Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (499)

Search Parameters:
Keywords = monocyte chemoattractant protein-1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2126 KB  
Article
Early Molecular Biomarkers in an Amyloid-β-Induced Rat Model of Alzheimer’s Disease: Effects of Kelulut Honey
by Ammara Shaikh, Fairus Ahmad, Jayakumar Murthy, Seong Lin Teoh and Mohamad Fairuz Yahaya
Int. J. Mol. Sci. 2026, 27(2), 1059; https://doi.org/10.3390/ijms27021059 - 21 Jan 2026
Viewed by 72
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia worldwide, characterized by progressive neurodegeneration and cognitive decline. Early diagnosis remains critical for enabling timely intervention. However, detecting the earliest pathological changes is challenging due to the limited availability of reliable biomarkers that reflect [...] Read more.
Alzheimer’s disease (AD) is the leading cause of dementia worldwide, characterized by progressive neurodegeneration and cognitive decline. Early diagnosis remains critical for enabling timely intervention. However, detecting the earliest pathological changes is challenging due to the limited availability of reliable biomarkers that reflect early disease pathology in experimental models. This study evaluated molecular markers associated with AD-related processes in a rat model inoculated with human amyloid β (Aβ)1-42 peptides. We assessed the levels of biomarkers: Aβ1-42, Aβ42, phosphorylated tau, monocyte chemoattractant protein-1 (MCP-1), nuclear factor kappa B (NF-κB p65) and superoxide dismutase 1 (SOD1) in hippocampal tissue and serum using enzyme-linked immunosorbent assay. A treatment group receiving Kelulut honey was included to evaluate biomarker responsiveness. Results showed significant elevation in hippocampal Aβ1-42 and phosphorylated tau in diseased rats, with changes in inflammatory markers MCP-1 and NF-κB p65, whereas no significant change was observed in oxidative stress marker SOD1. Serum levels of Aβ1-42 and MCP-1 did not differ significantly between groups, indicating limited peripheral sensitivity after a month of disease induction. These findings suggest that amyloid-, tau-, and inflammation-related markers in hippocampal tissue may be informative for early pathological changes in this acute model, while serum markers showed limited sensitivity. Full article
(This article belongs to the Special Issue Research in Alzheimer’s Disease: Advances and Perspectives)
Show Figures

Figure 1

15 pages, 2087 KB  
Article
Anti-Inflammatory Effects of Alpha-Lipoic Acid Modulate Cystathionine-γ-Lyase Expression in RAW 264.7 Macrophages
by Aqsa Shahid, Stephen Chambers, Amy Scott-Thomas, Masuma Zawari and Madhav Bhatia
Int. J. Mol. Sci. 2026, 27(2), 949; https://doi.org/10.3390/ijms27020949 - 18 Jan 2026
Viewed by 112
Abstract
Alpha-lipoic acid (ALA) is a naturally occurring organosulfur compound with antioxidant and anti-inflammatory activities. The time-dependent effects of ALA and mechanism of interaction with cystathionine-γ-lyase (CSE—an enzyme responsible for hydrogen sulfide—H2S synthesis) in RAW 264.7 macrophages remain unknown. In this study, [...] Read more.
Alpha-lipoic acid (ALA) is a naturally occurring organosulfur compound with antioxidant and anti-inflammatory activities. The time-dependent effects of ALA and mechanism of interaction with cystathionine-γ-lyase (CSE—an enzyme responsible for hydrogen sulfide—H2S synthesis) in RAW 264.7 macrophages remain unknown. In this study, we report results supporting the hypothesis that anti-inflammatory effects of ALA are associated with the reduction in CSE expression. To investigate the temporal effect of ALA in lipopolysaccharide (LPS—a potent stimulator of inflammation) treated RAW 264.7 macrophages, ALA was administered 1 h before LPS stimulation and 1, 3, and 6 h post LPS stimulation. Effects of ALA on different inflammatory and oxidative stress biomarkers including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), catalase activity (CAT), and malondialdehyde (MDA) levels were investigated. LPS stimulation significantly increased TNF- α, IL-6, MCP-1, MDA levels, and CSE expression and decreased CAT activity compared with the control group (p < 0.05 to 0.0001). ALA treatment at 1000 µM significantly attenuated LPS-stimulated inflammatory response in the macrophages across different time points (p < 0.05 to 0.0001). Furthermore, we found that ALA treatment reduced the expression of CSE in both pre- and post-treated LPS-stimulated macrophages in a time-dependent manner. In conclusion, this study demonstrated for the first time that the protective effects of ALA are dependent on the reduction in CSE expression in LPS-stimulated RAW 264.7 macrophages. Full article
(This article belongs to the Special Issue Bioactive Compounds in the Prevention of Chronic Diseases)
Show Figures

