Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (559)

Search Parameters:
Keywords = morphology ultrasound

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4361 KiB  
Article
Novel Visible Light-Driven Ho2InSbO7/Ag3PO4 Photocatalyst for Efficient Oxytetracycline Contaminant Degradation
by Jingfei Luan and Tiannan Zhao
Molecules 2025, 30(15), 3289; https://doi.org/10.3390/molecules30153289 - 6 Aug 2025
Abstract
In this study, a Z-scheme Ho2InSbO7/Ag3PO4 (HAO) heterojunction photocatalyst was successfully fabricated for the first time by ultrasound-assisted solvothermal method. The structural features, compositional components and morphological characteristics of the synthesized materials were thoroughly characterized by [...] Read more.
In this study, a Z-scheme Ho2InSbO7/Ag3PO4 (HAO) heterojunction photocatalyst was successfully fabricated for the first time by ultrasound-assisted solvothermal method. The structural features, compositional components and morphological characteristics of the synthesized materials were thoroughly characterized by a series of techniques, including X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectrum, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. A comprehensive array of analytical techniques, including ultraviolet-visible diffuse reflectance absorption spectra, photoluminescence spectroscopy, time-resolved photoluminescence spectroscopy, photocurrent testing, electrochemical impedance spectroscopy, electron paramagnetic resonance, and ultraviolet photoelectron spectroscopy, was employed to systematically investigate the optical, chemical, and photoelectronic properties of the materials. Using oxytetracycline (OTC), a representative tetracycline antibiotic, as the target substrate, the photocatalytic activity of the HAO composite was assessed under visible light irradiation. Comparative analyses demonstrated that the photocatalytic degradation capability of the HAO composite surpassed those of its individual components. Notably, during the degradation process, the application of the HAO composite resulted in an impressive removal efficiency of 99.89% for OTC within a span of 95 min, along with a total organic carbon mineralization rate of 98.35%. This outstanding photocatalytic performance could be ascribed to the efficient Z-scheme electron-hole separation system occurring between Ho2InSbO7 and Ag3PO4. Moreover, the adaptability and stability of the HAO heterojunction were thoroughly validated. Through experiments involving the capture of reactive species and electron paramagnetic resonance analysis, the active species generated by HAO were identified as hydroxyl radicals (•OH), superoxide anions (•O2), and holes (h+). This identification provides valuable insights into the mechanisms and pathways associated with the photodegradation of OTC. In conclusion, this research not only elucidates the potential of HAO as an efficient Z-scheme heterojunction photocatalyst but also marks a significant contribution to the advancement of sustainable remediation strategies for OTC contamination. Full article
(This article belongs to the Special Issue Nanomaterials in Photochemical Devices: Advances and Applications)
Show Figures

Graphical abstract

15 pages, 1306 KiB  
Article
Measurement Reliability for the Anatomical Characteristics of Cervical Muscles Using Musculoskeletal Ultrasound in Healthy Individuals
by Georgios Sidiropoulos, Nikolaos Strimpakos, Asimakis K. Kanellopoulos, Maria Tsekoura, Konstantinos Alexiou, Olympia Papakonstantinou and Zacharias Dimitriadis
Muscles 2025, 4(3), 28; https://doi.org/10.3390/muscles4030028 - 5 Aug 2025
Viewed by 66
Abstract
Background: The reliable assessment of cervical muscle morphology is essential for both clinical and research use. However, evidence on the reliability of ultrasound measurements remains limited. Objective: To investigate the intra-rater and test–retest reliability of morphological measurements of the Longus Colli, Sternocleidomastoid, Multifidus [...] Read more.
Background: The reliable assessment of cervical muscle morphology is essential for both clinical and research use. However, evidence on the reliability of ultrasound measurements remains limited. Objective: To investigate the intra-rater and test–retest reliability of morphological measurements of the Longus Colli, Sternocleidomastoid, Multifidus Cervicis, and Semispinalis Capitis muscles using musculoskeletal ultrasound. Methods: Cross-sectional area, anteroposterior, and lateral dimensions were assessed using B-mode ultrasound. Anterior neck muscles were scanned in the supine position, while posterior neck muscles were scanned in the prone position. Each muscle was measured three times (to assess intra-rater reliability), which was repeated after 30 min (to assess test–retest reliability). Measurements were also normalized according to BMI and neck circumference. Results: Intra-rater reliability was found to be good to excellent for the Longus Colli (ICC = 0.77–0.92), excellent for the Sternocleidomastoid (ICC = 0.93–0.99), good to excellent for the Semispinalis Capitis (ICC = 0.89–0.97), and moderate to excellent for the Multifidus Cervicis (ICC = 0.69–0.92). Test–retest reliability was found to be moderate to good for the Longus Colli (ICC = 0.73–0.87), good to excellent for the Sternocleidomastoid (ICC = 0.84–0.98), good to excellent for the Semispinalis Capitis (ICC = 0.78–0.95), and good to excellent for the Multifidus Cervicis (ICC = 0.80–0.92). Conclusions: Musculoskeletal ultrasound demonstrates strong reliability for cervical muscle assessment, supporting its clinical use. Full article
Show Figures

