Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (14,619)

Search Parameters:
Keywords = morphological indicators

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 259 KB  
Article
Morphological Asymmetries and Their Relationship to Judo-Specific Performance in Youth Judokas
by Jožef Šimenko and Primož Pori
Appl. Sci. 2026, 16(2), 894; https://doi.org/10.3390/app16020894 (registering DOI) - 15 Jan 2026
Abstract
The purpose of this study was to examine morphological asymmetries in male youth judokas using an integrated assessment combining three-dimensional (3D) body scanning and bioelectrical impedance analysis (BIA), and to determine how these asymmetries relate to judo-specific performance. Twenty-seven competitive male youth judokas [...] Read more.
The purpose of this study was to examine morphological asymmetries in male youth judokas using an integrated assessment combining three-dimensional (3D) body scanning and bioelectrical impedance analysis (BIA), and to determine how these asymmetries relate to judo-specific performance. Twenty-seven competitive male youth judokas were evaluated for bilateral girth, segmental length, and lean mass asymmetries across upper- and lower-limb segments. The Absolute Asymmetry index, expressed as a percentage for individual body segments, and the average body symmetry across all variables were calculated, and associations with performance were assessed using the Special Judo Fitness Test (SJFT). Significant right-dominant asymmetries were found in elbow girth p < 0.001, forearm girth p < 0.001, thigh girth p = 0.028, and leg muscle mass p = 0.008. Upper-limb asymmetries were the primary contributors to total-body asymmetry, reflecting the unilateral gripping and rotational demands typical in judo. Only calf girth asymmetry was significantly associated with SJFT performance, with greater asymmetry linked to poorer outcomes, indicating a specific rather than general asymmetry–performance relationship (r = 0.405; p = 0.037). These findings underscore the importance of early detection of segment-specific asymmetries and suggest that rapid digital anthropometry is a practical tool for monitoring morphological development in youth judokas. Early targeted interventions may support balanced technical execution, enhance performance, and reduce the risk of uneven loading patterns as athletes progress to higher age categories and competition levels. Full article
15 pages, 15171 KB  
Article
Solar Origins of Short-Term Periodicities in Near-Earth Solar Wind and Interplanetary Magnetic Field
by Huichao Li, Yunxi Zhang, Jinzhou Bao, Botian Tang, Jiangrong Xie and Kangyan Wang
Appl. Sci. 2026, 16(2), 891; https://doi.org/10.3390/app16020891 (registering DOI) - 15 Jan 2026
Abstract
This study investigates the solar origins of short-term periodicities in the near-Earth solar wind and interplanetary magnetic field (IMF) using long-term observations (1995–2024) and Potential Field Source Surface modeling. We establish that the 27-day periodicity in solar wind speed and its harmonics (13.5-day [...] Read more.
This study investigates the solar origins of short-term periodicities in the near-Earth solar wind and interplanetary magnetic field (IMF) using long-term observations (1995–2024) and Potential Field Source Surface modeling. We establish that the 27-day periodicity in solar wind speed and its harmonics (13.5-day and 9-day) are governed by the combined influence of polar and low-latitude coronal holes. Polar coronal holes serve as the fundamental stabilizers of the global coronal structure, while the rotation of the Sun in the presence of low-latitude coronal holes acts as the primary mechanism generating periodic fluctuations. The absence of low-latitude coronal holes diminishes or erases these periodicities. For IMF components forming the Parker spiral, the periodicity is controlled by the structure of the heliospheric current sheet (HCS). A stable 27-day period emerges under a two-sector IMF configuration (HCS average slope SL>0.4, latitudinal extent beyond ±30°), while a stable four-sector structure (SL>0.6, latitudinal extent beyond ±60°) superimposes a clear 13.5-day periodicity. However, periodicity weakens or disappears when the HCS is flat and equatorial, or when global structural changes and transient disturbances disrupt recurrence patterns. In contrast, BzGSE exhibits weak periodicity due to its transient nature, while BzGSM shows intermittent 27-day periodicity modulated by the Russell-McPherron effect. Consequently, geomagnetic indices (Kp, Dst, AE) display periodic behavior similar to BzGSM, consistent with its crucial role in solar wind-magnetosphere coupling. These results quantitatively link solar surface morphology to heliospheric recurrence, clarifying the conditions under which periodicities emerge or are suppressed throughout the Sun-Earth system. Full article
(This article belongs to the Special Issue Advances in Solar Physics)
Show Figures