Figure 1

24 pages, 1338 KB  
Review
Cognition, Cytokines, Blood–Brain Barrier, and Beyond in COVID-19: A Narrative Review
by Ana Barajas, Gemma Riquelme-Alacid, América Vera-Montecinos and Belén Ramos
Int. J. Mol. Sci. 2026, 27(1), 546; https://doi.org/10.3390/ijms27010546 - 5 Jan 2026
Cited by 2 | Viewed by 582
Abstract
Numerous studies report cognitive impairment in COVID-19 patients from the acute to post-acute phases, linked to blood inflammation affecting blood–brain barrier (BBB) permeability and causing leakage of glial and neuronal proteins. However, a clear classification of these cognitive deficits and molecular blood events [...] Read more.
Numerous studies report cognitive impairment in COVID-19 patients from the acute to post-acute phases, linked to blood inflammation affecting blood–brain barrier (BBB) permeability and causing leakage of glial and neuronal proteins. However, a clear classification of these cognitive deficits and molecular blood events over time is still lacking. This narrative review summarizes the neuropsychological consequences of COVID-19 and evidence of altered cytokines and BBB disruption as potential mediators of cognitive impairment across post-infection phases. Post-COVID-19 cognitive dysfunction appears to follow a temporal course, evolving from acute focal deficits in attention, working memory, and executive function to more persistent multidomain impairments. We reviewed key cytokines released into the blood during COVID-19 infection, including antiviral (IFNγ, CXCL1, CXCL10), inflammatory (IL-1β, IL-2, IL-4, IL-6, IL-7, IL-8, IL-10, GM-CSF, TNFα), and monocyte chemoattractants (MCP1/CCL2, MCP3/CCL7, MIP-1α/CCL3, GM-CSF, G-CSF). This analysis shows that several inflammatory and viral cytokines remain elevated beyond the acute phase and are associated with cognitive deficits, including IL-6, IL-13, IL-8, IL-1β, TNFα, and MCP1 in long-term post-COVID-19 patients. In addition, we examined studies analyzing changes over time in neurovascular unit proteins as biomarkers of BBB disruption, including extracellular matrix proteins (PPIA, MMP-9), astrocytes (S100β, GFAP), and neurons (NFL). These proteins are elevated in acute COVID-19 but generally return to control levels within six months, suggesting BBB restoration. However, in patients followed for over a year, BBB disruption persists only in those with cognitive impairment and is associated with systemic inflammation, with TGFβ as a related biomarker. Although cognitive sequelae can persist for over 12 months after SARS-CoV-2 infection, further studies are needed to investigate long-term neurocognitive outcomes and their link to sustained proinflammatory cytokine elevation and brain impact. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

16 pages, 4387 KB  
Article
Effects of Folate and Fructose Intakes on Renal Cytokines and Fibrosis in an Adenine-Induced Mouse Model of Chronic Kidney Disease
by Ting-Yu Chen, Ya-Ching Chiu and Bi-Fong Lin
Int. J. Mol. Sci. 2026, 27(1), 499; https://doi.org/10.3390/ijms27010499 - 3 Jan 2026
Viewed by 337
Abstract
Dietary pattern characterized by low intake of vegetables and fruits and high consumption of fat, soft drink and desserts are associated with an increased risk of chronic diseases. To investigate the effects of folate status and fructose intake on adenine-induced chronic kidney disease [...] Read more.
Dietary pattern characterized by low intake of vegetables and fruits and high consumption of fat, soft drink and desserts are associated with an increased risk of chronic diseases. To investigate the effects of folate status and fructose intake on adenine-induced chronic kidney disease (CKD), seven-week-old C57BL/6 mice were divided into six groups and fed either a control diet (Ctrl), a 26% (w/w) high-fructose diet (Hfru), Ctrl plus 0.15% adenine (Ctrl+ade), Hfru+ade, Hfru with folate deficiency plus adenine (Hfru−f+ade), or Hfru with tenfold folate supplementation plus adenine (Hfru+f10+ade). After 10 weeks on the assigned diets, adenine was administrated to the +ade groups for 7 weeks. The results showed that all adenine-treated mice exhibited increased fasting blood glucose, urinary glucose, and elevated renal expression of collagen 1a1 (Col1a1), fibronectin (Fn1), and smooth muscle α-actin (Acta2). Compared with Ctrl mice, Hfru-fed mice showed significantly higher serum creatinine, increased urinary protein, and reduced creatinine clearance. Adenine induced kidney injury in all +ade groups, with the most severe damage observed in Hfru−f+ade mice, as indicated by elevated blood urine nitrogen (BUN), urinary protein, neutrophil gelatinase-associated lipocalin (NGAL), and renal fibrosis. In contrast, Hfru+f10+ade mice showed the lowest levels of these renal injury markers. The Hfru+ade diets increased renal Hif1α and iNos gene expression, which was further exacerbated by folate deficiency. Secretion of the anti-inflammatory cytokine interleukin (IL-10) by splenocytes was significantly reduced under folate-deficient conditions. Renal IL-10 levels were suppressed in all +ade groups but were significantly increased by folate supplementation. Renal IL-10 levels were negatively correlated with the inflammatory chemokine monocyte chemoattractant protein (MCP-1) and transforming growth factor (TGF)-β, whereas renal MCP-1 levels showed positive correlations with TGF-β and IL-6. Overall, these findings suggest that high fructose consumption in the absence of adequate folate intake may be of concern for CKD progression. Full article
(This article belongs to the Special Issue Nutrition, Inflammation, and Chronic Kidney Disease)
Show Figures