Figure 1

17 pages, 2708 KiB  
Review
Review of Optical Imaging in Coronary Artery Disease Diagnosis
by Naeif Almagal, Niall Leahy, Foziyah Alqahtani, Sara Alsubai, Hesham Elzomor, Paolo Alberto Del Sole, Ruth Sharif and Faisal Sharif
J. Cardiovasc. Dev. Dis. 2025, 12(8), 288; https://doi.org/10.3390/jcdd12080288 - 29 Jul 2025
Viewed by 268
Abstract
Optical Coherence Tomography (OCT) is a further light-based intravascular imaging modality and provides a high-resolution, cross-sectional view of coronary arteries. It has a useful anatomic and increasingly physiological evaluation in light of coronary artery disease (CAD). This review provides a critical examination of [...] Read more.
Optical Coherence Tomography (OCT) is a further light-based intravascular imaging modality and provides a high-resolution, cross-sectional view of coronary arteries. It has a useful anatomic and increasingly physiological evaluation in light of coronary artery disease (CAD). This review provides a critical examination of the increased application of the OCT in assessing coronary artery physiology, beyond its initial mainstay application in anatomical imaging. OCT provides precise information on plaque morphology, which can help identify vulnerable plaques, and is most important in informing percutaneous coronary interventions (PCIs), including implanting a stent and optimizing it. The combination of OCT and functional measurements, such as optical flow ratio and OCT-based fractional flow reserve (OCT-FFR), permits a more complete assessment of coronary stenoses, which may provide increased diagnostic accuracy and better revascularization decision-making. The recent developments in OCT technology have also enhanced the accuracy in the measurement of coronary functions. The innovations may support the optimal treatment of patients as they provide more personalized and individualized treatment options; however, it is critical to recognize the limitations of OCT and distinguish between the hypothetical advantages and empirical outcomes. This review evaluates the existing uses, technological solutions, and future trends in OCT-based physiological imaging and evaluation, and explains how such an advancement will be beneficial in the treatment of CAD and gives a fair representation concerning other imaging applications. Full article
Show Figures

Figure 1

29 pages, 5163 KiB  
Article
Effect of Exogenous Melatonin Supply on Potato Plants Grown In Vitro
by Andrea Kun-Nemes, Dóra Farkas, Emese Szilágyi-Tolnai, Mónika Éva Fazekas, Melinda Paholcsek, László Stündl, Piroska Bíróné Molnár, Zoltán Cziáky, Judit Dobránszki and Judit Gálné Remenyik
Antioxidants 2025, 14(8), 917; https://doi.org/10.3390/antiox14080917 - 25 Jul 2025
Viewed by 1007
Abstract
Plant growth regulators of natural origin are becoming increasingly important in crop production to protect plants against various abiotic stresses and often to modulate plant pathological processes. These compounds offer the potential to enhance plant health exogenously by protecting plants against oxidative stress. [...] Read more.
Plant growth regulators of natural origin are becoming increasingly important in crop production to protect plants against various abiotic stresses and often to modulate plant pathological processes. These compounds offer the potential to enhance plant health exogenously by protecting plants against oxidative stress. Melatonin has been studied previously; however, the role of exogenous melatonin in abiotic stress tolerance and the underlying mechanisms are still less understood. In this study, potato plants were grown in vitro to study the effects of exogenous melatonin and ultrasound treatment (latter as an abiotic stress). The measured parameters included morphological data and the concentrations of melatonin and its degradation products, indole-3-acetic acid and salicylic acid, at 0 h, 24 h, 1 week, and 4 weeks after treatment. In addition, the expression levels of the genes responsible for the production of enzymes involved in melatonin synthesis were traced by RT-qPCR analysis. Melatonin added to the culture medium was taken up by the in vitro plantlets, and it participated both in the plant stress reaction and stress mitigation when an abiotic stress reaction was triggered by ultrasound. Among the degradation products, we detected N-acetyl-5-methoxykynuramine, 6-hydroxymelatonin, and 5-methoxytryptamine by UHPLC-MS. Among the enzymes involved in the synthesis of melatonin and indole-3-acetic acid, the expression levels of COMT, SNAT, TSB, TAA, ASMT, TPH, AANAT, ASMT, and TSA were measured and no pattern was observed in response to the treatments. Full article
Show Figures

