversity of solutions; second, it designs a cooperative mechanism between a controlled elite strategy and an adaptive search strategy that, through a dynamic control factor, autonomously adjusts the strategy activation probability and adaptation rate, expanding the search space while ensuring algorithmic convergence efficiency; and finally, it introduces a cosine annealing strategy to improve the step size adjustment mechanism, reducing parameter sensitivity and effectively preventing path distortions caused by abrupt step size changes. During the algorithm validation phase, comparative tests were conducted between two groups of algorithms, demonstrating their significant advantages in optimization capability, convergence speed, and stability. Further experimental analysis confirmed that the algorithm’s multi-strategy framework effectively suppresses the impact of coordinate and dimensional differences on path quality during iteration, making it more suitable for delivery robot path planning scenarios. Ultimately, path planning experimental results across various Building Coverage Rate (BCR) maps and diverse application scenarios show that MSRIME exhibits superior performance in key indicators such as path length, running time, and smoothness, providing novel technical insights and practical solutions for the interdisciplinary research between intelligent logistics and computer science. Full article
Show Figures

Figure 1

28 pages, 8088 KiB  
Article
Multi-Band Differential SAR Interferometry for Snow Water Equivalent Retrieval over Alpine Mountains
by Fabio Bovenga, Antonella Belmonte, Alberto Refice and Ilenia Argentiero
Remote Sens. 2025, 17(14), 2479; https://doi.org/10.3390/rs17142479 - 17 Jul 2025
Viewed by 207
Abstract
Snow water equivalent (SWE) can be estimated using Differential SAR Interferometry (DInSAR), which captures changes in snow depth and density between two SAR acquisitions. However, challenges arise due to SAR signal penetration into the snowpack and the intrinsic limitations of DInSAR measurements. This [...] Read more.
Snow water equivalent (SWE) can be estimated using Differential SAR Interferometry (DInSAR), which captures changes in snow depth and density between two SAR acquisitions. However, challenges arise due to SAR signal penetration into the snowpack and the intrinsic limitations of DInSAR measurements. This study addresses these issues and explores the use of multi-band SAR data to derive SWE maps in alpine regions characterized by steep terrain, small spatial extent, and a potentially heterogeneous snowpack. We first conducted a performance analysis to assess SWE estimation precision and the maximum unambiguous SWE variation, considering incidence angle, wavelength, and coherence. Based on these results, we selected C-band Sentinel-1 and L-band SAOCOM data acquired over alpine areas and applied tailored DInSAR processing. Atmospheric artifacts were corrected using zenith total delay maps from the GACOS service. Additionally, sensitivity maps were generated for each interferometric pair to identify pixels suitable for reliable SWE estimation. A comparative analysis of the C- and L-band results revealed several critical issues, including significant atmospheric artifacts, phase decorrelation, and phase unwrapping errors, which impact SWE retrieval accuracy. A comparison between our Sentinel-1-based SWE estimations and independent measurements over an instrumented site shows results fairly in line with previous works exploiting C-band data, with an RSME in the order of a few tens of mm. Full article
(This article belongs to the Special Issue Understanding Snow Hydrology Through Remote Sensing Technologies)
Show Figures

Figure 1

29 pages, 27846 KiB  
Review
Recycling and Mineral Evolution of Multi-Industrial Solid Waste in Green and Low-Carbon Cement: A Review
by Zishu Yue and Wei Zhang
Minerals 2025, 15(7), 740; https://doi.org/10.3390/min15070740 - 15 Jul 2025
Viewed by 182
Abstract
The accelerated industrialization in China has precipitated a dramatic surge in solid waste generation, causing severe land resource depletion and posing substantial environmental contamination risks. Simultaneously, the cement industry has become characterized by the intensive consumption of natural resources and high carbon emissions. [...] Read more.
The accelerated industrialization in China has precipitated a dramatic surge in solid waste generation, causing severe land resource depletion and posing substantial environmental contamination risks. Simultaneously, the cement industry has become characterized by the intensive consumption of natural resources and high carbon emissions. This review aims to investigate the current technological advances in utilizing industrial solid waste for cement production, with a focus on promoting resource recycling, phase transformations during hydration, and environmental management. The feasibility of incorporating coal-based solid waste, metallurgical slags, tailings, industrial byproduct gypsum, and municipal solid waste incineration into active mixed material for cement is discussed. This waste is utilized by replacing conventional raw materials or serving as active mixed material due to their content of oxygenated salt minerals and oxide minerals. The results indicate that the formation of hydration products can be increased, the mechanical strength of cement can be improved, and a notable reduction in CO2 emissions can be achieved through the appropriate selection and proportioning of mineral components in industrial solid waste. Further research is recommended to explore the synergistic effects of multi-waste combinations and to develop economically efficient pretreatment methods, with an emphasis on balancing the strength, durability, and environmental performance of cement. This study provides practical insights into the environmentally friendly and efficient recycling of industrial solid waste and supports the realization of carbon peak and carbon neutrality goals. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Graphical abstract