Figure 1

14 pages, 5149 KB  
Article
Comparative Metabolomics Reveals Enhanced TCA Cycle and Suppressed Secondary Metabolism as Metabolic Hallmarks of Embryogenic Calli in Picea mongolica
by Shengli Zhang, Jinling Dai, Linhu Xi, Yanqiu Yan, Jialu Cao and Yu’e Bai
Forests 2026, 17(1), 117; https://doi.org/10.3390/f17010117 (registering DOI) - 15 Jan 2026
Abstract
Somatic embryogenesis (SE) plays a pivotal role in the propagation and genetic improvement of coniferous trees; however, its efficiency is frequently limited by the reduced embryogenic potential of callus cultures. Here, we investigated the metabolic determinants underlying this phenomenon in Picea mongolica by [...] Read more.
Somatic embryogenesis (SE) plays a pivotal role in the propagation and genetic improvement of coniferous trees; however, its efficiency is frequently limited by the reduced embryogenic potential of callus cultures. Here, we investigated the metabolic determinants underlying this phenomenon in Picea mongolica by conducting a comparative metabolomic analysis of embryogenic calli (EC) and non-embryogenic calli (NEC). We observed significant metabolic differences between EC and NEC using an integrated approach combining morphological observations and untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolomics. EC exhibited increased central carbon metabolism, characterized by enhanced citrate cycle (TCA) flux, with significantly increased levels of the key TCA intermediates, citric acid and L-malic acid—18.8- and 3.6-fold higher, respectively, than those in NEC. Conversely, NEC displayed a divergent metabolic state, characterized by the accumulation of various amino acids and the activation of secondary metabolic pathways, especially alkaloid biosynthesis. These results indicate that embryogenic competence in P. mongolica is supported by a distinct metabolic program that prioritizes energy generation and efficient carbon-nitrogen allocation for biosynthetic processes. Conversely, the non-embryogenic state arises from a shift in metabolic resources toward secondary metabolism. These findings provide key metabolic insights and a theoretical basis for enhancing conifer SE systems. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Figure 1

11 pages, 2529 KB  
Article
Ultrastructural Evaluation (SEM) of Ascaris lumbricoides Eggs Treated with Silver Nanoparticles Biosynthesised by Duddingtonia flagrans Using Scanning Electron Microscopy (SEM)
by Carolina Magri Ferraz, João Pedro Barbosa de Assis, Eduarda Cavalini Guerini, Juliany Veloso Leal, Filippe Elias de Freitas Soares, Marcio Fronza, Jackson Victor de Araujo, Luís Madeira de Carvalho and Fabio Ribeiro Braga
Pathogens 2026, 15(1), 95; https://doi.org/10.3390/pathogens15010095 (registering DOI) - 15 Jan 2026
Abstract
Ascaris lumbricoides is one of the most epidemiologically significant soil-transmitted helminths, and the environmental persistence of its eggs is largely attributed to their robust structural architecture. The search for ovicidal alternatives capable of overcoming this barrier has increasingly focused on metallic nanoparticles obtained [...] Read more.
Ascaris lumbricoides is one of the most epidemiologically significant soil-transmitted helminths, and the environmental persistence of its eggs is largely attributed to their robust structural architecture. The search for ovicidal alternatives capable of overcoming this barrier has increasingly focused on metallic nanoparticles obtained through biological synthesis. Scanning electron microscopy (SEM) was employed to evaluate the ultrastructural effects of silver nanoparticles (AgNPs) biosynthesised by the nematophagous fungus Duddingtonia flagrans on A. lumbricoides eggs. Ultraviolet-visible spectroscopy and transmission electron microscopy confirmed the synthesis of AgNPs, revealing predominantly spherical, well-dispersed particles with an average diameter of 9.22 ± 4.9 nm. Cytotoxicity assays indicated an IC50 of 7.7 µg/mL. SEM analyses showed that eggs in the control group maintained intact morphology, with no apparent deformities. In contrast, exposure to AgNPs induced pronounced structural alterations, including marked wrinkling, surface erosion and shell collapse, suggesting disruption of multiple layers. Albendazole alone produced deep linear fissures consistent with internal metabolic failure, though with minimal external erosion. The combined treatment with AgNPs and albendazole resulted in severe degradation. These findings demonstrate that AgNPs exhibit significant ovicidal activity and may serve as effective adjuvants to enhance the action of conventional anthelmintics against highly resistant helminth eggs. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Figure 1