Figure 1

21 pages, 6422 KB  
Article
Generation of Bioactive Stem Cell-Derived Secretome in 3D Bioreactor System: Towards Cell-Free Therapy in Veterinary Medicine
by Věra Daňková, Andrea Exnerová, Hana Vágnerová, Vojtěch Pavlík and Kristina Nešporová
Biomolecules 2026, 16(1), 2; https://doi.org/10.3390/biom16010002 - 19 Dec 2025
Viewed by 405
Abstract
Canine adipose-derived mesenchymal stem cells (cASC) are promising for regenerative veterinary medicine due to their immunomodulatory and reparative capacities. Three-dimensional (3D) culturing provides a more physiologically relevant environment than conventional two-dimensional (2D) monolayers, enhancing paracrine activity and therapeutic potential of mesenchymal stem cells [...] Read more.
Canine adipose-derived mesenchymal stem cells (cASC) are promising for regenerative veterinary medicine due to their immunomodulatory and reparative capacities. Three-dimensional (3D) culturing provides a more physiologically relevant environment than conventional two-dimensional (2D) monolayers, enhancing paracrine activity and therapeutic potential of mesenchymal stem cells (MSC). This study investigates the production and biological characterization of cASC secretome generated under hypoxic conditions with platelet lysate (PLT) supplementation, either in a 2D culture or in a stirred-tank 3D culture. Secretomes obtained from 3D cultures were compared with those from 2D cultures prepared under identical hypoxic and PLT-supplemented conditions. Quantitative analyses revealed enhanced secretion of key factors, including monocyte chemoattractant protein-1 (MCP-1) and vascular endothelial growth factor (VEGF), in 3D-derived secretomes. Functional in vitro assays demonstrated superior anti-inflammatory, pro-migratory, and antifibrotic effects of the 3D secretome, evidenced by nuclear factor kappa B (NF-κB) inhibition, increased fibroblast migration, and modulation of extracellular matrix gene expression. Additionally, the bioreactor system enabled consistent secretome production with reproducible biological activity. These findings indicate that 3D bioreactor cultivation under hypoxia with PLT supplementation can generate a biologically active secretome from canine adipose-derived stem cells, providing a promising basis for further exploration in veterinary regenerative applications. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Graphical abstract

22 pages, 1358 KB  
Review
Beyond Viral Assembly: The Emerging Role of HIV-1 p17 in Vascular Inflammation and Endothelial Dysfunction
by Ylenia Pastorello, Nicoleta Arnaut, Mihaela Straistă, Francesca Caccuri, Arnaldo Caruso and Mark Slevin
Int. J. Mol. Sci. 2025, 26(24), 11949; https://doi.org/10.3390/ijms262411949 - 11 Dec 2025
Viewed by 378
Abstract
p17, the human immunodeficiency virus type 1 (HIV-1) matrix protein traditionally associated with viral assembly, has been recently investigated for its extracellular functions linked to vascular damage. This review examines the molecular and pathogenic signatures by which p17 and its variants (vp17s) contribute [...] Read more.
p17, the human immunodeficiency virus type 1 (HIV-1) matrix protein traditionally associated with viral assembly, has been recently investigated for its extracellular functions linked to vascular damage. This review examines the molecular and pathogenic signatures by which p17 and its variants (vp17s) contribute to endothelial activation, aberrant angiogenesis, and vascular inflammation, highlighting their relevance even under effective antiretroviral therapy (ART). Specifically, p17 exerts chemokine-like activities by binding to chemokine (C-X-C motif) receptor-1 and 2 (CXCR-1/2) on endothelial cells (ECs). This interaction triggers key signaling cascades, including the protein kinase B (Akt)-dependent extracellular signal-regulated kinase (ERK) pathway and endothelin-1/endothelin receptor B axis, driving EC motility, capillary formation, and lymphangiogenesis. Variants such as S75X demonstrate enhanced lymphangiogenic potency, associating them with tumorigenic processes involved in non-Hodgkin lymphoma (NHL) pathogenesis. Importantly, p17 promotes endothelial von Willebrand factor (vWF) storage and secretion, implicating a pro-coagulant state that may trigger the increased thromboembolic risks observed in HIV-positive patients. Furthermore, p17 crosses the blood–brain barrier (BBB) via CXCR-2-mediated pathways, contributing to neuroinflammation by activating microglia and astrocytes and amplifying monocyte chemoattractant protein-1 (MCP-1) levels, therefore playing a critical role in the development of HIV-associated neurocognitive disorders. Hence, the elaboration of potential therapeutic strategies finalized at inhibiting p17/vp17s’ interaction with their receptors could complement ART by addressing HIV-related neurovascular morbidity. Full article
(This article belongs to the Special Issue Advances in HIV Research: Molecular Basis and Potential Therapies)
Show Figures