Figure 1

19 pages, 2696 KiB  
Article
Effect of Ultrasound and Chemical Cross-Linking on the Structural and Physicochemical Properties of Malanga (Colocasia esculenta) Starch
by Ana Sofía Martínez-Cigarroa, Guadalupe del Carmen Rodríguez-Jimenes, Alejandro Aparicio-Saguilán, Violeta Carpintero-Tepole, Miguel Ángel García-Alvarado, Ceferino Carrera, Gerardo Fernández Barbero, Mercedes Vázquez-Espinosa and Lucio Abel Vázquez-León
Foods 2025, 14(15), 2609; https://doi.org/10.3390/foods14152609 - 25 Jul 2025
Viewed by 352
Abstract
Starch extracted from malanga (Colocasia esculenta) is a biopolymer with considerable industrial potential thanks to its high starch content (70–80% on a dry basis) and small granule size, which give it distinctive functional properties. To expand its applications in advanced processes [...] Read more.
Starch extracted from malanga (Colocasia esculenta) is a biopolymer with considerable industrial potential thanks to its high starch content (70–80% on a dry basis) and small granule size, which give it distinctive functional properties. To expand its applications in advanced processes such as encapsulation, it is necessary to modify its structural and physicochemical characteristics. This study evaluated the effects of ultrasound (US) and chemical cross-linking (CL) on the properties of this starch. US was applied at various times and amplitudes, while CL was performed using sodium trimetaphosphate and sodium tripolyphosphate, with sodium sulfate as a catalyst. US treatment reduced particle size and increased amylose content, resulting in lower viscosity and gelatinization temperature, without affecting granule morphology. Meanwhile, CL induced phosphate linkages between starch chains, promoting aggregation and reducing amylose content and enthalpy, but increasing the gelatinization temperature. The modified starches exhibited low syneresis, making them potentially suitable for products such as pastas, baby foods, and jams. Additionally, ultrasound modification enabled the production of fine starch microparticles, which could be applied in the microencapsulation of bioactive compounds in the food and pharmaceutical industries. These findings suggest that modified malanga starch can serve as a functional and sustainable alternative in industrial applications. Full article
Show Figures

Graphical abstract

13 pages, 2016 KiB  
Article
Pelvic Floor Adaptation to a Prenatal Exercise Program: Does It Affect Labor Outcomes or Levator Ani Muscle Injury? A Randomized Controlled Trial
by Aránzazu Martín-Arias, Irene Fernández-Buhigas, Daniel Martínez-Campo, Adriana Aquise Pino, Valeria Rolle, Miguel Sánchez-Polan, Cristina Silva-Jose, Maria M. Gil and Belén Santacruz
Diagnostics 2025, 15(15), 1853; https://doi.org/10.3390/diagnostics15151853 - 23 Jul 2025
Viewed by 469
Abstract
Background: Physical exercise during pregnancy is strongly recommended due to its well-established benefits for both mother and child. However, its impact on the pelvic floor remains insufficiently studied. This study aimed to evaluate pelvic floor adaptations to a structured prenatal exercise program using [...] Read more.
Background: Physical exercise during pregnancy is strongly recommended due to its well-established benefits for both mother and child. However, its impact on the pelvic floor remains insufficiently studied. This study aimed to evaluate pelvic floor adaptations to a structured prenatal exercise program using transperineal ultrasound, and to assess associations with the duration of the second stage of labor and mode of delivery. Methods: This is a planned secondary analysis of a randomized controlled clinical trial (RCT) (NCT04563065) including women with singleton pregnancies at 12–14 weeks of gestation. Participants were randomized to either an exercise group, which followed a supervised physical exercise program three times per week, or a control group, which received standard antenatal care. Transperineal ultrasound was used at the second trimester of pregnancy and six months postpartum to measure urogenital hiatus dimensions at rest, during maximal pelvic floor contraction, and during the Valsalva maneuver, to calculate hiatal contractility and distensibility and to evaluate levator ani muscle insertion. Regression analyses were performed to assess the relationship between urogenital hiatus measurements and both duration of the second stage of labor and mode of delivery. Results: A total of 78 participants were included in the final analysis: 41 in the control group and 37 in the exercise group. The anteroposterior diameter of the urogenital hiatus at rest was significantly smaller in the exercise group compared to controls (4.60 mm [SD 0.62] vs. 4.91 mm [SD 0.76]; p = 0.049). No other statistically significant differences were observed in static measurements. However, contractility was significantly reduced in the exercise group for both the latero-lateral diameter (8.54% vs. 4.04%; p = 0.012) and hiatus area (20.15% vs. 12.55%; p = 0.020). Distensibility was similar between groups. There were no significant differences in the duration of the second stage of labor or mode of delivery. Six months after delivery, there was an absolute risk reduction of 32.5% of levator ani muscle avulsion in the exercise group compared to the control group (53.3% and 20.8%, respectively; p = 0.009). Conclusions: A supervised exercise program during pregnancy appears to modify pelvic floor morphology and function, reducing the incidence of levator ani muscle avulsion without affecting the type or duration of delivery. These findings support the safety and potential protective role of prenatal exercise in maintaining pelvic floor integrity. Full article
Show Figures