20 pages, 5426 KB  
Review
Morphological Diversity and Interparticle Interactions of Lubricating Grease Thickeners: Current Insights and Research Approaches
by Maciej Paszkowski, Ewa Kadela and Agnieszka Skibińska
Lubricants 2026, 14(1), 41; https://doi.org/10.3390/lubricants14010041 (registering DOI) - 15 Jan 2026
Abstract
The study systematizes the current state of knowledge on the morphological diversity of dispersed-phase particles in the most widely used lubricating greases, encompassing their shape, size, surface structure, and overall geometry. The extensive discussion of the diversity of grease thickener particles is supplemented [...] Read more.
The study systematizes the current state of knowledge on the morphological diversity of dispersed-phase particles in the most widely used lubricating greases, encompassing their shape, size, surface structure, and overall geometry. The extensive discussion of the diversity of grease thickener particles is supplemented with their microscopic images. Particular emphasis is placed on the influence of thickener particle morphology, the degree of their aggregation, and interparticle interactions on the rheological, mechanical, and tribological properties of grease formulations. The paper reviews recent advances in investigations of grease microstructure, with special emphasis on imaging techniques—ranging from dark-field imaging, through scanning electron microscopy, to atomic force microscopy—together with a discussion of their advantages and limitations in the assessment of particle morphology. A significant part of the work is devoted to rheological studies, which enable an indirect evaluation of the structural state of grease by analyzing its response to shear and deformation, thereby allowing inferences to be drawn about the micro- and mesostructure of lubricating greases. The historical development of rheological research on lubricating greases is also presented—from simple flow models, through the introduction of the concepts of viscoelasticity and structural rheology, to modern experimental and modeling approaches—highlighting the close relationships between rheological properties and thickener structure, manufacturing processes, composition, and in-service behavior of lubricating greases, particularly in tribological applications. It is indicated that contemporary studies confirm the feasibility of tailoring the microstructure of grease thickeners to specific lubrication conditions, as their characteristics fundamentally determine the rheological and tribological properties of the entire system. Full article
(This article belongs to the Special Issue Rheology of Lubricants in Lubrication Engineering)
Show Figures

Figure 1

20 pages, 1997 KB  
Article
Effects of Four Light Colors on Physiology, Antioxidant Enzyme Activity, Shell Pigmentation, and Genes Associated with Body Color Formation in Procambarus clarkii
by Zhuozhuo Ai, Zhigang Yang, Jianhua Ming, Lu Zhang, Xiaoru Chen, Zhiqiang Xu, Wuxiao Zhang, Aiming Wang, Hongyan Tian, Silei Xia and Aqin Chen
Fishes 2026, 11(1), 54; https://doi.org/10.3390/fishes11010054 (registering DOI) - 15 Jan 2026
Abstract
Light plays a critical role in the physiology and pigmentation of aquatic animals. Regulating the light environment of aquatic animals offers insights into healthy aquaculture practices. In this study, Procambarus clarkii were reared under four different light colors—white (WL), red (RL), blue (BL), [...] Read more.
Light plays a critical role in the physiology and pigmentation of aquatic animals. Regulating the light environment of aquatic animals offers insights into healthy aquaculture practices. In this study, Procambarus clarkii were reared under four different light colors—white (WL), red (RL), blue (BL), and green (GL)—for 21 days, with four replicates per light color. Morphological characteristics did not differ among light treatments. However, significant differences were observed in hemolymph cortisol levels and tyrosinase activity across different tissues (hemolymph, muscle, hepatopancreas) among groups (RL > BL > GL > WL). Hepatopancreatic CAT activity in WL was significantly higher than that in GL and BL, whereas hepatopancreatic MDA content was highest in BL. Regarding chromatic parameters, the yellow color of the RL cephalothorax cuticle and the red color of the muscle were more pronounced than in WL, The chela cuticle of GL is darker than RL, while the red color of the chela cuticle was more pronounced than in WL.. For pigment content, cephalothorax cuticle astaxanthin content in BL was significantly higher than that in other light color groups, while abdominal cuticle astaxanthin content was lowest in BL. Chela cuticle astaxanthin content in RL was significantly higher than that in WL, and chela cuticle astaxanthin and lutein contents in WL were significantly lower than those in BL and GL. Compared with WL, hepatopancreatic glutathione S-transferase P1 (GSTP1) mRNA expression significantly decreased under colored light, whereas NinaB mRNA expression significantly increased under RL and BL. These results indicate that light color does not affect the morphological characteristics of P. clarkii but significantly modulates oxidative stress responses, physiological status and energy metabolism. Different light colors may mediate carotenoid transport and deposition by regulating the expression of GSTP1, NinaB, leading to specific chromatic differences in different body parts of P. clarkii. Comprehensive analysis revealed that the red light environment exerted a more positive effect on enhancing the body color of P. clarkii. This study provides a reference for revealing the mechanism of light color regulating crustacean physiological function and pigmentation and optimizing aquaculture model. Full article
(This article belongs to the Section Aquatic Invertebrates)
Show Figures