Figure 1

13 pages, 655 KB  
Article
Study of Effects of Topical Fluorometholone on Tear MCP-1 in Eyes Undergoing Trabeculectomy: Effect on Early Trabeculectomy Outcomes in Asian Glaucoma Patients
by Olivia Shimin Huang, Jackie Jia Lin Sim, Hla Myint Htoon, Annabel Chee Yen Chew, Rachel Shujuan Chong, Rahat Husain, Shamira Perera and Tina T. Wong
J. Clin. Med. 2025, 14(22), 8057; https://doi.org/10.3390/jcm14228057 - 13 Nov 2025
Cited by 1 | Viewed by 585
Abstract
Objectives: We aimed to determine if a 2-week pre-operative course of fluorometholone (FML) eyedrops in chronically medicated glaucoma patients reduces the levels of the pro-inflammatory cytokine Monocyte Chemoattractant Protein 1 (MCP-1) and improves early post-operative outcomes after trabeculectomy or phaco-trabeculectomy. Methods: We conducted [...] Read more.
Objectives: We aimed to determine if a 2-week pre-operative course of fluorometholone (FML) eyedrops in chronically medicated glaucoma patients reduces the levels of the pro-inflammatory cytokine Monocyte Chemoattractant Protein 1 (MCP-1) and improves early post-operative outcomes after trabeculectomy or phaco-trabeculectomy. Methods: We conducted a single-center, unmasked, prospective pilot interventional case series of 36 patients with glaucoma who received a 2-week course of FML eyedrops prior to undergoing trabeculectomy. A multiplex bead assay was used to quantify the presence of MCP-1 levels in tear samples before and after the use of FML eyedrops, and 307 eyes without treatment with topical FML served as historical controls. Clinical outcome measures of early post-operative outcomes included IOP and additional post-operative interventions (i.e., needling, glaucoma medications, and surgery) required to achieve the desired IOP at 6 months. Results: Out of 36 patients who received FML, 19 patients had a low MCP-1 level (<250 pg/mL/mg) at baseline, which did not significantly change after using FML, and were excluded from analysis. Of the 17 remaining patients, propensity score-matched analysis was conducted to compare them with 17 patients who did not receive FML, matching for the variables of age, gender, ethnicity, diagnosis, longest glaucoma medication duration, and surgery type. Patients with FML treatment had lower odds of requiring any post-operative intervention (including needling, surgery, or IOP-lowering medications) (OR 0.22, CI 0.049–0.95, p = 0.042) compared to patients who did not have pre-operative FML treatment. Conclusions: In patients with higher levels of MCP-1 pre-operatively, the use of FML for 2 weeks pre-operatively improved their early post-operative outcomes following trabeculectomy or phaco-trabeculectomy. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

