Harnessing Metabolomics to Advance Nutrition-Based Therapeutics for Inflammation: A Systematic Review of Randomized Clinical Trials
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Data Collection Process
2.4. Screening and Selection
2.5. Risk of Bias Assessment
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Analytical and Biological Heterogeneity
3.4. Metabolic Biomarkers Associated with Diet
3.5. Dietary Interventions and Their Effects on Inflammation
3.6. The Impact on the Gut Microbiota
4. Discussion
4.1. Metabolites Derived from Dietary Intervention in RCTs and Their Association with Inflammation
4.2. The Impact of a Whole-Food Diet on Metabolite Expression
4.3. The Impact of Fatty Acids on Metabolite Expression
4.4. The Impact of Supplementation on Metabolite Expression
4.5. The Impact of Probiotics Supplementation on Metabolite Expression
4.6. Nutrient-Derived Metabolites in the Regulation of Inflammation
4.7. The Effects of Analytical and Biological Heterogeneity on the Comparability of Metabolomic Studies
4.8. Conflicting Findings and Possible Moderators
4.9. Clinical Implications
4.10. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CRP | C-reactive protein |
| GC | Gas chromatography |
| IL | Interleukin |
| LC | Liquid chromatography |
| MS | Mass spectrometry |
| MCP-1 | Monocyte chemoattractant protein-1 |
| MUFAs | Monounsaturated fatty acids |
| NAFLD | Non-alcoholic fatty liver disease |
| NMS | Nuclear magnetic resonance |
| ox-LDL | Oxidized low-density lipoprotein |
| PUFAs | Polyunsaturated fatty acids |
| RCTs | Randomized controlled trials |
| SCFAs | Short-chain fatty acids |
| SFAs | Saturated fatty acids |
| TNFα | Tumor necrosis factor-alpha |
References
- Ebrahim, S. Metabolomics, Nutrition and Why Epidemiology Matters. Int. J. Epidemiol. 2016, 45, 1307–1310. [Google Scholar] [CrossRef]
- Lee, J.; Banerjee, D. Metabolomics and the Microbiome as Biomarkers in Sepsis. Crit. Care Clin. 2020, 36, 105–113. [Google Scholar] [CrossRef]
- Kortesniemi, M.; Noerman, S.; Kårlund, A.; Raita, J.; Meuronen, T.; Koistinen, V.; Landberg, R.; Hanhineva, K. Nutritional Metabolomics: Recent Developments and Future Needs. Curr. Opin. Chem. Biol. 2023, 77, 102400. [Google Scholar] [CrossRef]
- González-Domínguez, Á.; Domínguez-Riscart, J.; Savolainen, O.; Lechuga-Sancho, A.; Landberg, R.; González-Domínguez, R. Identifying Metabotypes of Insulin Resistance Severity in Children with Metabolic Syndrome. Cardiovasc. Diabetol 2024, 23, 315. [Google Scholar] [CrossRef]
- Troisi, J.; Cavallo, P.; Colucci, A.; Pierri, L.; Scala, G.; Symes, S.; Jones, C.; Richards, S. Metabolomics in Genetic Testing. Adv. Clin. Chem. 2020, 94, 85–153. [Google Scholar] [CrossRef]
- Deng, P.; Li, X.; Petriello, M.C.; Wang, C.; Morris, A.J.; Hennig, B. Application of Metabolomics to Characterize Environmental Pollutant Toxicity and Disease Risks. Rev. Environ. Health 2019, 34, 251. [Google Scholar] [CrossRef]
- Fernandes Silva, L.; Vangipurapu, J.; Oravilahti, A.; Lusis, A.J.; Laakso, M. Metabolomics, Genetics, and Environmental Factors: Intersecting Paths in Abdominal Aortic Aneurysm. Int. J. Mol. Sci. 2025, 26, 1498. [Google Scholar] [CrossRef] [PubMed]
- Suárez, M.; Caimari, A.; del Bas, J.M.; Arola, L. Metabolomics: An Emerging Tool to Evaluate the Impact of Nutritional and Physiological Challenges. TrAC Trends Anal. Chem. 2017, 96, 79–88. [Google Scholar] [CrossRef]
- Richards, J.L.; Yap, Y.A.; McLeod, K.H.; MacKay, C.R.; Marinõ, E. Dietary Metabolites and the Gut Microbiota: An Alternative Approach to Control Inflammatory and Autoimmune Diseases. Clin. Transl. Immunol. 2016, 5, e82. [Google Scholar] [CrossRef] [PubMed]
- Abdul Rahim, M.B.H.; Chilloux, J.; Martinez-Gili, L.; Neves, A.L.; Myridakis, A.; Gooderham, N.; Dumas, M.-E. Diet-Induced Metabolic Changes of the Human Gut Microbiome: Importance of Short-Chain Fatty Acids, Methylamines and Indoles. Acta Diabetol. 2019, 56, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Martín, A.; Colmenarejo, G.; Selma, M.V.; Espín, J.C. Genetic Polymorphisms, Mediterranean Diet and Microbiota-Associated Urolithin Metabotypes Can Predict Obesity in Childhood-Adolescence. Sci. Rep. 2020, 10, 7850. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Cai, Y.; Yao, H.; Lin, C.; Xie, Y.; Tang, S.; Zhang, A. Small Molecule Metabolites: Discovery of Biomarkers and Therapeutic Targets. Signal Transduct. Target. Ther. 2023, 8, 132. [Google Scholar] [CrossRef]
- Tandon, P.; Abrams, N.D.; Carrick, D.M.; Chander, P.; Dwyer, J.; Fuldner, R.; Gannot, G.; Laughlin, M.; McKie, G.; PrabhuDas, M.; et al. Metabolic Regulation of Inflammation and Its Resolution: Current Status, Clinical Needs, Challenges, and Opportunities. J. Immunol. 2021, 207, 2625. [Google Scholar] [CrossRef]
- Nagana Gowda, G.A.; Zhu, W.; Raftery, D. NMR-Based Metabolomics: Where Are We Now and Where Are We Going? Prog. Nucl. Magn. Reson. Spectrosc. 2025, 150–151, 101564. [Google Scholar] [CrossRef]
- Nagana Gowda, G.A.; Raftery, D. NMR Based Metabolomics. In Cancer Metabolomics. Advances in Experimental Medicine and Biology; Hu, S., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; Volume 150–151, p. 19. ISBN 978-3-030-51651-2. [Google Scholar]
- Zeki, Ö.C.; Eylem, C.C.; Reçber, T.; Kır, S.; Nemutlu, E. Integration of GC–MS and LC–MS for Untargeted Metabolomics Profiling. J. Pharm. Biomed. Anal. 2020, 190, 113509. [Google Scholar] [CrossRef]
- Wang, X.; Ouyang, Y.; Liu, J.; Zhu, M.; Zhao, G.; Bao, W.; Hu, F.B. Fruit and Vegetable Consumption and Mortality from All Causes, Cardiovascular Disease, and Cancer: Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. BMJ 2014, 349, g4490. [Google Scholar] [CrossRef] [PubMed]
- Ulaszewska, M.M.; Weinert, C.H.; Trimigno, A.; Portmann, R.; Andres Lacueva, C.; Badertscher, R.; Brennan, L.; Brunius, C.; Bub, A.; Capozzi, F.; et al. Nutrimetabolomics: An Integrative Action for Metabolomic Analyses in Human Nutritional Studies. Mol. Nutr. Food Res. 2019, 63, e1800384. [Google Scholar] [CrossRef]
- Ding, J.; Feng, Y.-Q. Mass Spectrometry-Based Metabolomics for Clinical Study: Recent Progresses and Applications. TrAC Trends Anal. Chem. 2023, 158, 116896. [Google Scholar] [CrossRef]
- Alseekh, S.; Aharoni, A.; Brotman, Y.; Contrepois, K.; D’Auria, J.; Ewald, J.; Ewald, J.C.; Fraser, P.D.; Giavalisco, P.; Hall, R.D.; et al. Mass Spectrometry-Based Metabolomics: A Guide for Annotation, Quantification and Best Reporting Practices. Nat. Methods 2021, 18, 747–756. [Google Scholar] [CrossRef]
- Emwas, A.-H.M. The Strengths and Weaknesses of NMR Spectroscopy and Mass Spectrometry with Particular Focus on Metabolomics Research. In Metabonomics: Methods and protocols; Springer: New York, NY, USA, 2015; pp. 161–193. [Google Scholar]
- Parri, A.; Fitó, M.; Torres, C.F.; Muñoz-Aguayo, D.; Schröder, H.; Cano, J.F.; Vázquez, L.; Reglero, G.; Covas, M.-I. Alkylglycerols Reduce Serum Complement and Plasma Vascular Endothelial Growth Factor in Obese Individuals. Inflammopharmacology 2016, 24, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Markley, J.L.; Brüschweiler, R.; Edison, A.S.; Eghbalnia, H.R.; Powers, R.; Raftery, D.; Wishart, D.S. The Future of NMR-Based Metabolomics. Curr. Opin. Biotechnol. 2017, 43, 34–40. [Google Scholar] [CrossRef]
- Guggisberg, D.; Joosten, H.; Fuchsmann, P.; Vergères, G. Chapter 16. Nutrimetabolomics: Concepts and Applications. In Foodomics: Omic Strategies and Applications in Food Science; The Royal Society of Chemistry: London, UK, 2021; pp. 374–415. [Google Scholar]
- Ivey, K.L.; Rimm, E.B.; Kraft, P.; Clish, C.B.; Cassidy, A.; Hodgson, J.; Croft, K.; Wolpin, B.; Liang, L. Identifying the Metabolomic Fingerprint of High and Low Flavonoid Consumers. J. Nutr. Sci. 2017, 6, e34. [Google Scholar] [CrossRef]
- Sindelar, M.; Patti, G.J. Chemical Discovery in the Era of Metabolomics. J. Am. Chem. Soc. 2020, 142, 9097–9105. [Google Scholar] [CrossRef]
- Giera, M.; Aisporna, A.; Uritboonthai, W.; Siuzdak, G. The Hidden Impact of In-Source Fragmentation in Metabolic and Chemical Mass Spectrometry Data Interpretation. Nat. Metab. 2024, 6, 1647–1648. [Google Scholar] [CrossRef] [PubMed]
- González-Peña, D.; Brennan, L. Recent Advances in the Application of Metabolomics for Nutrition and Health. Annu. Rev. Food Sci. Technol. 2019, 10, 479–519. [Google Scholar] [CrossRef] [PubMed]
- Cajka, T.; Fiehn, O. Toward Merging Untargeted and Targeted Methods in Mass Spectrometry-Based Metabolomics and Lipidomics. Anal. Chem. 2016, 88, 524–545. [Google Scholar] [CrossRef]
- Pathmasiri, W.; Rushing, B.R.; McRitchie, S.; Choudhari, M.; Du, X.; Smirnov, A.; Pelleigrini, M.; Thompson, M.J.; Sakaguchi, C.A.; Nieman, D.C.; et al. Untargeted Metabolomics Reveal Signatures of a Healthy Lifestyle. Sci. Rep. 2024, 14, 13630. [Google Scholar] [CrossRef]
- Chen, J.; Yi, Q.; Wang, Y.; Wang, J.; Yu, H.; Zhang, J.; Hu, M.; Xu, J.; Wu, Z.; Hou, L.; et al. Long-Term Glycemic Variability and Risk of Adverse Health Outcomes in Patients with Diabetes: A Systematic Review and Meta-Analysis of Cohort Studies. Diabetes Res. Clin. Pract. 2022, 192, 110085. [Google Scholar] [CrossRef]
- World Health Organization. World Health Organization Noncommunicable Diseases. 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 6 July 2025).