Figure 1

16 pages, 2109 KB  
Article
Age Structure, Growth Parameters, and Otolith Traits of Two Species of the Genus Trachurus in the Central Mediterranean
by Vasiliki Nikiforidou, Chryssi Mytilineou, Vasileios Xenikakis and Aikaterini Anastasopoulou
Fishes 2026, 11(1), 53; https://doi.org/10.3390/fishes11010053 (registering DOI) - 15 Jan 2026
Abstract
The Atlantic horse mackerel (Trachurus trachurus) and the Mediterranean horse mackerel (T. mediterraneus) are two commercially important species whose biological traits remain insufficiently studied in the Central Mediterranean Sea. This study examines their age, growth pattern, and, for the [...] Read more.
The Atlantic horse mackerel (Trachurus trachurus) and the Mediterranean horse mackerel (T. mediterraneus) are two commercially important species whose biological traits remain insufficiently studied in the Central Mediterranean Sea. This study examines their age, growth pattern, and, for the first time, otolith morphology in both species in the Eastern Ionian Sea. The intercept of the weight–length relationship was a = 0.00599 (95% CI = 0.0050–0.0072) for T. trachurus and a = 0.00801 (95% CI = 0.0072–0.0089) for T. mediterraneus, and the slope was b = 3.121 (95% CI: 3.058–3.183) and b = 2.994 (95% CI: 2.957–3.031), respectively. Age was estimated by counting annual growth increments, visible as alternating opaque and clear bands along the axis of the left sagittal otolith from the core to the posterior margin. Von Bertalanffy growth parameters were estimated as L = 34.65 cm, k = 0.31 year−1, and t0= −1.11 years for T. trachurus and L = 35.98 cm, k = 0.23 year−1, and to = −1.60 years for T. mediterraneus. Otolith morphometrics showed significantly higher values (ANOVA, p-value < 0.05) in T. mediterraneus for all morphometric variables, except one, indicating larger and wider otoliths than those of T. trachurus, which can be a tool to distinguish the two species. A strong correlation was observed between the total length of the body and otolith metrics in both species. This study enhanced our scientific knowledge on the studied species’ life history traits and provides information for further ecological and stock assessment studies. Full article
(This article belongs to the Special Issue Age Determination of Aquatic Animals)
Show Figures