Figure 1

17 pages, 3304 KiB  
Article
Integrating Computational Analysis of In Vivo Investigation of Modulatory Effect of Fagonia cretica Plant Extract on Letrozole-Induced Polycystic Ovary Syndrome in Female Rats
by Ayesha Qasim, Hiram Calvo, Jesús Jaime Moreno Escobar and Zia-ud-din Akhtar
Biology 2025, 14(7), 903; https://doi.org/10.3390/biology14070903 - 21 Jul 2025
Viewed by 248
Abstract
Fagonia cretica, a medicinal herb from the Zygophyllaceae family, is traditionally utilized to treat various conditions such as hepatitis, gynecological disorders, tumors, urinary tract issues, and diabetes. The present study aimed to evaluate the therapeutic potential of Fagonia cretica in treating polycystic [...] Read more.
Fagonia cretica, a medicinal herb from the Zygophyllaceae family, is traditionally utilized to treat various conditions such as hepatitis, gynecological disorders, tumors, urinary tract issues, and diabetes. The present study aimed to evaluate the therapeutic potential of Fagonia cretica in treating polycystic ovarian syndrome (PCOS) induced in female rats. PCOS, a complex hormonal disorder, was experimentally induced by administering Letrozole (1 mg/kg) in combination with a high-fat diet for 21 days. The affected rats were then treated with hydro-alcoholic extracts of Fagonia cretica at doses of 100 mg/kg, 200 mg/kg, and 300 mg/kg for 20 days. Key biochemical parameters—including serum testosterone, insulin, fasting blood glucose, insulin resistance (HOMA-IR), cholesterol, triglycerides, and lipoprotein levels—were measured. Ultrasound imaging and histopathological analysis of ovarian tissues were also performed. The data were analyzed using computer-based statistical tools, including one-way ANOVA, Cohen’s d effect size, and Tukey’s HSD test, with graphical representations generated using Python 3.10 on the Kaggle platform. Results demonstrated a significant reduction in serum testosterone, insulin, cholesterol, and triglyceride levels (p < 0.05) in treated groups, along with improved ovarian morphology. These findings support the therapeutic potential of Fagonia cretica as a natural treatment for PCOS. Full article
Show Figures

Figure 1

15 pages, 2583 KiB  
Review
Multiparametric Ultrasound in the Differential Diagnosis of Soft Tissue Tumors: A Comprehensive Review
by Fabrizio Termite, Linda Galasso, Giacomo Capece, Federica Messina, Giorgio Esposto, Maria Elena Ainora, Irene Mignini, Raffaele Borriello, Raffaele Vitiello, Giulio Maccauro, Antonio Gasbarrini and Maria Assunta Zocco
Biomedicines 2025, 13(7), 1786; https://doi.org/10.3390/biomedicines13071786 - 21 Jul 2025
Viewed by 369
Abstract
Soft tissue tumors (STTs) are a heterogeneous group of mesenchymal neoplasms requiring accurate differentiation for optimal patient management. While histopathology remains the gold standard, imaging plays a crucial role in non-invasive assessment. Multiparametric ultrasound (mpUS) has emerged as a promising, cost-effective alternative to [...] Read more.
Soft tissue tumors (STTs) are a heterogeneous group of mesenchymal neoplasms requiring accurate differentiation for optimal patient management. While histopathology remains the gold standard, imaging plays a crucial role in non-invasive assessment. Multiparametric ultrasound (mpUS) has emerged as a promising, cost-effective alternative to MRI, integrating B-mode, color and power Doppler, shear wave elastography (SWE), and contrast-enhanced ultrasound (CEUS) to provide comprehensive morphological, vascular, and biomechanical insights. Each modality offers distinct yet complementary diagnostic value, enhancing accuracy and potentially reducing unnecessary biopsies. This narrative review aims to serve as a practical guide, providing a readily accessible reference for mpUS parameters useful in the differential diagnosis of soft tissue tumors. Full article
(This article belongs to the Special Issue Applications of Imaging Technology in Human Diseases)
Show Figures