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic Inflammation in the Etiology of Disease across the Life Span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef] [PubMed]
- Herrero-Cervera, A.; Soehnlein, O.; Kenne, E. Neutrophils in Chronic Inflammatory Diseases. Cell. Mol. Immunol. 2022, 19, 177–191. [Google Scholar] [CrossRef]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L.; Chen, L.; et al. Inflammatory Responses and Inflammation-Associated Diseases in Organs. Oncotarget 2017, 9, 7204–7218. [Google Scholar] [CrossRef] [PubMed]
- Zatterale, F.; Longo, M.; Naderi, J.; Raciti, G.A.; Desiderio, A.; Miele, C.; Beguinot, F. Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes. Front. Physiol. 2020, 10, 1607. [Google Scholar] [CrossRef] [PubMed]
- Bhol, N.K.; Bhanjadeo, M.M.; Singh, A.K.; Dash, U.C.; Ojha, R.R.; Majhi, S.; Duttaroy, A.K.; Jena, A.B. The Interplay between Cytokines, Inflammation, and Antioxidants: Mechanistic Insights and Therapeutic Potentials of Various Antioxidants and Anti-Cytokine Compounds. Biomed. Pharmacother. 2024, 178, 117177. [Google Scholar] [CrossRef]
- Us-Medina, U.; Millán Linares, M.d.C.; Arana Argáez, V.; Segura-Campos, M.R. In Vitro Antioxidant and Anti-Inflammatory Activity of Chaya Extracts (Cnidoscolus Aconitifolius (Mill.) I.M. Johnst). Nutr. Hosp. 2019, 37, 46–55. [Google Scholar] [CrossRef]
- Kurowska, A.; Ziemichód, W.; Herbet, M.; Piątkowska-Chmiel, I. The Role of Diet as a Modulator of the Inflammatory Process in the Neurological Diseases. Nutrients 2023, 15, 1436. [Google Scholar] [CrossRef]
- Ohue-Kitano, R.; Banno, Y.; Masujima, Y.; Kimura, I. Gut Microbial Metabolites Reveal Diet-Dependent Metabolic Changes Induced by Nicotine Administration. Sci. Rep. 2024, 14, 1056. [Google Scholar] [CrossRef]
- Hamamah, S.; Iatcu, O.C.; Covasa, M. Dietary Influences on Gut Microbiota and Their Role in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Nutrients 2024, 17, 143. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Flores, G.N.; Carlino, B.; Gili, R.V.; Leeson, S.; Mayta, M. Phytochemicals for Preventing and Treating Chronic Diseases. In Medicinal Applications of Phytopharmaceuticals; Khoobchandani, M., Ghosh, S., Eds.; Springer Nature: Cham, Switzerland, 2024. [Google Scholar]
- Siddiqui, M.T.; Cresci, G.A.M. The Immunomodulatory Functions of Butyrate. J. Inflamm. Res. 2021, 14, 6025. [Google Scholar] [CrossRef]
- Wastyk, H.C.; Fragiadakis, G.K.; Perelman, D.; Dahan, D.; Merrill, B.D.; Yu, F.B.; Topf, M.; Gonzalez, C.G.; Van Treuren, W.; Han, S.; et al. Gut Microbiota-Targeted Diets Modulate Human Immune Status. Cell 2021, 184, 4137. [Google Scholar] [CrossRef]
- Nogal, A.; Valdes, A.M.; Menni, C. The Role of Short-Chain Fatty Acids in the Interplay between Gut Microbiota and Diet in Cardio-Metabolic Health. Gut Microbes 2021, 13, 1897212. [Google Scholar] [CrossRef]
- Tsirogianni, A.M.; Bouzalmate-Hajjaj, A.; Van ’T Hooft, J.; Saeed Khan, K.; Bueno-Cavanillas, A.; Cano-Ibáñez, N. The Usefulness of Randomized Trials of Lifestyle Interventions for Overweight, Obesity, or Metabolic Syndrome: A Systematic Review. Clin. Nutr. ESPEN 2024, 63, 936–943. [Google Scholar] [CrossRef]
- Lu, S.; Sun, X.; Zhang, W.; Li, X.; Zhou, Z.; Xiao, R.; Lv, Q.; Tang, H.; Wang, B.; Qu, J.; et al. Effects of the Mediterranean Diet on Metabolic Indices and Quality of Life in Cancer Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Funct. Foods 2024, 114, 106074. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; the PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef]
- Chambers, E.S.; Byrne, C.S.; Morrison, D.J.; Murphy, K.G.; Preston, T.; Tedford, C.; Garcia-Perez, I.; Fountana, S.; Serrano-Contreras, J.I.; Holmes, E.; et al. Dietary Supplementation with Inulin-Propionate Ester or Inulin Improves Insulin Sensitivity in Adults with Overweight and Obesity with Distinct Effects on the Gut Microbiota, Plasma Metabolome and Systemic Inflammatory Responses: A Randomised Cross-over Trial. Gut 2019, 68, 1430–1438. [Google Scholar] [CrossRef]
- Chashmniam, S.; Mirhafez, S.R.; Dehabeh, M.; Hariri, M.; Azimi Nezhad, M.; Nobakht, M.; Gh, B.F. A Pilot Study of the Effect of Phospholipid Curcumin on Serum Metabolomic Profile in Patients with Non-Alcoholic Fatty Liver Disease: A Randomized, Double-Blind, Placebo-Controlled Trial. Eur. J. Clin. Nutr. 2019, 73, 1224–1235. [Google Scholar] [CrossRef]
- Corsetto, P.A.; Montorfano, G.; Klersy, C.; Massimino, L.; Infantino, V.; Iannello, G.; Anna Faliva, M.; Lukaski, H.; Perna, S.; Alalwan, T.A.; et al. Fatty Acid Profile and Antioxidant Status Fingerprint in Sarcopenic Elderly Patients: Role of Diet and Exercise. Nutrients 2019, 11, 2569. [Google Scholar] [CrossRef]
- Estévez-Santiago, R.; Silván, J.M.; Can-Cauich, C.A.; Veses, A.M.; Alvarez-Acero, I.; Martinez-Bartolome, M.A.; San-Román, R.; Cámara, M.; Olmedilla-Alonso, B.; de Pascual-Teresa, S. Lack of a Synergistic Effect on Cardiometabolic and Redox Markers in a Dietary Supplementation with Anthocyanins and Xanthophylls in Postmenopausal Women. Nutrients 2019, 11, 1533. [Google Scholar] [CrossRef]
- Fernández-Arroyo, S.; Hernández-Aguilera, A.; de Vries, M.A.; Burggraaf, B.; van der Zwan, E.; Pouw, N.; Joven, J.; Castro Cabezas, M. Effect of Vitamin D3 on the Postprandial Lipid Profile in Obese Patients: A Non-Targeted Lipidomics Study. Nutrients 2019, 11, 1194. [Google Scholar] [CrossRef]
- Lindqvist, H.M.; Gjertsson, I.; Andersson, S.; Calder, P.C.; Bärebring, L. Influence of Blue Mussel (Mytilus Edulis) Intake on Fatty Acid Composition in Erythrocytes and Plasma Phospholipids and Serum Metabolites in Women with Rheumatoid Arthritis. Prostaglandins Leukot. Essent. Fat. Acids 2019, 150, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Tuomainen, M.; Kärkkäinen, O.; Leppänen, J.; Auriola, S.; Lehtonen, M.; Savolainen, M.J.; Hermansen, K.; Risérus, U.; Åkesson, B.; Thorsdottir, I.; et al. Quantitative Assessment of Betainized Compounds and Associations with Dietary and Metabolic Biomarkers in the Randomized Study of the Healthy Nordic Diet (SYSDIET). Am. J. Clin. Nutr. 2019, 110, 1108–1118. [Google Scholar] [CrossRef] [PubMed]
- Ulven, S.M.; Christensen, J.J.; Nygård, O.; Svardal, A.; Leder, L.; Ottestad, I.; Lysne, V.; Laupsa-Borge, J.; Ueland, P.M.; Midttun, Ø.; et al. Using Metabolic Profiling and Gene Expression Analyses to Explore Molecular Effects of Replacing Saturated Fat with Polyunsaturated Fat—A Randomized Controlled Dietary Intervention Study. Am. J. Clin. Nutr. 2019, 109, 1239–1250. [Google Scholar] [CrossRef]
- Wan, Y.; Wang, F.; Yuan, J.; Li, J.; Jiang, D.; Zhang, J.; Li, H.; Wang, R.; Tang, J.; Huang, T.; et al. Effects of Dietary Fat on Gut Microbiota and Faecal Metabolites, and Their Relationship with Cardiometabolic Risk Factors: A 6-Month Randomised Controlled-Feeding Trial. Gut 2019, 68, 1417–1429. [Google Scholar] [CrossRef] [PubMed]
- Roager, H.M.; Vogt, J.K.; Kristensen, M.; Hansen, L.B.S.; Ibrügger, S.; Mærkedahl, R.B.; Bahl, M.I.; Lind, M.V.; Nielsen, R.L.; Frøkiær, H.; et al. Whole Grain-Rich Diet Reduces Body Weight and Systemic Low-Grade Inflammation without Inducing Major Changes of the Gut Microbiome: A Randomised Cross-over Trial. Gut 2019, 68, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.-J.; Jang, S.-N.; Liu, K.-H.; Jung, D.-H. Effect of Korean Red Ginseng on Cholesterol Metabolites in Postmenopausal Women with Hypercholesterolemia: A Pilot Randomized Controlled Trial. Nutrients 2020, 12, 3423. [Google Scholar] [CrossRef]