Figure 1

13 pages, 2451 KB  
Article
Breed-Based Genome-Wide CNV Analysis in Dong Tao Chickens Identifies Candidate Regions Potentially Related to Robust Tibia Morphology
by Hao Bai, Dandan Geng, Weicheng Zong, Yi Zhang, Guohong Chen and Guobin Chang
Agriculture 2026, 16(2), 221; https://doi.org/10.3390/agriculture16020221 (registering DOI) - 15 Jan 2026
Abstract
Tibia morphology is a significant factor in poultry germplasm and market traits. Copy number variation (CNV) has been identified as a structural source of genetic variation for complex traits. We profiled genome-wide CNVs in Dong Tao chickens and nine other local breeds and [...] Read more.
Tibia morphology is a significant factor in poultry germplasm and market traits. Copy number variation (CNV) has been identified as a structural source of genetic variation for complex traits. We profiled genome-wide CNVs in Dong Tao chickens and nine other local breeds and performed a breed-based case–control CNV-GWAS (Dong Tao vs. reference breeds). We sequenced 152 chickens, including 46 Dong Tao, and annotated genes and pathways. A total of 22,972 CNVs were detected, of which 2193 were retained after filtration across 33 chromosomes, with sizes ranging from 2 kilobases to 12.8 megabases. Principal component analysis indicated an overall weakness in the breed structure and a sex-related trend within Dong Tao. A deletion on chromosome 3 at 36,529,501 to 36,539,000 was observed in Dong Tao. The exploratory screen identified 44 CNV regions at nominal significance (p < 0.05), distinguishing Dong Tao from other breeds. Thirty-seven regions contained 99 genes, including CHRM3 within the chromosome 3 deletion and CRADD overlapping two CNVs. Enrichment analysis indicated thiamine metabolism and growth hormone receptor signalling as the primary pathways of interest, with TPK1, SOCS2, and FHIT identified as potential candidates. These results provide a CNV landscape for Dong Tao and prioritize variant regions and pathways potentially relevant to its robust tibia morphology; however, no direct CNV–tibia phenotype regression was performed. Full article
Show Figures

Figure 1

14 pages, 1414 KB  
Article
Sustainable Photocatalytic Degradation of Ibuprofen Using Se-Doped SnO2 Nanoparticles Under UV–Visible Irradiation
by Luis Alamo-Nole and Cristhian Castro-Cedeño
AppliedChem 2026, 6(1), 7; https://doi.org/10.3390/appliedchem6010007 (registering DOI) - 15 Jan 2026
Abstract
The increasing presence of pharmaceutical residues such as ibuprofen in aquatic environments represents a growing concern due to their persistence and limited biodegradability. In this study, selenium-doped tin oxide (SnO2:Se) nanoparticles covered with glycerol were synthesized via a microwave-assisted method to [...] Read more.
The increasing presence of pharmaceutical residues such as ibuprofen in aquatic environments represents a growing concern due to their persistence and limited biodegradability. In this study, selenium-doped tin oxide (SnO2:Se) nanoparticles covered with glycerol were synthesized via a microwave-assisted method to evaluate their photocatalytic performance in the degradation of ibuprofen under ultraviolet (UV) and visible light. Optimal synthesis parameters were determined at pH 7.5–8.0 and 130 °C, yielding stable, dark-brown colloidal suspensions. HRTEM analysis revealed a coexistence of one-dimensional (1D) nanowires and zero-dimensional (0D) quantum dots, confirming nanoscale morphology with crystallite sizes between 8 and 100 nm. EDS analysis confirmed the presence of Sn, O, and trace Se (0.1 wt%), indicating Se incorporation as a dopant. UV–Vis spectroscopy showed strong absorption near 324 nm and slight band-gap narrowing in the Se-doped samples, suggesting enhanced visible-light responsiveness. Photocatalytic experiments demonstrated an ibuprofen degradation efficiency of ~60% under visible light and 80% under UV irradiation with aeration, compared to only 5% removal using commercial SnO2. The enhanced performance was attributed to Se-induced band-gap modulation, effective charge-carrier separation, and singlet oxygen generation. Full article
Show Figures