Figure 1

14 pages, 4344 KiB  
Article
Ultrasound-Based Morphological and Functional Assessment in Male CrossFit Athletes with Unilateral Subacromial Shoulder Pain: An Observational Study
by Fabien Guerineau, Ann Cools, Jaime Almazán-Polo, María Dolores Sosa-Reina, Vanesa Abuín-Porras, Cristian Baroa-Fernández, Pablo García-Ginés, Ana Román-Franganillo and Ángel González-de-la-Flor
Medicina 2025, 61(7), 1304; https://doi.org/10.3390/medicina61071304 - 19 Jul 2025
Viewed by 276
Abstract
Background and Objectives: CrossFit is a discipline involving a wide range of overhead movements performed at high intensity and under accumulated fatigue that predispose to a high risk of shoulder complex injuries. This study aimed to compare ultrasonographic findings between symptomatic and [...] Read more.
Background and Objectives: CrossFit is a discipline involving a wide range of overhead movements performed at high intensity and under accumulated fatigue that predispose to a high risk of shoulder complex injuries. This study aimed to compare ultrasonographic findings between symptomatic and asymptomatic shoulders in CrossFit athletes. Materials and Methods: A cross-sectional study was conducted to compare ultrasound parameters between the painful and non-painful shoulders in CrossFit athletes with unilateral subacromial shoulder pain. Assessed variables included subacromial subdeltoid bursa thickness, supraspinatus tendon thickness, the acromiohumeral distance, the coracoacromial ligament distance, the bicipital groove angle, cross-sectional area of the biceps brachii longus head tendon, as well as the serratus anterior and lower trapezius muscle thickness. Results: Twenty male CrossFit athletes (forty shoulders) with an average age of 25.70 ± 4.03 years participated in the study. A statistically significant increase was observed (p < 0.05) in the subacromial subdeltoid bursa thickness in the painful shoulder compared to the asymptomatic side. All other ultrasound parameters did not show statistically significant differences. Conclusions: Only subacromial subdeltoid bursa thickness differed significantly between sides. This isolated finding may not fully explain shoulder pain, which cannot be solely attributed to morphological changes. Further research is needed to determine the relationship between shoulder pain and ultrasound features in CrossFit athletes, as well as the role of ultrasound in predicting structural changes in pain conditions. Full article
(This article belongs to the Special Issue Recent Trends in Physical Therapy for Musculoskeletal Disorders)
Show Figures

Figure 1

23 pages, 2304 KiB  
Review
Machine Learning for Coronary Plaque Characterization: A Multimodal Review of OCT, IVUS, and CCTA
by Alessandro Pinna, Alberto Boi, Lorenzo Mannelli, Antonella Balestrieri, Roberto Sanfilippo, Jasjit Suri and Luca Saba
Diagnostics 2025, 15(14), 1822; https://doi.org/10.3390/diagnostics15141822 - 19 Jul 2025
Viewed by 515
Abstract
Coronary plaque vulnerability, more than luminal stenosis, drives acute coronary syndromes. Optical coherence tomography (OCT), intravascular ultrasound (IVUS), and coronary computed tomography angiography (CCTA) visualize plaque morphology in vivo, but manual interpretation is time-consuming and operator-dependent. We performed a narrative literature survey of [...] Read more.
Coronary plaque vulnerability, more than luminal stenosis, drives acute coronary syndromes. Optical coherence tomography (OCT), intravascular ultrasound (IVUS), and coronary computed tomography angiography (CCTA) visualize plaque morphology in vivo, but manual interpretation is time-consuming and operator-dependent. We performed a narrative literature survey of artificial intelligence (AI) applications—focusing on machine learning (ML) architectures—for automated coronary plaque segmentation and risk characterization across OCT, IVUS, and CCTA. Recent ML models achieve expert-level lumen and plaque segmentation, reliably detecting features linked to vulnerability such as a lipid-rich necrotic core, calcification, positive remodelling, and a napkin-ring sign. Integrative radiomic and multimodal frameworks further improve prognostic stratification for major adverse cardiac events. Nonetheless, progress is constrained by small, single-centre datasets, heterogeneous validation metrics, and limited model interpretability. AI-enhanced plaque assessment offers rapid, reproducible, and comprehensive coronary imaging analysis. Future work should prioritize large multicentre repositories, explainable architectures, and prospective outcome-oriented validation to enable routine clinical adoption. Full article
(This article belongs to the Special Issue Machine Learning in Precise and Personalized Diagnosis)
Show Figures