- Macnaughtan, J.; Figorilli, F.; García-López, E.; Lu, H.; Jones, H.; Sawhney, R.; Suzuki, K.; Fairclough, S.; Marsden, J.; Moratalla, A.; et al. A Double-Blind, Randomized Placebo-Controlled Trial of Probiotic Lactobacillus Casei Shirota in Stable Cirrhotic Patients. Nutrients 2020, 12, 1651. [Google Scholar] [CrossRef]
- Remie, C.M.; Roumans, K.H.; Moonen, M.P.; Connell, N.J.; Havekes, B.; Mevenkamp, J.; Lindeboom, L.; de Wit, V.H.; van de Weijer, T.; Aarts, S.A.; et al. Nicotinamide Riboside Supplementation Alters Body Composition and Skeletal Muscle Acetylcarnitine Concentrations in Healthy Obese Humans. Am. J. Clin. Nutr. 2020, 112, 413–426. [Google Scholar] [CrossRef]
- Amerikanou, C.; Kanoni, S.; Kaliora, A.C.; Barone, A.; Bjelan, M.; D’Auria, G.; Gioxari, A.; Gosalbes, M.J.; Mouchti, S.; Stathopoulou, M.G.; et al. Effect of Mastiha Supplementation on NAFLD: The MAST4HEALTH Randomised, Controlled Trial. Mol. Nutr. Food Res. 2021, 65, 2001178. [Google Scholar] [CrossRef]
- Esser, D.; Matualatupauw, J.; de Vos, R.C.H.; Wehrens, R.; van der Stappen, J.; van der Meer, I.; Afman, L.A. Ayurvedic Herbal Preparation Supplementation Does Not Improve Metabolic Health in Impaired Glucose Tolerance Subjects; Observations from a Randomised Placebo Controlled Trial. Nutrients 2021, 13, 260. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Xiao, D.; Zhang, X.; Sandhu, A.K.; Chandra, P.; Kay, C.; Edirisinghe, I.; Burton-Freeman, B. Strawberry Consumption, Cardiometabolic Risk Factors, and Vascular Function: A Randomized Controlled Trial in Adults with Moderate Hypercholesterolemia. J. Nutr. 2021, 151, 1517–1526. [Google Scholar] [CrossRef]
- Lamon-Fava, S.; So, J.; Mischoulon, D.; Ziegler, T.R.; Dunlop, B.W.; Kinkead, B.; Schettler, P.J.; Nierenberg, A.A.; Felger, J.C.; Maddipati, K.R.; et al. Dose- and Time-Dependent Increase in Circulating Anti-Inflammatory and pro-Resolving Lipid Mediators Following Eicosapentaenoic Acid Supplementation in Patients with Major Depressive Disorder and Chronic Inflammation. Prostaglandins Leukot. Essent. Fat. Acids 2021, 266, 102219. [Google Scholar] [CrossRef]
- Liu, A.; Ma, T.; Xu, N.; Jin, H.; Zhao, F.; Kwok, L.-Y.; Zhang, H.; Zhang, S.; Sun, Z. Adjunctive Probiotics Alleviates Asthmatic Symptoms via Modulating the Gut Microbiome and Serum Metabolome. Microbiol. Spectr. 2021, 9, e0085921. [Google Scholar] [CrossRef]
- Paul, S.; Smith, A.A.T.; Culham, K.; Gunawan, K.A.; Weir, J.M.; Cinel, M.A.; Jayawardana, K.S.; Mellett, N.A.; Lee, M.K.S.; Murphy, A.J.; et al. Shark Liver Oil Supplementation Enriches Endogenous Plasmalogens and Reduces Markers of Dyslipidemia and Inflammation. J. Lipid Res. 2021, 62, 100092. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.-S.; Jung, S.; Hwang, G.-S.; Shin, D.-M. Gut Microbiota Indole-3-Propionic Acid Mediates Neuroprotective Effect of Probiotic Consumption in Healthy Elderly: A Randomized, Double-Blind, Placebo-Controlled, Multicenter Trial and in Vitro Study. Clin. Nutr. 2023, 42, 1025–1033. [Google Scholar] [CrossRef]
- Calderón-Pérez, L.; Escoté, X.; Companys, J.; Alcaide-Hidalgo, J.M.; Bosch, M.; Rabassa, M.; Crescenti, A.; Valls, R.M.; Pedret, A.; Solà, R.; et al. A Single-Blinded, Randomized, Parallel Intervention to Evaluate Genetics and Omics-Based Personalized Nutrition in General Population via an e-Commerce Tool: The PREVENTOMICS e-Commerce Study. Am. J. Clin. Nutr. 2024, 120, 129–144. [Google Scholar] [CrossRef]
- Cofán, M.; Checa, A.; Serra-Mir, M.; Roth, I.; Valls-Pedret, C.; Lopez-Illamola, A.; Doménech, M.; Rajaram, S.; Lázaro, I.; Sabaté, J.; et al. A Walnut-Enriched Diet for 2 Years Changes the Serum Oxylipin Profile in Healthy Older Persons. J. Nutr. 2024, 154, 395–402. [Google Scholar] [CrossRef]
- Connolly, E.L.; Liu, A.H.; Radavelli-Bagatini, S.; Shafaei, A.; Boyce, M.C.; Wood, L.G.; McCahon, L.; Koch, H.; Sim, M.; Hill, C.R.; et al. Cruciferous Vegetables Lower Blood Pressure in Adults with Mildly Elevated Blood Pressure in a Randomized, Controlled, Crossover Trial: The VEgetableS for vaScular hEaLth (VESSEL) Study. BMC Med. 2024, 22, 353. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.; Carvalho, R.; Fonseca, A.M.; Castelo Branco, M.; Alves, M.; Jarak, I. Standard Doses of Cholecalciferol Reduce Glucose and Increase Glutamine in Obesity-Related Hypertension: Results of a Randomized Trial. Int. J. Mol. Sci. 2024, 25, 3416. [Google Scholar] [CrossRef]
- Singh, D.; Ham, D.; Kim, S.-A.; Kothari, D.; Park, Y.J.; Joung, H.; Lee, C.H. Urine Metabolomics Unravel the Effects of Short-Term Dietary Interventions on Oxidative Stress and Inflammation: A Randomized Controlled Crossover Trial. Sci. Rep. 2024, 14, 15277. [Google Scholar] [CrossRef]
- Kim, C.H. Complex Regulatory Effects of Gut Microbial Short-Chain Fatty Acids on Immune Tolerance and Autoimmunity. Cell. Mol. Immunol. 2023, 20, 341–350. [Google Scholar] [CrossRef]
- Fahy, E.; Subramaniam, S. RefMet: A Reference Nomenclature for Metabolomics. Nat. Methods 2020, 17, 1173–1174. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res. 2022, 50, D622–D631. [Google Scholar] [CrossRef]
- Santos, P. The Role of Cardiovascular Risk Assessment in Preventive Medicine: A Perspective from Portugal Primary Health-Care Cardiovascular Risk Assessment. J. Environ. Public Health 2020, 2020, 1639634. [Google Scholar] [CrossRef]
- Chiorcea-Paquim, A.-M. 8-Oxoguanine and 8-Oxodeoxyguanosine Biomarkers of Oxidative DNA Damage: A Review on HPLC–ECD Determination. Molecules 2022, 27, 1620. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Wang, Y. Precision Dietary Intervention: Gut Microbiome and Meta-Metabolome as Functional Readouts. Phenomics 2025, 5, 23–50. [Google Scholar] [CrossRef] [PubMed]
- Valles-Colomer, M.; Menni, C.; Berry, S.E.; Valdes, A.M.; Spector, T.D.; Segata, N. Cardiometabolic Health, Diet and the Gut Microbiome: A Meta-Omics Perspective. Nat. Med. 2023, 29, 551–561. [Google Scholar] [CrossRef]
- Gonzalez-Granda, A.; Damms-Machado, A.; Basrai, M.; Bischoff, S.C. Changes in Plasma Acylcarnitine and Lysophosphatidylcholine Levels Following a High-Fructose Diet: A Targeted Metabolomics Study in Healthy Women. Nutrients 2018, 10, 1254. [Google Scholar] [CrossRef]
- Koemel, N.A.; Senior, A.M.; Benmarhnia, T.; Holmes, A.; Okada, M.; Oulhote, Y.; Parker, H.M.; Shah, S.; Simpson, S.J.; Raubenheimer, D.; et al. Diet Quality, Microbial Lignan Metabolites, and Cardiometabolic Health among US Adults. Nutrients 2023, 15, 1412. [Google Scholar] [CrossRef]
- Jonsson, K.; Andersson, R.; Bach Knudsen, K.E.; Hallmans, G.; Hanhineva, K.; Katina, K.; Kolehmainen, M.; Kyrø, C.; Langton, M.; Nordlund, E.; et al. Rye and Health—Where Do We Stand and Where Do We Go? Trends Food Sci. Technol. 2018, 79, 78–87. [Google Scholar] [CrossRef]
- Kambalapally, C.; Suthar, P.K.; Patale, P.; Dhiman, S.; Gupta, V.; Thongire, V.; Sarmah, D.; Datta, A.; Kalia, K.; Bhattacharya, P. Trigonelline and Its Uses in Stroke. In Treatments, Nutraceuticals, Supplements, and Herbal Medicine in Neurological Disorders; Martin, C., Patel, V., Preedy, V., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 979–992. ISBN 9780323900522. [Google Scholar]
- Pruss, K.M.; Chen, H.; Liu, Y.; Van Treuren, W.; Higginbottom, S.K.; Jarman, J.B.; Fischer, C.R.; Mak, J.; Wong, B.; Cowan, T.M.; et al. Host-Microbe Co-Metabolism via MCAD Generates Circulating Metabolites Including Hippuric Acid. Nat. Commun. 2023, 14, 512. [Google Scholar] [CrossRef]