42 pages, 9679 KiB  
Review
Recent Research Progress on Polyurethane Solid–Solid Phase Change Materials
by Ziqiang Wang, Jingjing Xiao, Tengkun Yao and Menghao Wang
Polymers 2025, 17(14), 1933; https://doi.org/10.3390/polym17141933 - 14 Jul 2025
Viewed by 425
Abstract
Research on phase change materials (PCMs) is booming in the context of global energy structure transitions and the challenge of dealing with temperature fluctuations in engineering materials. Polyurethane solid–solid phase change materials (PUSSPCMs) show great potential for thermal energy storage and temperature regulation [...] Read more.
Research on phase change materials (PCMs) is booming in the context of global energy structure transitions and the challenge of dealing with temperature fluctuations in engineering materials. Polyurethane solid–solid phase change materials (PUSSPCMs) show great potential for thermal energy storage and temperature regulation because of their designable molecular structure, no risk of leakage, and high bulk stability. In this paper, the recent research progress on PUSSPCMs is systematically reviewed. Starting from the material system, the core preparation process of the PUSSPCMs was elucidated. At the performance improvement level, related performance studies on PUSSPCMs are systematically summarized, focusing on the introduction of dynamic covalent bonds and a nanofiller composite strategy to enhance the thermophysical properties of the materials. At the application level, innovative studies and thermomodulation advantages of PUSSPCMs in different fields are summarized. Finally, for green development, multifunctionalization, and bottlenecks in the scale-up preparation of PUSSPCMs, future research directions for balancing the performance requirements, conducting multi-scale simulations, and exploring green materials are proposed to provide theoretical references for the development and application of high-performance PUSSPCMs. Full article
(This article belongs to the Special Issue Polymer Materials for Pavement Applications)
Show Figures

Figure 1

23 pages, 2581 KiB  
Article
Tripartite Evolutionary Game Analysis of Waste Tire Pyrolysis Promotion: The Role of Differential Carbon Taxation and Policy Coordination
by Xiaojun Shen
Sustainability 2025, 17(14), 6422; https://doi.org/10.3390/su17146422 - 14 Jul 2025
Viewed by 192
Abstract
In China, the recycling system for waste tires is characterized by high output but low standardized recovery rates. This study examines the environmental and health risks caused by non-compliant treatment by individual recyclers and explores the barriers to the large-scale adoption of Pyrolysis [...] Read more.
In China, the recycling system for waste tires is characterized by high output but low standardized recovery rates. This study examines the environmental and health risks caused by non-compliant treatment by individual recyclers and explores the barriers to the large-scale adoption of Pyrolysis Technology. A Tripartite Evolutionary Game Model involving pyrolysis plants, waste tire recyclers, and government regulators is developed. The model incorporates pollutants from pretreatment and pyrolysis processes into a unified metric—Carbon Dioxide Equivalent (CO2-eq)—based on Global Warming Potential (GWP), and designs a Differential Carbon Taxation mechanism accordingly. The strategy dynamics and stability conditions for Evolutionary Stable Strategies (ESS) are analyzed. Multi-scenario numerical simulations explore how key parameter changes influence evolutionary trajectories and equilibrium outcomes. Six typical equilibrium states are identified, along with the critical conditions for achieving environmentally friendly results. Based on theoretical analysis and simulation results, targeted policy recommendations are proposed to promote standardized waste tire pyrolysis: (1) Establish a phased dynamic carbon tax with supporting subsidies; (2) Build a green market cultivation and price stabilization system; (3) Implement performance-based differential incentives; (4) Strengthen coordination between central environmental inspections and local carbon tax enforcement. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