Figure 1

23 pages, 6606 KiB  
Article
Clove Oil-Based Nanoemulsion Containing Amphotericin B as a Therapeutic Approach to Combat Fungal Infections
by Marcel Lucas de Almeida, Ana Paula dos Santos Matos, Veronica da Silva Cardoso, Tatielle do Nascimento, Ralph Santos-Oliveira, Leandro Machado Rocha, Francisco Paiva Machado, Franklin Chimaobi Kenechukwu, Alane Beatriz Vermelho and Eduardo Ricci-Júnior
Pharmaceutics 2025, 17(7), 925; https://doi.org/10.3390/pharmaceutics17070925 - 17 Jul 2025
Viewed by 439
Abstract
Background/Objectives: Candidiasis, primarily caused by Candida albicans, and sporotrichosis, mainly caused by Sporothrix schenckii, are skin fungal infections that pose serious threats to global health. The Candida auris is a great concern in immunocompromised individuals, and while Sporothrix brasiliensis cause sporotrichosis, [...] Read more.
Background/Objectives: Candidiasis, primarily caused by Candida albicans, and sporotrichosis, mainly caused by Sporothrix schenckii, are skin fungal infections that pose serious threats to global health. The Candida auris is a great concern in immunocompromised individuals, and while Sporothrix brasiliensis cause sporotrichosis, an infection commonly found in cats, this disease can be transmitted to humans through scratches or bites. Existing treatments for these fungal infections often cause problems related to resistance and significant side effects. Consequently, development of alternative therapeutic approaches such as nanotechnology-based topical lipid-based formulations is interesting. Thus, the objectives of this study were to prepare clove oil (CO)-in-water nanoemulsions (NEs) containing amphotericin B (AmB) and characterize them with respect to stability, release profile, and in vitro cytotoxic activity against Candida and Sporothrix strains. As a future alternative for the treatment of fungal skin diseases. Methods: Chemical analysis of clove oil was obtained by GC-MS. The NEs were produced using an ultrasound (sonicator) method with varying proportions of CO, Pluronic® F-127, and AmB. The NEs were characterized by droplet size, morphology, stability and in vitro release profile. The antifungal and cytotoxic activity against C. albicans, C. auris, S. schenckii, and S. brasiliensis were ascertained employing agar diffusion and colorimetric MTT assay methods. A checkerboard assay was carried out using clove oil and amphotericin B against C. auris. Results: Eugenol was the major compound identified in CO at a concentration of 80.09%. AmB-loaded NEs exhibited particle sizes smaller than 50 nm and a polydispersity index below 0.25. The optimal Ne (NEMLB-05) remained stable after 150 days of storage at 4 °C. It exhibited rapid release within the first 24 h, followed by a slow and controlled release up to 96 h. NEMLB-05 more effectively inhibited C. auris compared to free AmB and also demonstrated greater activity against C. albicans, S. schenckii, and S. brasiliensis. Clove oil and amphotericin B presented synergism inhibiting the growth of C. auris. Conclusions: The selected CO-in-water NEs containing AmB demonstrated promising potential as a topical therapeutic alternative for treating fungal infections. Full article
(This article belongs to the Special Issue Nanotechnology in the Treatment of Neglected Parasitic Diseases)
Show Figures