- Magiera, A.; Kołodziejczyk-Czepas, J.; Olszewska, M.A. Antioxidant and Anti-Inflammatory Effects of Vanillic Acid in Human Plasma, Human Neutrophils, and Non-Cellular Models In Vitro. Molecules 2025, 30, 467. [Google Scholar] [CrossRef]
- Ghasemzadeh Rahbardar, M.; Ferns, G.A.; Ghayour Mobarhan, M. Vanillic Acid as a Promising Intervention for Metabolic Syndrome: Preclinical Studies. Iran. J. Basic Med. Sci. 2025, 28, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Khodorova, N.; Calvez, J.; Pilard, S.; Benoit, S.; Gaudichon, C.; Rutledge, D.N. Urine Metabolite Profiles after the Consumption of a Low- and a High-Digestible Protein Meal, and Comparison of Urine Normalization Techniques. Metabolites 2024, 14, 177. [Google Scholar] [CrossRef] [PubMed]
- Khan, J.; Gul, P.; Rashid, M.T.; Li, Q.; Liu, K. Composition of Whole Grain Dietary Fiber and Phenolics and Their Impact on Markers of Inflammation. Nutrients 2024, 16, 1047. [Google Scholar] [CrossRef] [PubMed]
- Fiorucci, S.; Distrutti, E. Bile Acid-Activated Receptors, Intestinal Microbiota, and the Treatment of Metabolic Disorders. Trends Mol. Med. 2015, 21, 702–714. [Google Scholar] [CrossRef]
- Wagner, K.M.; McReynolds, C.B.; Schmidt, W.K.; Hammock, B.D. Soluble Epoxide Hydrolase as a Therapeutic Target for Pain, Inflammatory and Neurodegenerative Diseases. Pharmacol. Ther. 2017, 180, 62–76. [Google Scholar] [CrossRef]
- Caligiuri, S.P.B.; Parikh, M.; Stamenkovic, A.; Pierce, G.N.; Aukema, H.M. Dietary Modulation of Oxylipins in Cardiovascular Disease and Aging. Am. J. Physiol. Heart Circ. Physiol. 2017, 313, H903–H918. [Google Scholar] [CrossRef]
- Park, S.; Kim, H.W.; Joo Lee, C.; Kim, Y.; Sung, J. Profiles of Volatile Sulfur Compounds in Various Vegetables Consumed in Korea Using HS-SPME-GC/MS Technique. Front. Nutr. 2024, 11, 1409008. [Google Scholar] [CrossRef]
- Miekus, N.; Marszałek, K.; Podlacha, M.; Iqbal, A.; Puchalski, C.; Swiergiel, A.H. Health Benefits of Plant-Derived Sulfur Compounds, Glucosinolates, and Organosulfur Compounds. Molecules 2020, 25, 3804. [Google Scholar] [CrossRef]
- Steckhan, N.; Hohmann, C.-D.; Kessler, C.; Dobos, G.; Michalsen, A.; Cramer, H. Effects of Different Dietary Approaches on Inflammatory Markers in Patients with Metabolic Syndrome: A Systematic Review and Meta-Analysis. Nutrition 2016, 32, 338–348. [Google Scholar] [CrossRef]
- Aleksandrova, K.; Koelman, L.; Rodrigues, C.E. Dietary Patterns and Biomarkers of Oxidative Stress and Inflammation: A Systematic Review of Observational and Intervention Studies. Redox Biol. 2021, 42, 101869. [Google Scholar] [CrossRef]
- Tabung, F.K.; Liang, L.; Huang, T.; Balasubramanian, R.; Zhao, Y.; Chandler, P.D.; Manson, J.E.; Cespedes Feliciano, E.M.; Hayden, K.M.; Van Horn, L.; et al. Identifying Metabolomic Profiles of Inflammatory Diets in Postmenopausal Women. Clin. Nutr. 2020, 39, 1478–1490. [Google Scholar] [CrossRef]
- Camfield, D.A.; Nolidin, K.; Savage, K.; Timmer, J.; Croft, K.; Tangestani Fard, M.; Simpson, T.; Downey, L.; Scholey, A.; Pipingas, A.; et al. Higher Plasma Levels of F2 -Isoprostanes Are Associated with Slower Psychomotor Speed in Healthy Older Adults. Free Radic. Res. 2019, 53, 377–386. [Google Scholar] [CrossRef]
- Christensen, J.J.; Ulven, S.M.; Retterstøl, K.; Narverud, I.; Bogsrud, M.P.; Henriksen, T.; Bollerslev, J.; Halvorsen, B.; Aukrust, P.; Holven, K.B. Comprehensive Lipid and Metabolite Profiling of Children with and without Familial Hypercholesterolemia: A Cross-Sectional Study. Atherosclerosis 2017, 266, 48–57. [Google Scholar] [CrossRef]
- Strand, E.; Pedersen, E.R.; Svingen, G.F.T.; Olsen, T.; Bjørndal, B.; Karlsson, T.; Dierkes, J.; Njølstad, P.R.; Mellgren, G.; Tell, G.S.; et al. Serum Acylcarnitines and Risk of Cardiovascular Death and Acute Myocardial Infarction in Patients With Stable Angina Pectoris. J. Am. Heart Assoc. 2017, 6, e003620. [Google Scholar] [CrossRef]
- Wu, G.D.; Compher, C.; Chen, E.Z.; Smith, S.A.; Shah, R.D.; Bittinger, K.; Chehoud, C.; Albenberg, L.G.; Nessel, L.; Gilroy, E.; et al. Comparative Metabolomics in Vegans and Omnivores Reveal Constraints on Diet-Dependent Gut Microbiota Metabolite Production. Gut 2016, 65, 63–72. [Google Scholar] [CrossRef]
- Ríos-Covián, D.; Ruas-Madiedo, P.; Margolles, A.; Gueimonde, M.; de los Reyes-Gavilán, C.G.; Salazar, N. Intestinal Short Chain Fatty Acids and Their Link with Diet and Human Health. Front. Microbiol. 2016, 7, 185. [Google Scholar] [CrossRef] [PubMed]
- Mora-Ortiz, M.; Yubero-Serrano, E.; Priego-Capote, F.; Gutierrez-Mariscal, F.; Alcala-Diaz, J.; Torres-Peña, J.; Arenas de-Larriva, A.; Delgado-Lista, J.; Perez-Martinez, P.; Roche, H.; et al. Dietary Lipid Quantity and Quality Modulate the Postprandial Metabolomic Profile in Patients with Metabolic Syndrome. Nutrients 2024, 16, 4267. [Google Scholar] [CrossRef]
- Yu, Z.; Nan, F.; Wang, L.Y.; Jiang, H.; Chen, W.; Jiang, Y. Effects of High-Protein Diet on Glycemic Control, Insulin Resistance and Blood Pressure in Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clin. Nutr. 2020, 39, 1724–1734. [Google Scholar] [CrossRef] [PubMed]
- Eichelmann, F.; Prada, M.; Sellem, L.; Jackson, K.G.; Salas Salvadó, J.; Razquin Burillo, C.; Estruch, R.; Friedén, M.; Rosqvist, F.; Risérus, U.; et al. Lipidome Changes Due to Improved Dietary Fat Quality Inform Cardiometabolic Risk Reduction and Precision Nutrition. Nat. Med. 2024, 30, 2867–2877. [Google Scholar] [CrossRef]
- Imamura, F.; Micha, R.; Wu, J.H.Y.; de Oliveira Otto, M.C.; Otite, F.O.; Abioye, A.I.; Mozaffarian, D. Effects of Saturated Fat, Polyunsaturated Fat, Monounsaturated Fat, and Carbohydrate on Glucose-Insulin Homeostasis: A Systematic Review and Meta-Analysis of Randomised Controlled Feeding Trials. PLoS Med. 2016, 13, e1002087. [Google Scholar] [CrossRef] [PubMed]
- Mousa, H.; Elrayess, M.A.; Diboun, I.; Jackson, S.K.; Zughaier, S.M. Metabolomics Profiling of Vitamin D Status in Relation to Dyslipidemia. Metabolites 2022, 12, 771. [Google Scholar] [CrossRef]
- Delcheva, G.; Stefanova, K.; Stankova, T. Ceramides—Emerging Biomarkers of Lipotoxicity in Obesity, Diabetes, Cardiovascular Diseases, and Inflammation. Diseases 2024, 12, 195. [Google Scholar] [CrossRef]
- Norris, G.; Blesso, C. Dietary and Endogenous Sphingolipid Metabolism in Chronic Inflammation. Nutrients 2017, 9, 1180. [Google Scholar] [CrossRef]
- Taylor, P.N.; Davies, J.S. A Review of the Growing Risk of Vitamin D Toxicity from Inappropriate Practice. Br. J. Clin. Pharmacol. 2018, 84, 1121–1127. [Google Scholar] [CrossRef]
- Dalle Carbonare, L.; Valenti, M.; Del Forno, F.; Caneva, E.; Pietrobelli, A. Vitamin D: Daily vs. Monthly Use in Children and Elderly—What Is Going On? Nutrients 2017, 9, 652. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.; Monteiro, A.; Rodrigues, R.; Ferreira, C.; Coutinho, J.; Filipe, R.; Ramos, S.; Branco, M.C.; Fonseca, M. In Obese Hypertensives Cholecalciferol Inhibits Circulating TH17 Cells but Not Macrophage Infiltration on Adipose Tissue. Clin. Immunol. 2023, 247, 109244. [Google Scholar] [CrossRef]
- Vanherwegen, A.-S.; Gysemans, C.; Mathieu, C. Vitamin D Endocrinology on the Cross-Road between Immunity and Metabolism. Mol. Cell. Endocrinol. 2017, 453, 52–67. [Google Scholar] [CrossRef]