Figure 1

11 pages, 1833 KB  
Article
Anthocyanin Enhances Development, Hatching, and GLUT4 Expression in In Vitro-Cultured ICR Mouse Blastocysts
by Imran Khan and Yun Seok Heo
Life 2026, 16(1), 132; https://doi.org/10.3390/life16010132 - 15 Jan 2026
Abstract
Anthocyanin is a flavonoid known for its strong antioxidant and anti-inflammatory activities in both in vitro and in vivo systems. This study investigated whether anthocyanin supplementation could improve the developmental competence, hatching rate, and the expression of development- and proliferation-related markers in ICR [...] Read more.
Anthocyanin is a flavonoid known for its strong antioxidant and anti-inflammatory activities in both in vitro and in vivo systems. This study investigated whether anthocyanin supplementation could improve the developmental competence, hatching rate, and the expression of development- and proliferation-related markers in ICR mouse blastocysts cultured in vitro. Mouse embryos were cultured in KSOM medium supplemented with 2, 4, or 8 μM anthocyanin. Among these, 4 μM was selected as the working concentration within the tested range. Morphological assessment was used to evaluate blastocyst development and hatching, while quantitative real-time polymerase chain reaction (qPCR) was performed to measure the expression of GLUT4 and PI3K. Anthocyanin supplementation significantly enhanced blastocyst quality, as reflected by higher developmental competence and increased hatching rates compared with the control group. In addition, anthocyanin-treated blastocysts displayed elevated mRNA expression of GLUT4 and PI3K, indicating a potential association with enhanced metabolic readiness and cellular proliferation. Overall, these findings indicate that anthocyanin supports embryo quality during preimplantation development in vitro, with potential relevance to implantation-related processes. Further research is needed to clarify the underlying mechanisms and explore the potential applications of anthocyanin in reproductive medicine. Full article
(This article belongs to the Special Issue Animal Reproduction and Health)
Show Figures

Figure 1

22 pages, 3229 KB  
Article
Antitumor Activity of All-Trans Retinoic Acid and Curcumin-Loaded BSA Nanoparticles Against U87 Glioblastoma Cells
by Ceyda Sonmez, Aleyna Baltacioglu, Julide Coskun, Gulen Melike Demirbolat, Ozgul Gok and Aysel Ozpinar
Life 2026, 16(1), 131; https://doi.org/10.3390/life16010131 - 15 Jan 2026
Abstract
Glioblastoma (GBM) is a highly aggressive brain tumor characterized by invasive growth, intrinsic drug resistance, and the presence of the blood–brain barrier. All of these features make treatment extremely challenging and underscore the need for developing effective combination strategies and advanced drug delivery [...] Read more.
Glioblastoma (GBM) is a highly aggressive brain tumor characterized by invasive growth, intrinsic drug resistance, and the presence of the blood–brain barrier. All of these features make treatment extremely challenging and underscore the need for developing effective combination strategies and advanced drug delivery systems. This study aimed to develop a bovine serum albumin (BSA) nanoparticle (NP)-based delivery system to overcome the poor bioavailability and pharmacokinetic limitations of two potent anti-tumor agents, all-trans retinoic acid (ATRA) and curcumin (CURC), and to evaluate their antitumor activity in U87-MG GBM cells. Drug-free and ATRA/CURC-loaded BSA-NPs were synthesized using an optimized desolvation method and characterized in terms of particle size, polydispersity index, morphology, drug encapsulation efficiency, and release behavior. The cytotoxic, anti-migratory, and pro-apoptotic effects of the NPs on U87-MG GBM cells were assessed using real-time proliferation and migration assays and Annexin V/PI staining followed by flow cytometry. Collectively, the findings indicated that the co-delivery of ATRA and CURC using BSA-NPs showed enhanced antiproliferative, antimigratory, and pro-apoptotic effects. With its controlled release profile, high loading capacity, and favorable nanoscale dimensions, the ATRA-CURC-BSA–NP system represents a promising nanoplatform for GBM therapy that warrants further in vivo investigation. To the best of our knowledge, this is the first study demonstrating the inhibition of glioblastoma cell growth through the co-delivery of all-trans retinoic acid and curcumin using a bovine serum albumin-based nanoparticle system. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