16 pages, 1689 KB  
Article
Dual Roles of CD147 in Regulating THP-1 Monocyte Migration and MCP-1-Induced Inflammatory Responses
by Nutjeera Intasai, Kanokporn Sornsuwan, On-anong Juntit, Thanathat Pamonsupornwichit, Kanyarat Thongheang, Phatcharida Jantaree and Chatchai Tayapiwatana
Int. J. Mol. Sci. 2025, 26(22), 10850; https://doi.org/10.3390/ijms262210850 - 8 Nov 2025
Viewed by 770
Abstract
Cluster of Differentiation (CD) 147, a transmembrane glycoprotein, plays a critical role in monocyte function by regulating invasion, migration and cytokine production. This study explored the impact of CD147 on monocyte chemotaxis and inflammatory responses following monocyte chemoattractant protein-1 (MCP-1) modulation using CD147 [...] Read more.
Cluster of Differentiation (CD) 147, a transmembrane glycoprotein, plays a critical role in monocyte function by regulating invasion, migration and cytokine production. This study explored the impact of CD147 on monocyte chemotaxis and inflammatory responses following monocyte chemoattractant protein-1 (MCP-1) modulation using CD147 knockout (CD147KO) THP-1 monocytes. CD147KO THP-1 cells exhibited significantly enhanced migration towards MCP-1 and chemoattractants secreted by MDA-MB-231 breast cancer cells compared to wild-type (WT) THP-1 cells, while surface expression of the adhesion molecule CD44 remained unchanged. Despite their increased migration, CD147KO cells showed no significant differences in CC chemokine receptor type 1 (CC1) or CC chemokine receptor type 2 (CCR2) protein expression. Upon MCP-1 stimulation, CD147KO THP-1 monocytes exhibited elevated mRNA expression of interleukin (IL)-6 and IL-10, accompanied by a reduction in tumor necrosis factor alpha (TNF-α) at higher MCP-1 concentrations. IL-6 upregulation in CD147KO THP-1 monocytes appears to be a candidate mediator of their enhanced migratory capacity. In summary, this study highlights the dual role of CD147 as a potential checkpoint in regulating THP-1 monocyte migration, with its function varying depending on the context and microenvironment. Additionally, CD147KO THP-1 monocytes exhibited a shift in the balance between pro- and anti-inflammatory cytokine responses. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

14 pages, 2363 KB  
Article
MicroRNA-210 Suppresses NF-κB Signaling in Lipopolysaccharide-Stimulated Dental Pulp Cells Under Hypoxic Conditions
by Xiyuan Bai, Nobuyuki Kawashima, Shihan Wang, Peifeng Han, Mayuko Fujii, Keisuke Sunada-Nara, Ziniu Yu, Takashi Okiji and Yoshio Yahata
Int. J. Mol. Sci. 2025, 26(22), 10837; https://doi.org/10.3390/ijms262210837 - 7 Nov 2025
Viewed by 618
Abstract
Dental pulp tissue, enclosed within rigid dentin, is susceptible to bacterial invasion via dentinal tubules, often leading to severe pulpal inflammation. This condition is typically associated with a hypoxic microenvironment, yet the mechanistic link between hypoxia and inflammation remains unclear. We identified a [...] Read more.
Dental pulp tissue, enclosed within rigid dentin, is susceptible to bacterial invasion via dentinal tubules, often leading to severe pulpal inflammation. This condition is typically associated with a hypoxic microenvironment, yet the mechanistic link between hypoxia and inflammation remains unclear. We identified a marked upregulation of microRNA-210 (miR-210) in human dental pulp cells (hDPCs) cultured under hypoxic conditions. This study investigated the role of miR-210 in modulating inflammation in lipopolysaccharide (LPS)-stimulated hDPCs. Hypoxic conditions and enforced expression of hypoxia-inducible factor 1α (HIF1α) significantly increased miR-210 levels. While LPS stimulation elevated proinflammatory cytokines (Interleukin-6, Monocyte Chemoattractant Protein-1, and Tumor Necrosis Factor Alpha) and activated nuclear factor-kappa B (NF-κB) signaling, miR-210 overexpression suppressed LPS-mediated cytokine production and NF-κB activity. Luciferase assays revealed that miR-210 targets and negatively regulates TGF-beta activated kinase 1 binding protein 1 (TAB1), a key upstream regulator of NF-κB. Transfection with an miR-210 mimic reduced TAB1 expression, NF-κB activation, and cytokine output in both LPS-stimulated hDPCs and rat pulp tissue ex vivo. Conversely, miR-210 inhibition enhanced TAB1 levels and inflammatory cytokine expression under hypoxic conditions. These findings suggest that miR-210 mitigates inflammation via the TAB1–NF-κB pathway, functioning as a negative feedback regulator. miR-210 may represent a promising therapeutic target for pulpal inflammation. Full article
Show Figures