- Abreu, P.; Pinheiro, C.H.J.; Vitzel, K.F.; Vasconcelos, D.A.A.; Torres, R.P.; Fortes, M.S.; Marzuca-Nassr, G.N.; Mancini-Filho, J.; Hirabara, S.M.; Curi, R. Contractile Function Recovery in Severely Injured Gastrocnemius Muscle of Rats Treated with Either Oleic or Linoleic Acid. Exp. Physiol. 2016, 101, 1392–1405. [Google Scholar] [CrossRef]
- Das, U.N. Essential Fatty Acids and Their Metabolites in the Pathobiology of Inflammation and Its Resolution. Biomolecules 2021, 11, 1873. [Google Scholar] [CrossRef] [PubMed]
- Akbari, M.; Ostadmohammadi, V.; Tabrizi, R.; Mobini, M.; Lankarani, K.B.; Moosazadeh, M.; Heydari, S.T.; Chamani, M.; Kolahdooz, F.; Asemi, Z. The Effects of Alpha-Lipoic Acid Supplementation on Inflammatory Markers among Patients with Metabolic Syndrome and Related Disorders: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutr. Metab. 2018, 15, 39. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Marine Omega-3 Fatty Acids and Inflammatory Processes: Effects, Mechanisms and Clinical Relevance. Mol. Cell Biol. Lipids 2015, 1851, 469–484. [Google Scholar] [CrossRef]
- Hewlings, S.; Kalman, D. Curcumin: A Review of Its Effects on Human Health. Foods 2017, 6, 92. [Google Scholar] [CrossRef]
- Chambers, E.S.; Viardot, A.; Psichas, A.; Morrison, D.J.; Murphy, K.G.; Zac-Varghese, S.E.K.; MacDougall, K.; Preston, T.; Tedford, C.; Finlayson, G.S.; et al. Effects of Targeted Delivery of Propionate to the Human Colon on Appetite Regulation, Body Weight Maintenance and Adiposity in Overweight Adults. Gut 2015, 64, 1744–1754. [Google Scholar] [CrossRef]
- Dollerup, O.L.; Chubanava, S.; Agerholm, M.; Søndergård, S.D.; Altıntaş, A.; Møller, A.B.; Høyer, K.F.; Ringgaard, S.; Stødkilde-Jørgensen, H.; Lavery, G.G.; et al. Nicotinamide Riboside Does Not Alter Mitochondrial Respiration, Content or Morphology in Skeletal Muscle from Obese and Insulin-resistant Men. J. Physiol. 2020, 598, 731–754. [Google Scholar] [CrossRef]
- McCoin, C.S.; Knotts, T.A.; Ono-Moore, K.D.; Oort, P.J.; Adams, S.H. Long-Chain Acylcarnitines Activate Cell Stress and Myokine Release in C2 C12 Myotubes: Calcium-Dependent and -Independent Effects. Am. J. Physiol.-Endocrinol. Metab. 2015, 308, E990–E1000. [Google Scholar] [CrossRef]
- Agus, A.; Planchais, J.; Sokol, H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host Microbe 2018, 23, 716–724. [Google Scholar] [CrossRef]
- Guzior, D.V.; Quinn, R.A. Review: Microbial Transformations of Human Bile Acids. Microbiome 2021, 9, 140. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Nieuwdorp, M.; de Vos, W.M.; Rampanelli, E. Microbial Tryptophan Metabolism Tunes Host Immunity, Metabolism, and Extraintestinal Disorders. Metabolites 2022, 12, 834. [Google Scholar] [CrossRef] [PubMed]
- Tilg, H.; Zmora, N.; Adolph, T.E.; Elinav, E. The Intestinal Microbiota Fuelling Metabolic Inflammation. Nat. Rev. Immunol. 2020, 20, 40–54. [Google Scholar] [CrossRef] [PubMed]
- Hiippala, K.; Jouhten, H.; Ronkainen, A.; Hartikainen, A.; Kainulainen, V.; Jalanka, J.; Satokari, R. The Potential of Gut Commensals in Reinforcing Intestinal Barrier Function and Alleviating Inflammation. Nutrients 2018, 10, 988. [Google Scholar] [CrossRef]
- Fu, J.; Li, G.; Li, X.; Song, S.; Cheng, L.; Rui, B.; Jiang, L. Gut Commensal Alistipes as a Potential Pathogenic Factor in Colorectal Cancer. Discov. Onc. 2024, 15, 473. [Google Scholar] [CrossRef]
- Hou, Y.; Li, J.; Ying, S. Tryptophan Metabolism and Gut Microbiota: A Novel Regulatory Axis Integrating the Microbiome, Immunity, and Cancer. Metabolites 2023, 13, 1166. [Google Scholar] [CrossRef]
- Peron, G.; Meroño, T.; Gargari, G.; Hidalgo-Liberona, N.; Miñarro, A.; Lozano, E.V.; Castellano-Escuder, P.; González-Domínguez, R.; Del Bo’, C.; Bernardi, S.; et al. A Polyphenol-Rich Diet Increases the Gut Microbiota Metabolite Indole 3-Propionic Acid in Older Adults with Preserved Kidney Function. Mol. Nutr. Food Res. 2022, 66, 2100349. [Google Scholar] [CrossRef] [PubMed]
- Turpin-Nolan, S.M.; Brüning, J.C. The Role of Ceramides in Metabolic Disorders: When Size and Localization Matters. Nat. Rev. Endocrinol. 2020, 16, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Dzobo, K.E.; Cupido, A.J.; Mol, B.M.; Stiekema, L.C.A.; Versloot, M.; Winkelmeijer, M.; Peter, J.; Pennekamp, A.-M.; Havik, S.R.; Vaz, F.M.; et al. Diacylglycerols and Lysophosphatidic Acid, Enriched on Lipoprotein(a), Contribute to Monocyte Inflammation. Arter. Thromb. Vasc. Biol. 2024, 44, 720–740. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, G.R.; Guizellini, G.M.; Da Silva, S.A.; De Almeida, A.P.; Pinaffi-Langley, A.C.C.; Rogero, M.M.; De Camargo, A.C.; Torres, E.A.F.S. Polycyclic Aromatic Hydrocarbons in Foods: Biological Effects, Legislation, Occurrence, Analytical Methods, and Strategies to Reduce Their Formation. Int. J. Mol. Sci. 2021, 22, 6010. [Google Scholar] [CrossRef]
- Mirza Alizadeh, A.; Mohammadi, M.; Hashempour-baltork, F.; Hosseini, H.; Shahidi, F. Process-Induced Toxicants in Food: An Overview on Structures, Formation Pathways, Sensory Properties, Safety and Health Implications. Food Prod. Process. Nutr. 2025, 7, 7. [Google Scholar] [CrossRef]
- Alabduladhem, T.O.; Bordoni, B. Physiology, Krebs Cycle. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Ryan, D.G.; O’Neill, L.A.J. Krebs Cycle Reborn in Macrophage Immunometabolism. Annu. Rev. Immunol. 2020, 38, 289–313. [Google Scholar] [CrossRef]
- Williams, N.C.; O’Neill, L.A.J. A Role for the Krebs Cycle Intermediate Citrate in Metabolic Reprogramming in Innate Immunity and Inflammation. Front. Immunol. 2018, 9, 141. [Google Scholar] [CrossRef]
- Rogero, M.; Calder, P. Obesity, Inflammation, Toll-Like Receptor 4 and Fatty Acids. Nutrients 2018, 10, 432. [Google Scholar] [CrossRef]
- Petrescu, M.; Vlaicu, S.I.; Ciumărnean, L.; Milaciu, M.V.; Mărginean, C.; Florea, M.; Vesa, Ș.C.; Popa, M. Chronic Inflammation-A Link between Nonalcoholic Fatty Liver Disease (NAFLD) and Dysfunctional Adipose Tissue. Medicina 2022, 58, 641. [Google Scholar] [CrossRef]
- Wang, W.; Kou, J.; Long, J.; Wang, T.; Zhang, M.; Wei, M.; Xie, Q. GC/MS and LC/MS Serum Metabolomic Analysis of Chinese LN Patients. Sci. Rep. 2024, 14, 1523. [Google Scholar] [CrossRef]
- Alexaki, V.I. Adipose Tissue-Derived Mediators of Systemic Inflammation and Metabolic Control. Curr. Opin. Endocr. Metab. Res. 2024, 37, 100560. [Google Scholar] [CrossRef]
- Chegini, M.; Tabar, M.S.; Behrouz, V.; Bahrizadeh, M.; Sadeghi, A.; Hekmatdoost, A.; Yari, Z. Diet-Induced Inflammation Is Associated with Fatty Pancreas in Patients with Common Bile Duct Stones. Sci. Rep. 2025, 15, 15620. [Google Scholar] [CrossRef] [PubMed]
- Maki, K.C.; Dicklin, M.R.; Kirkpatrick, C.F. Saturated Fats and Cardiovascular Health: Current Evidence and Controversies. J. Clin. Lipidol. 2021, 15, 765–772. [Google Scholar] [CrossRef]
- Saqib, U.; Sarkar, S.; Suk, K.; Mohammad, O.; Baig, M.S.; Savai, R. Phytochemicals as Modulators of M1-M2 Macrophages in Inflammation. Oncotarget 2018, 9, 17937–17950. [Google Scholar] [CrossRef]
- Lee, R.; Yoon, B.-I.; Hunter, C.A.; Kwon, H.M.; Sung, H.W.; Park, J. Short Chain Fatty Acids Facilitate Protective Immunity by Macrophages and T Cells during Acute Fowl Adenovirus-4 Infection. Sci. Rep. 2023, 13, 17999. [Google Scholar] [CrossRef]