12 pages, 385 KiB  
Article
Psychological Profiles in Ulcerative Colitis and Crohn’s Disease: Distinct Emotional and Behavioral Patterns
by Antonio Maria D’Onofrio, Eleonora Maggio, Valentina Milo, Gaspare Filippo Ferrajoli, Daniele Ferrarese, Daniela Pia Rosaria Chieffo, Massimiliano Luciani, Antonio Gasbarrini, Gabriele Sani, Franco Scaldaferri, Rosaria Calia and Giovanni Camardese
Biomedicines 2025, 13(7), 1694; https://doi.org/10.3390/biomedicines13071694 - 10 Jul 2025
Viewed by 379
Abstract
Background/Objectives: Ulcerative colitis (UC) and Crohn’s disease (CD) are two forms of inflammatory bowel disease (IBD), which, despite their shared inflammatory nature, differ markedly in clinical presentation and disease course. In this study, we aimed to explore whether these clinical differences are [...] Read more.
Background/Objectives: Ulcerative colitis (UC) and Crohn’s disease (CD) are two forms of inflammatory bowel disease (IBD), which, despite their shared inflammatory nature, differ markedly in clinical presentation and disease course. In this study, we aimed to explore whether these clinical differences are also reflected at the psychological level. Specifically, we sought to delineate the personality characteristics of a sample of patients with IBD and to investigate psychological and psychopathological differences between individuals with UC and CD. Methods: We enrolled 29 (44.61%) UC patients and 36 (55.39%) CD patients, all aged 18 years or older. Each participant completed the Minnesota Multiphasic Personality Inventory-2 (MMPI-2), which was subsequently scored and interpreted by trained psychologists. The MMPI-2 is a 567-item inventory with dichotomous answers (true/false), providing measures of a wide range of symptoms, beliefs, attitudes, and personality traits. Results: The total sample showed clinically significant elevations on hypochondriasis (Hs), health concerns (HEA), general health concerns (HEA3), and physical malfunctioning (D3) scales. UC patients had statistically significant higher scores on hypomania (p = 0.043), lack of ego mastery—defective inhibition (p = 0.006), and fears (p = 0.038) scales than CD patients. On the other hand, CD patients showed statistically significant higher scores on the Overcontrolled Hostility scale (p = 0.043). Conclusions: Both groups of patients experience emotional difficulties related to their clinical conditions, leading to an increased preoccupation with bodily symptoms and illness. These aspects appear to be accompanied by shifts in mood towards a more depressive state. Notably, the UC group demonstrates a greater degree of impairment compared to the CD group, with experiences of anxiety, stress, difficulties in emotional control, and emerging relational challenges. Full article
Show Figures

Figure 1

25 pages, 1771 KiB  
Article
Construction of Multi-Sample Public Building Carbon Emission Database Model Based on Energy Activity Data
by Yue Guo, Xin Zheng, Wei Wei, Yuancheng He, Xiang Peng, Fei Zhao, Hailong Wu, Wenxin Bi, Hongyang Yan and Xiaohan Ren
Energies 2025, 18(14), 3635; https://doi.org/10.3390/en18143635 - 9 Jul 2025
Viewed by 167
Abstract
In order to address the growing urgency of energy-related carbon emission reduction and improve the construction of the existing public building carbon emission database model, this study constructs a public building carbon emission database model based on energy activity data by collecting the [...] Read more.
In order to address the growing urgency of energy-related carbon emission reduction and improve the construction of the existing public building carbon emission database model, this study constructs a public building carbon emission database model based on energy activity data by collecting the energy consumption data of relevant buildings in the region and classifying the building types, aiming to quantitatively analyze the carbon emission characteristics of different types of public buildings and provide data support for the national and local governments, enterprises, universities and research institutions, and the power industry. This study is divided into three phases: The first stage is the mapping of carbon emission benchmarks. The second stage is the analysis of multi-dimensional-building carbon emission characteristics. The third stage is to evaluate the design optimization plan and propose technical improvement suggestions. At present, this research is in the first stage: collecting and analyzing information data such as the energy consumption of different types of buildings, building a carbon emission database model, and extracting and analyzing the carbon emission benchmarks and characteristics of each building type from the data of 184 public buildings in a given area. Moreover, preliminary exploration of the second phase has been conducted, focusing on identifying key influencing factors of carbon emissions during the operational phase of public buildings. Office buildings have been selected as representative samples to carry out baseline modeling and variable selection using linear regression analysis. The results of this study are of great significance in the energy field, providing data support for public building energy management, energy policy formulation, and carbon trading mechanisms. Full article
Show Figures