Figure 1

41 pages, 2569 KB  
Systematic Review
Harnessing Metabolomics to Advance Nutrition-Based Therapeutics for Inflammation: A Systematic Review of Randomized Clinical Trials
by Belén Carlino, Gerardo N. Guerrero-Flores, Camila Niclis, Gina Segovia-Siapco and Martín L. Mayta
Metabolites 2025, 15(11), 705; https://doi.org/10.3390/metabo15110705 - 29 Oct 2025
Viewed by 1403
Abstract
Background/Objectives: The association between plasma metabolites derived from dietary substrates and inflammatory processes remains underexplored, despite its potential relevance in the prevention of non-communicable diseases. This systematic review aimed to examine the relationship between blood metabolites and the modulation of inflammatory biomarkers. Methods: [...] Read more.
Background/Objectives: The association between plasma metabolites derived from dietary substrates and inflammatory processes remains underexplored, despite its potential relevance in the prevention of non-communicable diseases. This systematic review aimed to examine the relationship between blood metabolites and the modulation of inflammatory biomarkers. Methods: A total of 25 randomized controlled trials, published between 2019 and 2024, were included from an initial pool of 111 records. These studies investigated the effects of dietary patterns, specific food groups, or nutritional supplements on the human metabolome and their potential links to inflammation. Results: Metabolomic analyses were predominantly performed using mass spectrometry (MS)-based platforms (17 out of 25), with liquid chromatography–mass spectrometry as the most frequently employed method. Both targeted (n = 14) and untargeted (n = 11) approaches were represented, and samples were drawn from plasma, urine, and feces. Across the interventions, 64 metabolites were modulated, including fatty acyls, glycerolipids, benzenoids, and organic acids, reflecting potential changes in pathways related to oxidative stress, lipid and carbohydrate metabolism, and inflammatory signaling. Several studies also assessed classical inflammatory biomarkers such as C-reactive protein (CRP), tumor necrosis factor alpha (TNFα), interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1). Interventions involving healthy traditional dietary patterns, improvements in dietary fat quality, or the use of specific probiotic strains were often associated with favorable immunometabolic outcomes. In contrast, some interventions, such as Mohana Choorna, elicited upregulation of immune-related gene expression in adipose tissue without improvements in glucose or lipid metabolism. Conclusions: While metabolomic responses varied across studies, the evidence highlights the value of dietary interventions in modulating systemic metabolism and inflammation. These findings support the integration of metabolomics into clinical nutrition to define more personalized and effective dietary strategies for inflammation-related chronic disease prevention. Full article
(This article belongs to the Special Issue The Role of Diet and Nutrition in Relation to Metabolic Health)
Show Figures

Graphical abstract

26 pages, 2317 KB  
Article
Dendritic Polyglycerol Sulfate Reduces Inflammation Through Inhibition of the HMGB1/RAGE Axis in RAW 264.7 Macrophages
by Marten Kagelmacher, Cristina S. Quella, Emma Kautz, Anna Klumpp, Felix Weichert, Issan Zhang, Dusica Maysinger, Poornima G. Wedamulla, Suzana K. Straus, Thomas Risse, Rainer Haag, Marina Pigaleva and Jens Dernedde
Int. J. Mol. Sci. 2025, 26(21), 10440; https://doi.org/10.3390/ijms262110440 - 27 Oct 2025
Viewed by 930
Abstract
High Mobility Group Box 1 (HMGB1) is a central pro-inflammatory mediator released from damaged or stressed cells, where it activates receptors such as the Receptor for Advanced Glycation Endproducts (RAGE). Dendritic polyglycerol sulfate (dPGS), a hyperbranched polyanionic polymer, is known for its anti-inflammatory [...] Read more.
High Mobility Group Box 1 (HMGB1) is a central pro-inflammatory mediator released from damaged or stressed cells, where it activates receptors such as the Receptor for Advanced Glycation Endproducts (RAGE). Dendritic polyglycerol sulfate (dPGS), a hyperbranched polyanionic polymer, is known for its anti-inflammatory activity. In this study, we examined how dPGS modulates HMGB1-driven signaling in RAW 264.7 macrophages and human microglia. Recombinant human HMGB1 expressed in Escherichia coli (E. coli) was purified by nickel-nitrilotriacetic acid (Ni-NTA) and heparin chromatography. Proximity ligation assays (PLA) revealed that dPGS significantly disrupted HMGB1/RAGE interactions, particularly under lipopolysaccharide (LPS) stimulation, thereby reducing inflammatory signaling complex formation. This correlated with reduced activation of the nuclear factor kappa B (NF-κB) pathway, demonstrated by decreased nuclear translocation and transcriptional activity. Reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time PCR (RT-qPCR) showed that dPGS suppressed HMGB1- and LPS-induced transcription of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS). Enzyme-linked immunosorbent assay (ELISA) and Griess assays confirmed reduced TNF-α secretion and nitric oxide production. Electron paramagnetic resonance (EPR) spectroscopy further showed that dPGS altered HMGB1/soluble RAGE (sRAGE) complex dynamics, providing mechanistic insight into its receptor-disruptive action. Full article
Show Figures