- Cheng, W.L.; Markus, C.; Lim, C.Y.; Tan, R.Z.; Sethi, S.K.; Loh, T.P.; the IFCC Working Group on Method Evaluation Protocols. Calibration Practices in Clinical Mass Spectrometry: Review and Recommendations. Ann. Lab. Med. 2023, 43, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Mosley, J.D.; Dunn, W.B.; Kuligowski, J.; Lewis, M.R.; Monge, M.E.; Ulmer Holland, C.; Vuckovic, D.; Zanetti, K.A.; Schock, T.B.; the Metabolomics Quality Assurance, Quality Control Consortium (mQACC). Metabolomics 2023 Workshop Report: Moving toward Consensus on Best QA/QC Practices in LC–MS-Based Untargeted Metabolomics. Metabolomics 2024, 20, 73. [Google Scholar] [CrossRef] [PubMed]
- Nian, M.; Chen, X.; Fang, M. Addressing Pitfalls of Metabolomics for Toxicology: A Call for Standardization, Reproducibility and Data Sharing. Chem. Res. Toxicol. 2025, 38, 1150–1156. [Google Scholar] [CrossRef]
- Zhu, M.; Lamont, L.; Maas, P.; Harms, A.C.; Beekman, M.; Slagboom, P.E.; Dubbelman, A.-C.; Hankemeier, T. Matrix Effect Evaluation Using Multi-Component Post-Column Infusion in Untargeted Hydrophilic Interaction Liquid Chromatography-Mass Spectrometry Plasma Metabolomics. J. Chromatogr. A 2025, 1740, 465580. [Google Scholar] [CrossRef]
- Ćeranić, A.; Bueschl, C.; Doppler, M.; Parich, A.; Xu, K.; Lemmens, M.; Buerstmayr, H.; Schuhmacher, R. Enhanced Metabolome Coverage and Evaluation of Matrix Effects by the Use of Experimental-Condition-Matched 13C-Labeled Biological Samples in Isotope-Assisted LC-HRMS Metabolomics. Metabolites 2020, 10, 434. [Google Scholar] [CrossRef]
- Huppertz, B.; Möller-Friedrich, S.; Baum, K. Matrix Effects of Urine Marker Substances in LC-MS/MS Analysis of Drug of Abuse. Ther. Drug Monit. 2024, 46, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Páez-Franco, J.C.; Torres-Ruiz, J.; Sosa-Hernández, V.A.; Cervantes-Díaz, R.; Romero-Ramírez, S.; Pérez-Fragoso, A.; Meza-Sánchez, D.E.; Germán-Acacio, J.M.; Maravillas-Montero, J.L.; Mejía-Domínguez, N.R.; et al. Metabolomics Analysis Reveals a Modified Amino Acid Metabolism That Correlates with Altered Oxygen Homeostasis in COVID-19 Patients. Sci. Rep. 2021, 11, 6350. [Google Scholar] [CrossRef] [PubMed]
- Hagn, G.; Meier-Menches, S.M.; Plessl-Walder, G.; Mitra, G.; Mohr, T.; Preindl, K.; Schlatter, A.; Schmidl, D.; Gerner, C.; Garhöfer, G.; et al. Plasma Instead of Serum Avoids Critical Confounding of Clinical Metabolomics Studies by Platelets. J. Proteome Res. 2024, 23, 3064–3075. [Google Scholar] [CrossRef]
- Kaluarachchi, M.; Boulangé, C.L.; Karaman, I.; Lindon, J.C.; Ebbels, T.M.D.; Elliott, P.; Tracy, R.P.; Olson, N.C. A Comparison of Human Serum and Plasma Metabolites Using Untargeted 1H NMR Spectroscopy and UPLC-MS. Metabolomics 2018, 14, 32. [Google Scholar] [CrossRef]
- Mosele, J.I.; Motilva, M.-J. Phenol Biological Metabolites as Food Intake Biomarkers, a Pending Signature for a Complete Understanding of the Beneficial Effects of the Mediterranean Diet. Nutrients 2021, 13, 3051. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.K.; Wang, B.; Rasmussen, H.; Natarajan, S.K.; Bilek, L.D.; Ehlers, D.K.; Graeff-Armas, L.; D’Angelo, C.; Cochran, T.; Harp, K.; et al. Urinary Metabolites as Biomarkers of Dietary Intake: A Systematic Review. Front. Nutr. 2025, 12, 1596543. [Google Scholar] [CrossRef]
- Taubenheim, J.; Kadibalban, A.S.; Zimmermann, J.; Taubenheim, C.; Tran, F.; Schreiber, S.; Rosenstiel, P.; Aden, K.; Kaleta, C. Metabolic Modeling Reveals a Multi-Level Deregulation of Host-Microbiome Metabolic Networks in IBD. Nat. Commun. 2025, 16, 5120. [Google Scholar] [CrossRef]
- Vich Vila, A.; Hu, S.; Andreu-Sánchez, S.; Collij, V.; Jansen, B.H.; Augustijn, H.E.; Bolte, L.A.; Ruigrok, R.A.A.A.; Abu-Ali, G.; Giallourakis, C.; et al. Faecal Metabolome and Its Determinants in Inflammatory Bowel Disease. Gut 2023, 72, 1472–1485. [Google Scholar] [CrossRef]
- Zheng, F.; Yang, Y.; Lu, G.; Tan, J.S.; Mageswary, U.; Zhan, Y.; Ayad, M.E.; Lee, Y.-Y.; Xie, D. Metabolomics Insights into Gut Microbiota and Functional Constipation. Metabolites 2025, 15, 269. [Google Scholar] [CrossRef]
- Zierer, J.; Jackson, M.A.; Kastenmüller, G.; Mangino, M.; Long, T.; Telenti, A.; Mohney, R.P.; Small, K.S.; Bell, J.T.; Steves, C.J.; et al. The Fecal Metabolome as a Functional Readout of the Gut Microbiome. Nat. Genet. 2018, 50, 790–795. [Google Scholar] [CrossRef]
- Spick, M.; Lewis, H.-M.; Frampas, C.F.; Longman, K.; Costa, C.; Stewart, A.; Dunn-Walters, D.; Greener, D.; Evetts, G.; Wilde, M.J.; et al. An Integrated Analysis and Comparison of Serum, Saliva and Sebum for COVID-19 Metabolomics. Sci. Rep. 2022, 12, 11867. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yu, Y.; Shen, W.; Tan, Z.; Tang, S.; Yao, H.; He, J.; Wan, F. Metabolomics Analysis Across Multiple Biofluids Reveals the Metabolic Responses of Lactating Holstein Dairy Cows to Fermented Soybean Meal Replacement. Front. Vet. Sci. 2022, 9, 812373. [Google Scholar] [CrossRef] [PubMed]
- Evans, E.D.; Duvallet, C.; Chu, N.D.; Oberst, M.K.; Murphy, M.A.; Rockafellow, I.; Sontag, D.; Alm, E.J. Predicting Human Health from Biofluid-Based Metabolomics Using Machine Learning. Sci. Rep. 2020, 10, 17635. [Google Scholar] [CrossRef]
- Donatti, A.; Canto, A.M.; Godoi, A.B.; Da Rosa, D.C.; Lopes-Cendes, I. Circulating Metabolites as Potential Biomarkers for Neurological Disorders—Metabolites in Neurological Disorders. Metabolites 2020, 10, 389. [Google Scholar] [CrossRef]
- Wang, T.; Holscher, H.D.; Maslov, S.; Hu, F.B.; Weiss, S.T.; Liu, Y.-Y. Predicting Metabolite Response to Dietary Intervention Using Deep Learning. Nat. Commun. 2025, 16, 815. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.C.Y.; Groves, R.A.; Rydzak, T.; Lewis, I.A. Metabolomics Survey of Uropathogenic Bacteria in Human Urine. Front. Microbiol. 2024, 15, 1507561. [Google Scholar] [CrossRef]
- Li, T.; Ihanus, A.; Ohukainen, P.; Järvelin, M.-R.; Kähönen, M.; Kettunen, J.; Raitakari, O.T.; Lehtimäki, T.; Mäkinen, V.-P.; Tynkkynen, T.; et al. Clinical and Biochemical Associations of Urinary Metabolites: Quantitative Epidemiological Approach on Renal-Cardiometabolic Biomarkers. Int. J. Epidemiol. 2024, 53, dyad162. [Google Scholar] [CrossRef]
- Griffin, L.E.; Kohrt, S.E.; Rathore, A.; Kay, C.D.; Grabowska, M.M.; Neilson, A.P. Microbial Metabolites of Flavanols in Urine Are Associated with Enhanced Anti-Proliferative Activity in Bladder Cancer Cells In Vitro. Nutr. Cancer 2022, 74, 194–210. [Google Scholar] [CrossRef]
- Deng, K.; Xu, J.; Shen, L.; Zhao, H.; Gou, W.; Xu, F.; Fu, Y.; Jiang, Z.; Shuai, M.; Li, B.; et al. Comparison of Fecal and Blood Metabolome Reveals Inconsistent Associations of the Gut Microbiota with Cardiometabolic Diseases. Nat. Commun. 2023, 14, 571. [Google Scholar] [CrossRef]
- Sangermani, M.; Desiati, I.; Jørgensen, S.M.; Li, J.V.; Andreassen, T.; Bathen, T.F.; Giskeødegård, G.F. Stability in Fecal Metabolites amid a Diverse Gut Microbiome Composition: A One-Month Longitudinal Study of Variability in Healthy Individuals. Gut Microbes 2024, 16, 2427878. [Google Scholar] [CrossRef]
- Montero, O.; Hedeland, M.; Balgoma, D. Trials and Tribulations of Statistical Significance in Biochemistry and Omics. Trends Biochem. Sci. 2023, 48, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Rosner, B.A.; Colditz, G.A. Statistically Significant Association Does Not Imply Improvement in Prediction of Clinical Outcomes. Cancer Prev. Res. 2025. Available online: https://aacrjournals.org/cancerpreventionresearch/article/doi/10.1158/1940-6207.CAPR-25-0056/766659/Statistically-Significant-Association-Does-not (accessed on 6 July 2025).