Figure 1

22 pages, 16452 KiB  
Article
The Uranium Enrichment Mechanism of Hydrocarbon-Bearing Fluids in Aeolian Sedimentary Background Uranium Reservoirs of the Ordos Basin
by Tao Zhang, Jingchao Lei, Cong Hu, Xiaofan Zhou, Chao Liu, Lei Li, Qilin Wang, Yan Hao and Long Guo
Minerals 2025, 15(7), 716; https://doi.org/10.3390/min15070716 - 8 Jul 2025
Viewed by 343
Abstract
Significant uranium exploration breakthroughs have been achieved in the eolian deposits of the uranium reservoirs in the southwestern part of the Ordos Basin. The redox environment remains a crucial factor in controlling the migration and precipitation of uranium. This study, through rock mineralogical [...] Read more.
Significant uranium exploration breakthroughs have been achieved in the eolian deposits of the uranium reservoirs in the southwestern part of the Ordos Basin. The redox environment remains a crucial factor in controlling the migration and precipitation of uranium. This study, through rock mineralogical observations and hydrocarbon gas composition analysis, combined with the regional source rock and basin tectonic evolution history, reveals the characteristics of the reducing medium and the mineralization mechanisms involved in uranium ore formation. The Lower Cretaceous Luohe Formation uranium reservoirs in the study area exhibit a notable lack of common reducing media, such as carbonaceous debris and pyrite. However, the total hydrocarbon gases in the Luohe Formation range from 2967 to 20,602 μmol/kg, with an average of 8411 μmol/kg—significantly higher than those found in uranium reservoirs elsewhere in China, exceeding them by 10 to 100 times. Due to the absence of other macroscopically visible organic matter, hydrocarbon gases are identified as the most crucial reducing agent for uranium mineralization. These gases consist predominantly of methane and originate from the Triassic Yanchang Formation source rock. Faults formed during the Indosinian, Yanshanian, and Himalayan tectonic periods effectively connect the Cretaceous uranium reservoirs with the oil and gas reservoirs of the Triassic and Jurassic, providing pathways for the migration of deep hydrocarbon fluids into the Cretaceous uranium reservoirs. The multiphase tectonic evolution of the Ordos Basin since the Cenozoic has facilitated the development of faults, ensuring a sufficient supply of reducing media for uranium reservoirs in an arid sedimentary context. Additionally, the “Replenishment-Runoff-Drainage System” created by tectonic activity promotes a continuous supply of uranium- and oxygen-bearing fluids to the uranium reservoirs, resulting in a multi-energy coupling mineralization effect. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

18 pages, 33192 KiB  
Article
Fault Cycling and Its Impact on Hydrocarbon Accumulation: Insights from the Neogene Southwestern Qaidam Basin
by Zhaozhou Chen, Zhen Liu, Jun Li, Fei Zhou, Zihao Feng and Xinruo Ma
Energies 2025, 18(13), 3571; https://doi.org/10.3390/en18133571 - 7 Jul 2025
Viewed by 279
Abstract
Building upon the geological cycle theory, this study proposes fault cycles as a critical component of tectonic cyclicity in petroliferous basins. Focusing on reservoir-controlling faults in the southwestern Qaidam Basin, we systematically analyze fault architectures and identify three distinct fault activation episodes: the [...] Read more.
Building upon the geological cycle theory, this study proposes fault cycles as a critical component of tectonic cyclicity in petroliferous basins. Focusing on reservoir-controlling faults in the southwestern Qaidam Basin, we systematically analyze fault architectures and identify three distinct fault activation episodes: the Lulehe Formation (LLH Fm.), the upper part of the Xiaganchaigou Formation (UXG Fm.), and the Shizigou Formation (SZG Fm.). Three types of fault cycle models are established. These fault cycles correlate with the evolution of regional tectonic stress fields, corresponding to the Cenozoic transition from extensional to compressional stress regimes in the basin. Mechanistic analysis reveals the hierarchical control of fault cycles in hydrocarbon systems: the early cycle governs the proto-basin geometry and low-amplitude structural trap development; the middle cycle affects the source rock distribution; and the late cycle controls trap finalization and hydrocarbon migration. This study proposes a fault cycle-controlled accumulation model, providing a dynamic perspective that shifts from conventional static fault concepts to reveal fault activity periodicity and its critical multi-phase control over hydrocarbon migration and accumulation, essential for exploration in multi-episodic fault provinces. Full article
(This article belongs to the Special Issue Petroleum Exploration, Development and Transportation)
Show Figures