Graphical abstract

15 pages, 18510 KB  
Article
Bovine β-Casein Peptide YPFPGPIH Regulates Inflammation and Macrophage Activity via TLR/NF-κB/MAPK Signaling
by Junpeng Zhang, Xinyu Zhang, Guangqing Mu, Xiaomeng Wu and Jianping Wu
Foods 2025, 14(20), 3572; https://doi.org/10.3390/foods14203572 - 20 Oct 2025
Cited by 1 | Viewed by 1000
Abstract
Food-derived bioactive peptides are known to possess immunomodulatory properties, although their molecular mechanisms remain incompletely characterized. In this study, we investigated the immunoregulatory effects and underlying mechanisms of YPFPGPIH, a peptide derived from bovine β-casein, using the RAW264.7 macrophage model. Our results demonstrate [...] Read more.
Food-derived bioactive peptides are known to possess immunomodulatory properties, although their molecular mechanisms remain incompletely characterized. In this study, we investigated the immunoregulatory effects and underlying mechanisms of YPFPGPIH, a peptide derived from bovine β-casein, using the RAW264.7 macrophage model. Our results demonstrate that YPFPGPIH enhanced macrophage proliferation and phagocytosis in a dose-dependent manner and promoted chemotactic migration through the upregulation of monocyte chemoattractant proteins MCP-1 and MCP-3. Under lipopolysaccharide (LPS)-induced inflammatory conditions, YPFPGPIH significantly reduced the levels of pro-inflammatory mediators, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and nitric oxide (NO), while increasing the production of the anti-inflammatory cytokine interleukin-10 (IL-10), thereby reestablishing cytokine balance. Mechanistic studies revealed that YPFPGPIH inhibited LPS-induced activation of the NF-κB and MAPK pathways, as indicated by reduced nuclear translocation of p65 and decreased phosphorylation of ERK, JNK, and p38. Molecular docking analysis indicated strong binding affinities between YPFPGPIH and Toll-like receptors TLR2 and TLR4, suggesting the involvement of TLR-mediated signaling. Notably, YPFPGPIH downregulated inducible nitric oxide synthase (iNOS) expression and upregulated chemokine mRNA levels, reflecting its dual role in modulating inflammatory and migratory responses. These findings highlight YPFPGPIH as a multifunctional immunomodulatory peptide that fine-tunes macrophage activity through crosstalk between TLR, NF-κB, and MAPK signaling pathways. This study provides new insights for developing peptide-based therapeutics and functional foods aimed at managing inflammatory diseases. Full article
(This article belongs to the Special Issue Milk Bioactive Compounds and Gut Microbiota Modulation)
Show Figures

Graphical abstract

13 pages, 1536 KB  
Article
All-Trans Retinoic Acid Attenuates Inflammation and Insulin Resistance Induced by Adipocyte–Macrophage Coculture
by Kwang-Rim Baek and Hye-Kyeong Kim
Molecules 2025, 30(20), 4111; https://doi.org/10.3390/molecules30204111 - 16 Oct 2025
Cited by 1 | Viewed by 1188
Abstract
Obesity is characterized by chronic low-grade inflammation, largely driven by macrophage infiltration into adipose tissue, which contributes to the development of insulin resistance. All-trans retinoic acid (ATRA), a biologically active metabolite of vitamin A, has demonstrated anti-inflammatory properties. This study examined the effects [...] Read more.
Obesity is characterized by chronic low-grade inflammation, largely driven by macrophage infiltration into adipose tissue, which contributes to the development of insulin resistance. All-trans retinoic acid (ATRA), a biologically active metabolite of vitamin A, has demonstrated anti-inflammatory properties. This study examined the effects of ATRA on inflammation and insulin resistance using a coculture model comprising hypertrophied 3T3-L1 adipocytes and RAW264.7 macrophages. Coculture markedly elevated the production of pro-inflammatory mediators—including nitric oxide, monocyte chemoattractant protein-1, tumor necrosis factor-alpha, and interleukin-6—and increased free fatty acid release while suppressing the secretion of anti-inflammatory adiponectin. Treatment with ATRA (0.1, 1, and 10 μM) significantly reversed these coculture-induced alterations (p < 0.001). ATRA also inhibited the nuclear translocation of NF-κB and downregulated the expression of retinol-binding protein 4 (RBP4). Moreover, ATRA improved insulin-stimulated glucose uptake in adipocytes rendered insulin-resistant by coculture (p < 0.01), an effect associated with the restoration of glucose transporter 4 (GLUT4) and insulin receptor substrate-2 (IRS-2) expression. These findings suggest that ATRA effectively mitigates inflammation and insulin resistance arising from adipocyte–macrophage interactions, highlighting its potential as a therapeutic agent for obesity-related metabolic disorders. Full article
(This article belongs to the Special Issue Role of Natural Products in Inflammation)
Show Figures