Graphical abstract

14 pages, 2345 KiB  
Article
Clinical Experience in the Management of a Series of Fetal–Neonatal Ovarian Cysts
by Constantin-Cristian Văduva, Laurentiu Dira, Dominic Iliescu, Dan Ruican, Anișoara-Mirela Siminel, George Alin Stoica, Mircea-Sebastian Şerbănescu and Andreea Carp-Velișcu
Children 2025, 12(7), 934; https://doi.org/10.3390/children12070934 - 16 Jul 2025
Viewed by 263
Abstract
Introduction: Fetal ovarian cysts are known to be a common form of fetal abdominal masses in female fetuses, often resulting from hormonal stimulation in utero. Although many resolve spontaneously without sequelae, others can develop into more complex pathologies, such as intracystic hemorrhage or [...] Read more.
Introduction: Fetal ovarian cysts are known to be a common form of fetal abdominal masses in female fetuses, often resulting from hormonal stimulation in utero. Although many resolve spontaneously without sequelae, others can develop into more complex pathologies, such as intracystic hemorrhage or torsion, which can compromise ovarian integrity and long-term reproductive outcomes. Early detection and appropriate follow-up evaluation are therefore crucial for optimal perinatal management. Materials and Methods: We conducted a retrospective study of 12 cases of fetal ovarian cysts diagnosed by routine prenatal ultrasound examinations over a two-year period at our institution. Inclusion criteria were the presence of a cystic adnexal lesion detected in utero, detailed prenatal ultrasound documentation, and a comprehensive postnatal examination. Sonographic features such as cyst size, internal echogenicity, and signs of vascular compromise were recorded. The mother’s clinical variables, including gestational age at diagnosis and relevant medical conditions, were noted. Postnatal follow-up evaluation consisted of ultrasound examinations and, if indicated, pediatric surgical consultation. Results: Of the 12 cases, 9 were characterized by a simple cystic morphology. All spontaneously regressed postnatally and did not require surgical intervention. Three were defined as complex cysts showing septations or echogenic deposits; one of these cysts required immediate surgical exploration for suspected torsion. No cases with a malignant background were identified. All infants showed a favorable course with normal growth and development until follow-up evaluation. Conclusions: This series emphasizes that most fetal ovarian cysts are benign and often resolve without intervention, highlighting the benefit of systematic prenatal imaging. Nevertheless, complex or large cysts require close prenatal and neonatal monitoring to diagnose complications such as torsion. Full article
(This article belongs to the Special Issue Advances in Prenatal Diagnosis and Their Impact on Neonatal Outcomes)
Show Figures

Figure 1

18 pages, 1546 KiB  
Article
Ultrasound-Assisted Synthesis for the Control of Silver Nanoparticle Size: A Preliminary Study on the Influence of Pressure and pH
by Paula Riascos, Daniel Llamosa, Jahaziel Amaya and Hansen Murcia
Condens. Matter 2025, 10(3), 36; https://doi.org/10.3390/condmat10030036 - 7 Jul 2025
Viewed by 460
Abstract
The use of plasmonic nanoparticles for biosensor technology is dependent on nanoparticle size and morphology. This study determined the effect of pH and pressure on synthesizing silver nanoparticle size. In Method 1, a mixture of NaBH4 and sodium citrate was added to [...] Read more.
The use of plasmonic nanoparticles for biosensor technology is dependent on nanoparticle size and morphology. This study determined the effect of pH and pressure on synthesizing silver nanoparticle size. In Method 1, a mixture of NaBH4 and sodium citrate was added to a solution of AgNO3 monodispersed by ultrasound energy. In Method 2, the reducer was added to the precursor–dispersant mixture solution. The effect of pH was evaluated by using buffer solutions at pH 4.0, pH 7.0, and pH 10.0 and water as control. To determine the effect of pressure, AgNPs were subjected to 0, 4, and 23 h to 1.75 MPa at 200 °C. AgNPs produced with Method 1 showed a more symmetric SPR and a smaller nanoparticle diameter (±6 nm). The SPR with Method 1 at pH 10.0 produced a higher UV peak with a shift around 20 nm. In the case of the pressure treatment, a shift of approximately 20 nm was observed at all time conditions studied, and a higher AgNP diameter was found in contrast to Method 1. Finally, EDX and Raman analysis confirm the presence of AgNPs and a mild oxidation of these. These results suggest that alkalinity and pressure can affect the diameter of AgNPs. Full article
(This article belongs to the Section Physics of Materials)
Show Figures