Figure 1

25 pages, 4901 KiB  
Article
Evolutionary Patterns and Mechanism Optimization of Public Participation in Community Regeneration Planning: A Case Study of Guangzhou
by Danhong Fu, Tingting Chen and Wei Lang
Land 2025, 14(7), 1394; https://doi.org/10.3390/land14071394 - 2 Jul 2025
Viewed by 405
Abstract
Against the backdrop of China’s urban transformation from incremental expansion to stock regeneration, community regeneration has emerged as a critical mechanism for enhancing urban governance efficacy. As fundamental units of urban systems, the regeneration of communities requires comprehensive approaches to address complex socio-spatial [...] Read more.
Against the backdrop of China’s urban transformation from incremental expansion to stock regeneration, community regeneration has emerged as a critical mechanism for enhancing urban governance efficacy. As fundamental units of urban systems, the regeneration of communities requires comprehensive approaches to address complex socio-spatial challenges, with public participation serving as the core driver for achieving sustainable renewal goals. However, significant regional disparities persist in the effectiveness of public participation across China, necessitating the systematic institutionalization of participatory practices. Guangzhou, as a pioneering city in institutional innovation and the practical exploration of urban regeneration, provides a representative case for examining the evolutionary trajectory of participatory planning. This research employs Arnstein’s Ladder of Participation theory, utilizing literature analysis and comparative case studies to investigate the evolution of participatory mechanisms in Guangzhou’s community regeneration over four decades. The study systematically examined the transformation of public engagement models across multiple dimensions, including organizational frameworks of participation, participatory effectiveness, diversified financing models, and the innovation of policy instruments. Three paradigm shifts were identified: the (1) transition of participants from “passive responders” to “active constructors”, (2) advancement of engagement phases from “fragmented intervention” to “whole-cycle empowerment”, and (3) evolution of participation methods from “unidirectional communication” to “collaborative co-governance”. It identifies four drivers of participatory effectiveness: policy frameworks, financing mechanisms, mediator cultivation, and engagement platforms. To enhance public engagement efficacy, the research proposes the following: (1) a resilient policy adaptation mechanism enabling dynamic responses to multi-stakeholder demands, (2) a diversified financing framework establishing a “government guidance + market operation + resident contribution” cost-sharing model, (3) a professional support system integrating “localization + specialization” capacities, and (4) enhanced digital empowerment and institutional innovation in participatory platform development. These mechanisms collectively form an evolutionary pathway from “symbolic participation” to “substantive co-creation” in urban regeneration governance. Full article
Show Figures

Figure 1

20 pages, 1633 KiB  
Article
A Digital Simulation Model of Broadband Phased Array RF System and Its Application
by Jia Ding, Huaizong Shao, Jianxing Lv and Fake Ding
Sensors 2025, 25(13), 4133; https://doi.org/10.3390/s25134133 - 2 Jul 2025
Viewed by 275
Abstract
The design and application of broadband phased array RF links is a complex and highly precise endeavor. To achieve optimal performance, it is essential to compare and validate multiple schemes during the system design phase. Utilizing simulation models to simulate system structures and [...] Read more.
The design and application of broadband phased array RF links is a complex and highly precise endeavor. To achieve optimal performance, it is essential to compare and validate multiple schemes during the system design phase. Utilizing simulation models to simulate system structures and validate parameters can effectively reduce research and development time and costs. This article takes the broadband phased array RF system (RFS04) currently being developed by Nanhu Laboratory as a reference and constructs a behavioral-level signal simulation model. Through this model, the antenna pattern of RFS04 was generated, and the relationship between beam pointing accuracy and delay quantization bit number was analyzed. The 3 dB beam coverage range of the 18 GHz antenna array was calculated, and the synthesis scheme of multi-phased arrays was explored. Additionally, the correspondence between the angle measurement accuracy and signal-to-noise ratio of the RFS04 system was analyzed. This article also measured the delay module parameters of the RF system and developed a correction strategy for the delay control scheme. Through simulation calculations and laboratory testing, it has been proven that this strategy can effectively improve delay accuracy. After applying the modified delay control scheme to the RFS04 simulation model, the beam pointing accuracy during phased array antenna scanning was significantly enhanced. The model research and integrated simulation software construction of the broadband phased array RF system provide an efficient and accurate simulation tool for system design and optimization. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

Back to TopTop