25 pages, 13302 KB  
Article
Investigation of the Effects of Ambient Conditions and Injection Strategies on Methanol Spray Characteristics
by Decheng Wang, Wuzhe Zhu, Zhijie Li, Changhui Zhai, Xiaoxiao Zeng, Kui Shi, Yunliang Qi and Zhi Wang
Energies 2026, 19(2), 416; https://doi.org/10.3390/en19020416 - 14 Jan 2026
Abstract
To reveal the physical evolution of methanol spray under different environmental conditions and injection strategies, this study focuses on the atomization and evaporation behavior of low-pressure methanol spray. The coupled effects of temperature, pressure, and injection parameters are systematically investigated based on constant-volume [...] Read more.
To reveal the physical evolution of methanol spray under different environmental conditions and injection strategies, this study focuses on the atomization and evaporation behavior of low-pressure methanol spray. The coupled effects of temperature, pressure, and injection parameters are systematically investigated based on constant-volume combustion chamber experiments and three-dimensional CFD simulations. The formation, evolution, and interaction mechanisms of the liquid column core and cooling core are revealed. The results indicate that temperature is the dominant factor influencing methanol spray atomization. When the temperature increases from 255 K to 333 K, the spray penetration distance increases by approximately 70%, accompanied by a pronounced shortening of the liquid-core length and enhanced evaporation and air entrainment. Under low-temperature conditions, a stable liquid-core structure and a strong cooling core are formed, characterized by a high-density, long-axis morphology and an extensive low-temperature region, which suppress fuel–air mixing and ignition. Increasing the ambient pressure improves spray–air mixing but reduces penetration; at 255 K, increasing the ambient pressure from 0.05 MPa to 0.2 MPa increases the spray cone angle by approximately 10% while reducing the penetration distance by about 50%. Furthermore, optimizing the injection pressure or shortening the injection pulse width effectively enhances atomization performance: increasing the injection pressure from 0.4 MPa to 0.6 MPa and reducing the pulse width from 5 ms to 2 ms increases the penetration distance by approximately 30% and reduces the mean droplet diameter by about 20%. Full article
Show Figures

Figure 1

21 pages, 5696 KB  
Article
The Candidate Effector Cgmas2 Orchestrates Biphasic Infection of Colletotrichum graminicola in Maize by Coordinating Invasive Growth and Suppressing Host Immunity
by Ziwen Gong, Jinai Yao, Yuqing Ma, Xinyao Xia, Kai Zhang, Jie Mei, Tongjun Sun, Yafei Wang and Zhiqiang Li
Int. J. Mol. Sci. 2026, 27(2), 845; https://doi.org/10.3390/ijms27020845 - 14 Jan 2026
Abstract
Maize (Zea mays L.) is a major economic crop highly susceptible to Colletotrichum graminicola, the causal agent of anthracnose leaf blight, which causes substantial annual yield losses. This fungal pathogen employs numerous effectors to manipulate plant immunity, yet the functions of [...] Read more.
Maize (Zea mays L.) is a major economic crop highly susceptible to Colletotrichum graminicola, the causal agent of anthracnose leaf blight, which causes substantial annual yield losses. This fungal pathogen employs numerous effectors to manipulate plant immunity, yet the functions of many secreted proteins during biphasic infection remain poorly characterized. In this study, we identified CgMas2, a candidate secreted protein in C. graminicola and a homolog of Magnaporthe oryzae MoMas2. Deletion of CgMAS2 in the wild-type strain CgM2 did not affect fungal vegetative growth or conidial morphology but significantly impaired virulence on maize leaves. Leaf sheath infection assays revealed that CgMas2 is required for biotrophic invasive hyphal growth, as the mutant showed defective spreading of invasive hyphae to adjacent cells. Subcellular localization analysis indicated that CgMas2 localizes to the cytoplasm of conidia and to the primary infection hyphae. Furthermore, DAB staining demonstrated that disrupt of CgMAS2 leads to host reactive oxygen species (ROS) accumulation. Comparative transcriptome analysis of maize infected with ΔCgmas2 versus CgM2 revealed enrichment of GO terms related to peroxisome and defense response, along with up-regulation of benzoxazinoid biosynthesis genes (benzoxazinone biosynthesis 3, 4 and 5) at 60 h post-inoculation (hpi). Conversely, six ethylene-responsive transcription factors (ERF2, ERF3, ERF56, ERF112, ERF115 and ERF118) involved in ethylene signaling pathways were down-regulated at 96 hpi. These expression patterns were validated by RT-qPCR. Collectively, our results demonstrate that CgMas2 not only promotes invasive hyphal growth during the biotrophic stage but may also modulate phytohormone signaling and defense compound biosynthesis during the necrotrophic phase of infection. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