Figure 1

24 pages, 8040 KiB  
Article
Development of Modified Drug Delivery Systems with Metformin Loaded in Mesoporous Silica Matrices: Experimental and Theoretical Designs
by Mousa Sha’at, Maria Ignat, Florica Doroftei, Vlad Ghizdovat, Maricel Agop, Alexandra Barsan (Bujor), Monica Stamate Cretan, Fawzia Sha’at, Ramona-Daniela Pavaloiu, Adrian Florin Spac, Lacramioara Ochiuz, Carmen Nicoleta Filip and Ovidiu Popa
Pharmaceutics 2025, 17(7), 882; https://doi.org/10.3390/pharmaceutics17070882 - 4 Jul 2025
Viewed by 694
Abstract
Background/Objectives: Mesoporous silica materials, particularly KIT-6, offer promising features, such as large surface area, tunable pore structures, and biocompatibility, making them ideal candidates for advanced drug delivery systems. The aims of this study were to develop and evaluate an innovative modified-release platform for [...] Read more.
Background/Objectives: Mesoporous silica materials, particularly KIT-6, offer promising features, such as large surface area, tunable pore structures, and biocompatibility, making them ideal candidates for advanced drug delivery systems. The aims of this study were to develop and evaluate an innovative modified-release platform for metformin hydrochloride (MTF), using KIT-6 mesoporous silica as a matrix, to enhance oral antidiabetic therapy. Methods: KIT-6 was synthesized using an ultrasound-assisted sol-gel method and subsequently loaded with MTF via adsorption from alkaline aqueous solutions at two concentrations (1 and 3 mg/mL). The structural and morphological characteristics of the matrices—before and after drug loading—were assessed using SEM-EDX, TEM, and nitrogen adsorption–desorption isotherms (the BET method). In vitro drug release profiles were recorded in simulated gastric and intestinal fluids over 12 h. Kinetic modeling was performed using seven classical models, and a multifractal theoretical framework was used to further interpret the complex release behavior. Results: The loading efficiency increased with increasing drug concentration but nonlinearly, reaching 56.43 mg/g for 1 mg/mL and 131.69 mg/g for 3 mg/mL. BET analysis confirmed significant reductions in the surface area and pore volume upon MTF incorporation. In vitro dissolution showed a biphasic release: a fast initial phase in an acidic medium followed by sustained release at a neutral pH. The Korsmeyer–Peppas and Weibull models best described the release profiles, indicating a predominantly diffusion-controlled mechanism. The multifractal model supported the experimental findings, capturing nonlinear dynamics, memory effects, and soliton-like transport behavior across resolution scales. Conclusions: The study confirms the potential of KIT-6 as a reliable and efficient carrier for the modified oral delivery of metformin. The combination of experimental and multifractal modeling provides a deeper understanding of drug release mechanisms in mesoporous systems and offers a predictive tool for future drug delivery design. This integrated approach can be extended to other active pharmaceutical ingredients with complex release requirements. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

15 pages, 1557 KiB  
Article
Association Between Microcalcification Patterns in Mammography and Breast Tumors in Comparison to Histopathological Examinations
by Iqbal Hussain Rizuana, Ming Hui Leong, Geok Chin Tan and Zaleha Md. Isa
Diagnostics 2025, 15(13), 1687; https://doi.org/10.3390/diagnostics15131687 - 2 Jul 2025
Viewed by 577
Abstract
Background/Objectives: Accurately correlating mammographic findings with corresponding histopathologic features is considered one of the essential aspects of mammographic evaluation, guiding the next steps in cancer management and preventing overdiagnosis. The objective of this study was to evaluate patterns of mammographic microcalcifications and their [...] Read more.
Background/Objectives: Accurately correlating mammographic findings with corresponding histopathologic features is considered one of the essential aspects of mammographic evaluation, guiding the next steps in cancer management and preventing overdiagnosis. The objective of this study was to evaluate patterns of mammographic microcalcifications and their association with histopathological findings related to various breast tumors. Methods: 110 out of 3603 women had microcalcification of BIRADS 3 or higher and were subjected to stereotactic/ultrasound (USG) guided biopsies, and hook-wire localization excision procedures. Ultrasound and mammography images were reviewed by experienced radiologists using the standard American College of Radiology Breast-Imaging Reporting and Data System (ACR BI-RADS). Results: Our study showed that features with a high positive predictive value (PPV) of breast malignancy were heterogeneous (75%), fine linear/branching pleomorphic microcalcifications (66.7%), linear (100%), and segmental distributions (57.1%). Features that showed a higher risk of association with ductal carcinoma in situ (DCIS) were fine linear/branching pleomorphic (odds ratio (OR): 3.952), heterogeneous microcalcifications (OR: 3.818), segmental (OR: 5.533), linear (OR: 3.696), and regional (OR: 2.929) distributions. Furthermore, the features with higher risks associated with invasive carcinoma had heterogeneous (OR: 2.022), fine linear/branching pleomorphic (OR: 1.187) microcalcifications, linear (OR: 6.2), and regional (OR: 2.543) distributions. The features of associated masses in mammograms that showed a high PPV of malignancy had high density (75%), microlobulation (100%), and spiculated margins (75%). Conclusions: We concluded that specific patterns and distributions of microcalcifications were indeed associated with a higher risk of malignancy. Those with fine linear or branching pleomorphic and segmental distribution were at a higher risk of DCIS, whereas those with heterogeneous morphology with a linear distribution were at a higher risk of invasive carcinoma. Full article
(This article belongs to the Special Issue Recent Advances in Breast Cancer Imaging)
Show Figures

Figure 1

Back to TopTop