Figure 1

14 pages, 1840 KB  
Review
Molecular Targets for Intracranial Aneurysm Treatment
by Hunter Hutchinson, Rogina Rezk, Mariam Farag, Abanob Hanna and Brandon Lucke-Wold
Int. J. Mol. Sci. 2025, 26(20), 10053; https://doi.org/10.3390/ijms262010053 - 15 Oct 2025
Viewed by 1212
Abstract
Intracranial aneurysms (IAs) are a common cerebrovascular pathology with deadly potential. Neurointerventionalists commonly treat IAs with endovascular coiling, minimizing procedural risk at the cost of an increased recurrence rate. New therapies for reducing the rate of coiled and uncoiled IA growth and rupture [...] Read more.
Intracranial aneurysms (IAs) are a common cerebrovascular pathology with deadly potential. Neurointerventionalists commonly treat IAs with endovascular coiling, minimizing procedural risk at the cost of an increased recurrence rate. New therapies for reducing the rate of coiled and uncoiled IA growth and rupture would help reduce the morbidity and mortality patients experience when IAs rupture. Hemodynamic shear stress drives IA formation through molecular mechanisms, generating damage-associated molecular proteins (DAMPs), which lead to inflammation and extracellular matrix remodeling. Nuclear factor κB (NF-κB) and interleukin-6 (IL-6) maintain an inflammatory environment in IA walls, generating immune-cell chemotactic proteins, such as monocyte chemoattractant protein-1 (MCP-1) and IL-8. These molecules play a complex role in IAs, being important for IA formation and IA healing. Vascular smooth muscle cells and infiltrated immune cells secrete matrix metalloproteinases (MMPs), which initiate extracellular matrix remodeling. Tissue inhibitors of matrix metalloproteinases (TIMPs) balance this remodeling. The increased MMP to TIMP ratio is characteristic of IA progression, making these molecules important targets for IA therapies. Endothelial dysfunction generates nitric oxide and other reactive oxygen species, which exacerbate inflammation and cell death in IA walls. A better understanding of molecular mechanisms underlying IA formation, progression, and rupture will allow researchers to develop molecular IA therapies. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

10 pages, 1038 KB  
Article
Cytokine Profiling of Exudates from Periapical Lesions and the Efficacy of CXCL10 as a Healing Marker
by Kazuhisa Ouhara, Yuri Taniguchi, Ruoqi Zhai, Katsuhiro Takeda, Ryousuke Fujimori, Naoya Kuwahara, Shoya Ueda, Yitong Hou, Nomi Honoka, Masaru Shimizu, Shoko Kono, Tomoyuki Iwata, Shinji Matsuda and Noriyoshi Mizuno
Pathogens 2025, 14(10), 1013; https://doi.org/10.3390/pathogens14101013 - 7 Oct 2025
Viewed by 817
Abstract
This study aimed to evaluate cytokine profiling in a periapical lesion to provide a rationale for future treatment strategies for periapical lesions. Thirteen samples of exudative fluid were collected from such a lesion directly through the root canal. Cytokine profiling was performed using [...] Read more.
This study aimed to evaluate cytokine profiling in a periapical lesion to provide a rationale for future treatment strategies for periapical lesions. Thirteen samples of exudative fluid were collected from such a lesion directly through the root canal. Cytokine profiling was performed using the Bio-Plex system. CXCL10 (C-X-C motif chemokine ligand 10, IP10) was found to be elevated in apical exudates of patients exhibiting favorable healing. To evaluate the role of CXCL10 in cell migration, a Transwell assay was conducted using bone marrow-derived mononuclear cells (BMMCs). Different types of cytokines were detected from the samples of periapical lesion at the initial visit. However, cytokine production varied across patient samples. Release of interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, IL-13, IL-17, granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon gamma (IFN-γ), monocyte chemoattractant protein (MCP)-1, macrophage inflammatory protein (MIP)-1α, MIP-1β, and tumor necrosis factor (TNF)-α showed differential expression. Comparison of cytokine profiles indicated that cytokine production was variable before and after root canal treatment. In vitro, CXCL10 significantly improved BMMC migration in a dose-dependent manner, supporting clinical findings that elevated CXCL10 levels are associated with favorable healing in apical lesions. Although this study was limited by the small sample size and exploratory design, the cytokine profile of periapical lesions may be useful for assessing the condition of periapical lesions and modulating the immune response to bacterial infection. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

Back to TopTop