- Sostare, E.; Bowen, T.J.; Lawson, T.N.; Freier, A.; Li, X.; Lloyd, G.R.; Najdekr, L.; Jankevics, A.; Smith, T.; Varshavi, D.; et al. Metabolomics Simultaneously Derives Benchmark Dose Estimates and Discovers Metabolic Biotransformations in a Rat Bioassay. Chem. Res. Toxicol. 2024, 37, 923–934. [Google Scholar] [CrossRef]
- Yao, C.-H.; Wang, L.; Stancliffe, E.; Sindelar, M.; Cho, K.; Yin, W.; Wang, Y.; Patti, G.J. Dose-Response Metabolomics To Understand Biochemical Mechanisms and Off-Target Drug Effects with the TOXcms Software. Anal. Chem. 2020, 92, 1856–1864. [Google Scholar] [CrossRef] [PubMed]
- Correia, B.S.B.; Sandby, K.; Krarup, T.; Magkos, F.; Geiker, N.R.W.; Bertram, H.C. Changes in Plasma, Urine, and Fecal Metabolome after 16 Weeks of Consuming Dairy With Different Food Matrixes—A Randomized Controlled Trial. Mol. Nutr. Food Res. 2024, 68, 2300363. [Google Scholar] [CrossRef]
- Mohr, A.E.; Sweazea, K.L.; Bowes, D.A.; Jasbi, P.; Whisner, C.M.; Sears, D.D.; Krajmalnik-Brown, R.; Jin, Y.; Gu, H.; Klein-Seetharaman, J.; et al. Gut Microbiome Remodeling and Metabolomic Profile Improves in Response to Protein Pacing with Intermittent Fasting versus Continuous Caloric Restriction. Nat. Commun. 2024, 15, 4155. [Google Scholar] [CrossRef] [PubMed]
- Muijsenberg, A.; Canfora, E.E.; Blaak, E.E. Metabolic Phenotypes, Genotypes, and Gut Microbiome Signatures in Obesity: Implications for Precision Nutrition Strategies in Type 2 Diabetes Prevention. Nutr. Rev. 2025, 100, nuaf088. [Google Scholar] [CrossRef]
- Morand, C. How to Better Consider and Understand Interindividual Variability in Response to Polyphenols in Clinical Trials. Front. Nutr. 2024, 11, 1522516. [Google Scholar] [CrossRef]
- Kviatcovsky, D.; Zheng, D.; Elinav, E. Gut Microbiome and Its Potential Link to Personalized Nutrition. Curr. Opin. Physiol. 2021, 22, 100439. [Google Scholar] [CrossRef]
- Chen, L.; Dong, Y.; Bhagatwala, J.; Raed, A.; Huang, Y.; Zhu, H. Vitamin D3 Supplementation Increases Long-Chain Ceramide Levels in Overweight/Obese African Americans: A Post-Hoc Analysis of a Randomized Controlled Trial. Nutrients 2020, 12, 981. [Google Scholar] [CrossRef]
- Smith, E.; Ottosson, F.; Ericson, U.; Hellstrand, S.; Rizzo, M.; Sukruang, K.; Pizza, V.; Orho-Melander, M.; Nilsson, P.M.; Kennbäck, C.; et al. Impact of a Short-Term Mediterranean Diet Intervention on Plasma Metabolites: A Pilot Study. Metabolomics 2024, 20, 82. [Google Scholar] [CrossRef]
- Zheng, H.; Lorenzen, J.; Astrup, A.; Larsen, L.; Yde, C.; Clausen, M.; Bertram, H. Metabolic Effects of a 24-Week Energy-Restricted Intervention Combined with Low or High Dairy Intake in Overweight Women: An NMR-Based Metabolomics Investigation. Nutrients 2016, 8, 108. [Google Scholar] [CrossRef]
- Hengist, A.; Davies, R.G.; Walhin, J.-P.; Buniam, J.; Merrell, L.H.; Rogers, L.; Bradshaw, L.; Moreno-Cabañas, A.; Rogers, P.J.; Brunstrom, J.M.; et al. Ketogenic Diet but Not Free-Sugar Restriction Alters Glucose Tolerance, Lipid Metabolism, Peripheral Tissue Phenotype, and Gut Microbiome: RCT. Cell Rep. Med. 2024, 5, 101667. [Google Scholar] [CrossRef] [PubMed]
- Gram-Kampmann, E.M.; Olesen, T.B.; Hansen, C.D.; Hugger, M.B.; Jensen, J.M.; Handberg, A.; Beck-Nielsen, H.; Krag, A.; Olsen, M.H.; Højlund, K. A Six-Month Low-Carbohydrate Diet High in Fat Does Not Adversely Affect Endothelial Function or Markers of Low-Grade Inflammation in Patients with Type 2 Diabetes: An Open-Label Randomized Controlled Trial. Cardiovasc. Diabetol. 2023, 22, 212. [Google Scholar] [CrossRef]
- Rhee, E.P.; Waikar, S.S.; Rebholz, C.M.; Zheng, Z.; Perichon, R.; Clish, C.B.; Evans, A.M.; Avila, J.; Denburg, M.R.; Anderson, A.H.; et al. Variability of Two Metabolomic Platforms in CKD. Clin. J. Am. Soc. Nephrol. 2019, 14, 40–48. [Google Scholar] [CrossRef]
- Adekoya, A.; Okezue, M.A.; Menon, K. Medical Laboratories in Healthcare Delivery: A Systematic Review of Their Roles and Impact. Laboratories 2025, 2, 8. [Google Scholar] [CrossRef]
- Di Minno, A.; Gelzo, M.; Caterino, M.; Costanzo, M.; Ruoppolo, M.; Castaldo, G. Challenges in Metabolomics-Based Tests, Biomarkers Revealed by Metabolomic Analysis, and the Promise of the Application of Metabolomics in Precision Medicine. Int. J. Mol. Sci. 2022, 23, 5213. [Google Scholar] [CrossRef] [PubMed]
- Cochran, D.; Noureldein, M.; Bezdeková, D.; Schram, A.; Howard, R.; Powers, R. A Reproducibility Crisis for Clinical Metabolomics Studies. TrAC Trends Anal. Chem. 2024, 180, 117918. [Google Scholar] [CrossRef]
- Li, S.; Looby, N.; Chandran, V.; Kulasingam, V. Challenges in the Metabolomics-Based Biomarker Validation Pipeline. Metabolites 2024, 14, 200. [Google Scholar] [CrossRef]
- Castelli, F.A.; Rosati, G.; Moguet, C.; Fuentes, C.; Marrugo-Ramírez, J.; Lefebvre, T.; Volland, H.; Merkoçi, A.; Simon, S.; Fenaille, F.; et al. Metabolomics for Personalized Medicine: The Input of Analytical Chemistry from Biomarker Discovery to Point-of-Care Tests. Anal. Bioanal. Chem. 2022, 414, 759–789. [Google Scholar] [CrossRef] [PubMed]



| Category | Inclusion Criteria |
|---|---|
| Population | Subjects older than 19 and healthy. |
| Study design | Randomized controlled trials. |
| Intervention | Dietary supplementation, dietary replacement, personalized nutrition, and probiotic supplementation. |
| Comparator | Placebo: no probiotic group; no supplement group; usual diet with saturated fat; diet with no strawberries; refined grain diet; non-cruciferous vegetable diet; no Ginseng, etc. |
| Outcomes | Metabolic health, inflammatory indicators, and gut microbiome modulation. |
| Language of publication | English; Spanish. |
| Category | Exclusion criteria |
| Missing data | Studies that report incomplete values (as lacking uncertainty) when the authors could not provide this information when requested. |
| RCT = randomized controlled trials | |
| Reference (Country) | n | Participants | Mean Age, yrs | Intervention/Control Groups (n) | Duration of Intervention | Main Results |
|---|---|---|---|---|---|---|
| Amerikanou, C., et al. (Greece, Italy, Serbia, 2021) [62] | 98 | Patients with NAFLD | 48.83 ± 9.36 | Mastiha supplementation (41)/Placebo (57) | 6 months | In severely obese NAFLD patients, Mastiha reduced liver inflammation markers and decreased LysoPC 18:1, LysoPE 18:1, and cholic acid, alongside modulating gut microbiota composition. |
| Calderón-Pérez L., et al. (Spain, 2024) [69] | 134 | Adults | 44 | Personalized nutrition diet (45) or a personalized plan (53)/Mediterranean diet (36) | 21 weeks | CRP, N-acetylated proteins and MCP-1 for inflammation in order to consider different components of the inflammatory process, such as the clinical gold standard, a composite biomarker and an adipose tissue-derived inflammatory signal, respectively; and TMA for microbiota. |
| Chambers, E., et al. (United Kingdom, 2019) [49] | 12 | Non-diabetic adults with overweight and obesity | 60 ± 1 | Inulin-propionate ester (12) and inulin supplementation (12)/Low-fermentable fiber control-cellulose (12) | 42 days (all participants completed three intervention periods) | Both IPE and inulin enhanced insulin resistance and altered gut microbiota compared to cellulose, with IPE reducing pro-inflammatory interleukin-8 levels and no significant differences between IPE and inulin. |
| Chashmniam, S., et al. (Iran, 2019) [50] | 45 | Participants with non-alcoholic fatty liver disease | Intervention: 46.56 ± 2.25 Control: 37.75 ± 3.22 | Curcumin–phospholipid complex supplementation (25)/Placebo (20) | 8 weeks | Decrease in oxidative and inflammatory mediators was reported. |
| Cofán, M., et al. (Spain and United States, 2024) [70] | 115 | Healthy elderly participants | Intervention: 67.9 ± 3.1 Control: 68. ± 43.0 | Walnut-Enriched diet (64)/Usual diet with abstention from walnuts and avoiding other nuts (51) | 24 weeks | Walnut diet increased C18:3n-3 and its oxylipins, while reducing C20:4n-6-derived metabolites, indicating a favorable shift in lipid mediator profiles. |
| Connolly EL, et al. (Australia, 2024) [71] | 18 | Participants with mild to moderately elevated blood pressure | 68 | Cruciferous vegetables servings added to diet (18)/Root and squash vegetables (18) | 2 weeks (CI) | Active intervention increased S-methyl cysteine sulfoxide and reduced carotenoids, with associated reductions in daytime systolic blood pressure and serum triglycerides. |
| Corsetto, P., et al. (Italy, 2019) [51] | 130 | Sarcopenic elderly subjects | Intervention: 80.77 ± 6.29 Control: 80.1 ± 8.54 | Liquid essential amino acids, whey protein and vitamin D supplementation combined with physical activity and a standard diet program (69)/Placebo (61) | 30 days | Diet and physical activity altered fatty acid profiles, increasing dihomo-gamma-linolenic acid. Supplementation further modulated omega-6 and SFAs, suggesting a metabolic shift in the sarcopenic elderly. |
| Esser, D., et al. (Netherlands, 2021) [63] | 19 | Overweight subjects with an impaired glucose tolerance | 64.2 ± 4.5 | Mohana Choorna (ayurvedic herbal preparation) supplementation (19)/Placebo (19) | 4 weeks (CI) | The herbal intervention increased inflammation-related gene expression but showed no correlation between urinary plant metabolites and health markers in metabolomic analysis. |
| Estévez-Santiago, R., et al. (Spain, 2019) [52] | 72 | Postmenopausal women | 59 ± 6 | Anthocyanins (23), Xanthophylls and Anthocyanins (26) combined with xanthophylls supplementation (23)/Between groups | 8 months | Treatments had no significant impact on blood pressure or inflammation markers but improved plasma glucose (A + X), altered metabolomic profiles, and increased antioxidant capacity in all groups. |