14 pages, 1836 KB  
Article
Development of a Peptide-Based Photoimmunotherapy Drug Targeting PD-L1
by Takuya Otani, Naoya Kondo, Ayaka Kanai and Hirofumi Hanaoka
Molecules 2026, 31(2), 302; https://doi.org/10.3390/molecules31020302 - 14 Jan 2026
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) has recently attracted attention as a highly selective cancer treatment, with good treatment outcomes observed from the only antibody-based drug currently available for clinical use. However, since only a single agent is currently used clinically and the development of new [...] Read more.
Near-infrared photoimmunotherapy (NIR-PIT) has recently attracted attention as a highly selective cancer treatment, with good treatment outcomes observed from the only antibody-based drug currently available for clinical use. However, since only a single agent is currently used clinically and the development of new antibodies is costly, exploring other therapeutic modalities is important. In this study, we investigated a novel peptide-based PIT drug targeting programmed death-ligand 1 (PD-L1), which is overexpressed in many types of cancer. The WL12 peptide, which is known to bind to PD-L1, was conjugated with the photoabsorber IRDye700DX (IR700), and its usefulness was evaluated in vitro and in vivo. In therapeutic experiments on PD-L1-positive cells, NIR-PIT with WL12-IR700 induced PIT-like morphological changes in cells and reduced cancer cell viability in an NIR light dose- and drug concentration-dependent manner. In vivo experiments showed significant suppression of tumor growth and an extended overall survival rate. These results indicate that the developed peptide-based drug can be used for PD-L1-targeted NIR-PIT. Full article
Show Figures

Graphical abstract

20 pages, 9194 KB  
Article
Modeling Moisture Content and Analyzing Water Infiltration in Coconut Coir Substrate Using RGB Image Recognition and Machine Learning
by Xiaokun Feng, Ping Zou, Qingtao Wang, Haitao Wang, Xiangnan Li and Jiandong Wang
Agriculture 2026, 16(2), 219; https://doi.org/10.3390/agriculture16020219 - 14 Jan 2026
Abstract
Coconut coir, a key substrate in soilless cultivation, presents challenges for accurate moisture detection because of its complex internal structure, which limits the understanding of water infiltration and redistribution. This study employed RGB image recognition techniques combined with machine learning algorithms to systematically [...] Read more.
Coconut coir, a key substrate in soilless cultivation, presents challenges for accurate moisture detection because of its complex internal structure, which limits the understanding of water infiltration and redistribution. This study employed RGB image recognition techniques combined with machine learning algorithms to systematically investigate the effects of initial moisture content (10%, 20%, and 30%), coarse-to-fine coir volume ratio (1:0, 1:1, and 0:1), and emitter discharge rate (1.0, 1.5, and 2.0 L h−1) on wetting front morphology, water transport dynamics, and moisture variation within coir substrates. Morphological features of the wetting front were extracted from images and incorporated into three machine learning models—Support Vector Regression (SVR), Random Forest (RF), and Polynomial Regression—to construct a predictive framework for coir moisture estimation. The results showed that the SVR model achieved the best predictive performance in coarse coir substrates (R2 = 0.89, RMSE = 3.37%), whereas Polynomial Regression performed best in mixed substrates (R2 = 0.861, RMSE = 4.34%). All models exhibited lower accuracy in fine coir, particularly at high moisture levels. Under the same irrigation volume, increasing the initial moisture content enhanced both the water transport rate and the wetting front extent, with the aspect ratio (AR) decreasing from approximately 2.0 to 1.3, indicating a morphological transition of the wetting front from a “thumb-shaped” to a “hemispherical” pattern. Coarse particles facilitated vertical infiltration, while fine particles exhibited stronger water retention. By integrating RGB image recognition with machine learning approaches, this study achieved reliable prediction of coir moisture content and proposed an optimal management strategy using mixed substrates with an initial moisture content of 20–30% to balance infiltration efficiency and water-holding capacity while minimizing percolation risk. These findings provide a robust technical pathway for precise water management in coir-based cultivation systems. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

Back to TopTop