| Fernández-Arroyo, S., et al. (Netherlands, 2019) [53] | 24 | Obese, pre-menopausal, vitamin D-deficient | Low-dose supplementation: 29 ± 3; High dose supplementation: 27 ± 2 | Low dose vitamin D3 supplementation (12) and high dose vitamin D3 supplementation (12)/Between groups | 7 days | Vitamin D3 supplementation in obese, vitamin D-deficient women reduced plasmatic sphingomyelin levels, highlighting its impact on lipid metabolism. |
| Huang, L., et al. (United States, 2021) [64] | 34 | Adults/subjects with moderate hypercholesterolemia | 53 ± 1 | Strawberry adding supplementation (34)/Control beverage consumption (34) | 4 weeks (CI) | Strawberry intake increased specific phenolic metabolites and reduced 3-(4-methoxyphenyl)propanoic acid-3-O-glucuronide, which correlated with improved FMD. |
| Kim, C.S., et al. (Korea; 2023) [68] | 53 | Healthy elderly | Intervention: 71.11 Control: 72 | Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI probiotics supplementation (27)/Placebo-soy oil (26) | 12 weeks | Probiotics increased gut-derived IPA, a tryptophan metabolite linked to higher serum brain-derived neurotrophic factor and reduced TNFα in vitro, indicating neuroprotective and anti-inflammatory potential. |
| Kwon, Y.J., et al. J. et al. (Republic of Korea, 2020) [59] | 68 | Postmenopausal women with hypercholesterolemia | Intervention: 55.9 ± 5.9 Control: 58.1 ± 4.7 | Korean red ginseng supplementation (36)/Placebo (32) | 4 weeks | Korean red ginseng reduced serum cholesterol and 7-hydroxycholesterol levels, indicating improved sterol metabolism in postmenopausal women with hypercholesterolemia. |
| Lamon-Fava, S., et al. (United States, 2021) [65] | 42 | Overweight or obese adults with depressive symptomatology and chronic inflammation | Intervention: 52 ± 13, 43 ± 17 and 47 ± 15 Control: 46 ± 14 | 1 g/d (12), 2 g/d (11) and 4 g/d (10) of eicosapentaenoic acid supplementation/Placebo-soy oil (8) | 12 weeks | EPA supplementation increased plasma EPA-derived metabolites (18-HEPE, RvE2, RvE3) dose-dependently and reduced arachidonic acid, while increasing AA-derived LXB4 at the highest dose. |
| Lindqvist, H., et al. (Sweden, 2019) [54] | 23 | Women with established rheumatoid arthritis and a disease activity score 28 > 3.0. | 55 | A meal including 75 g of blue mussel (Mytilus edulis) per day (23)/A meal including 75 g of meat per day (23) | 11 weeks (CI) | Blue mussel intake altered erythrocyte fatty acid profile, increasing EPA and DHA; plasma metabolites showed no change. Erythrocyte lipids may better reflect seafood intake than plasma markers. |
| Liu, A., et al. (China, 2021) [66] | 55 | Asthmatic patients | Intervention: 54.62 ± 9.61 Control: 57.08 ± 10.46 | Bifidobacterium lactis Probio-M8 powder and Symbicort Turbuhaler supplementation (29)/Placebo and Symbicort Turbuhaler (26) | 3 months | Probiotic co-administration improved asthma control, reduced nitric oxide levels, and increased gut microbiome resilience, with enhanced beneficial metabolites and microbial diversity. |
| Macnaughtan, J., et al. (United Kingdom, 2020) [60] | 87 | Patients with cirrhosis | 57.15 ± 8.83 | Probiotic Lactobacillus casei Shirota supplementation (44)/Placebo (43) | 6 months | Lactobacillus casei Shirota reduced inflammatory cytokines, but had no significant effect on metabolomic profile, intestinal permeability, or infection-related outcomes. |
| Paul, S., et al. (Australia, 2021) [67] | 10 | Overweight or obese males with no signs of cardiovascular disease or diabetes, plasma | 50 ± 10 | 4 g Alkyrol®-purified shark liver oil supplementation (10)/Placebo-methylcellulose (10) | 3 weeks (CI) | Shark liver oil supplementation increased plasmalogens and ether lipids, while reducing free cholesterol, triglycerides, and CRP levels in overweight/obese males. |
| Remie, C., et al. (Netherlands, 2020) [61] | 13 | Healthy overweight or obese participants | 59 ± 5 | 1000 mg/d nicotinamide riboside supplementation (13)/Placebo (13) | 6 weeks (CI) | Nicotinamide riboside supplementation increased NAD+ synthesis markers and acetylcarnitine in skeletal muscle, without affecting inflammation or mitochondrial function. |
| Roager, H., et al. (Denmark, 2019) [58] | 50 | Adults at risk of developing metabolic syndrome | 48.6 ± 11.1 | Whole grain intake of 179 ± 50 g/day (50)/Whole grain intake of 13 ± 10 g/day and refined grain (50) | 8 weeks (CI) | Whole grain intake reduced body weight, IL-6, and CRP, linked to lower energy intake and rye consumption, but had no significant effects on glucose homeostasis or the gut microbiome. |
| Santos, C., et al. (Portugal, 2024) [72] | 36 | Adults with obesity-related hypertension and vitamin D deficiency | 51.1 ± 5.5 | Cholecalciferol supplementation (9)/Non cholecalciferol supplementation (9) | 24 weeks | Cholecalciferol supplementation increased glutamine and histidine, decreased glucose, acetate, and altered fatty acid saturation, reflecting systemic metabolomic shifts in hypertensive patients. |
| Singh, D., et al. (Korea, 2024) [73] | 48 | Korean adults aged 25–65 years with BMI ≥ 23 kg/m2 and blood LDL cholesterol ≥ 120 mg/dL. | 41 | Balanced Korean diet (48), Diet recommended by the 2010 dietary guidelines for Americans (48) and Typical American diet (48) | 4 weeks (CI) | Recommended diets increased urinary benzoic acid and phenolic derivatives, while Western diets showed higher oxidative stress-related metabolites; urine profiles differed clearly by diet. |
| Tuomainen, M., et al. (Finland, Sweden, Denmark and Iceland, 2019) [55] | 163 | Individuals with impaired glucose metabolism | Intervention: 54.87 ± 8.08 Control: 54.50 ± 8.70 | Healthy Nordic diet-increased intakes of whole grains, canola oil, berries, and fish (70)/Control diet (93) | 18/24 weeks | Pipecolic acid betaine levels increased with a healthy Nordic diet, correlating with fiber and rye intake, and inversely associated with insulin, IL-1RA, and LDL/HDL ratio. |
| Ulven, S., et al. (Norway, 2019) [56] | 99 | Healthy subjects with moderate hypercholesterolemia | 55.2 ± 9.8 | Replacing SFAs with PUFAs in diet (47)/Control diet (52) | 8 weeks | Replacing SFAs with PUFAs reduced lipoproteins, carnitines, and kynurenine but increased bile acids, acetate, and inflammatory gene expression, indicating broad metabolic and genetic effects. |
| Wan, Y., et al. (China, 2019) [57] | 217 | Healthy young adults | Intervention: 23.3 ± 3.4, 23.6 ± 4.0 Control: 23.4 ± 4.1 | Fat-controlled diet: low-fat diet-fat 20% energy (73), moderate-fat diet-fat 30% energy (73) and high-fat diet-fat 40% energy (71) | 6 months | The lower-fat diet increased microbial α-diversity and decreased harmful metabolites, while the higher-fat diet reduced SCFAs and enriched pro-inflammatory factors. |
| Dietary Intervention | Biosample | Effect on Metabolites | Effect on Inflammatory Biomarkers | Reference | ||
|---|---|---|---|---|---|---|
| Increase | Decrease | Increase | Decrease | |||
| Interventions with food | ||||||
| A personalized diet designed to improve markers of carbohydrate metabolism | Urine and serum | Organic acids: glutamate [glutamic acid] *. Organic nitrogen compounds: dimethylamine. Organoheterocyclic compounds: allantoin. Sterol lipids: oxidized LDL. | Fatty acyls: oleic acid. Nucleic acids: pseudouridine. Organic acids: phenylalanine, tyrosine, glycine, betaine, lactate [lactic acids] *. Organic nitrogen compounds: choline, 8-oxo-2’-deoxyguanosine *. | TNFα and MCP-1 (compared to those who followed a Mediterranean diet) | Calderón-Pérez, 2024 [69] | |
| A personalized diet aimed at improving biomarkers of inflammation | Fatty acyls: docosahexaenoic acid. Organic acids: leucine, phenylalanine, glycine, glutamate, valine, isoleucine and glutamine. Sterol lipids: LDL cholesterol * and oxidized LDL. | Organic nitrogen compounds: 8-oxo-2’-deoxyguanosine * and N-acetylglycoproteins. Glycerophospholipids: lysophosphatidylcholines *. | No effects | |||
| A personalized diet aimed at improving biomarkers of oxidative stress | Organic acids: leucine, glutamine, methionine Organoheterocyclic compounds: allantoin | Fatty acyls: oleic acid, linoleic acid, 8-iso-PGF2α [ent-8-iso-PGF2alpha] Nucleic acids: pseudouridine. Organic nitrogen compounds: dimethylamine, trimethylamine-n-oxide | TNFα and MCP-1 (compared to those who followed a Mediterranean diet) | |||
| A personalized diet designed to enhance biomarkers related to microbiota metabolism. | Fatty acyls: docosahexaenoic acid. Organic acids: leucine, tyrosine, glycine, glutamate, valine, isoleucine, glutamine. | Organic nitrogen compounds: 8-Oxo-2’-deoxyguanosine *, N-acetylglycoproteins, trimethylamine and dimethylamine. Glycerophospholipids: lysophosphatidylcholines *. | No effects | |||
| A personalized diet designed to enhance lipid metabolism biomarkers | Fatty acyls: PUFAs (total) *. Organic acids: leucine, glycine, valine, glutamine. Organic nitrogen compounds: leptin *. Organoheterocyclic compounds: allantoin. | Organic nitrogen compounds: adiponectin *, 8-Oxo-2’-deoxyguanosine *. | CRP and TNFα (compared to those who followed a Mediterranean diet) | |||
| A balanced Korean diet | Urine | Benzenoids: vanillic acid 4-o-sulfate [vanillic acid 4-sulfate] and hippuric acid. Fatty acyls: isobutyryl carnitine [CAR 3:0;2Me], cis-5-tetradecenoylcarnitine [CAR 14:1] and myristoylcarnitine [CAR 14:0]. Lignans: enterodiol-glucuronide [enterodiol] and enterolactone 3’-glucuronide *. Sphingolipids: n,n-dimethyl-safingol. Sterol lipids: 11-β-hydroxyandrosterone-3-glucuronide [11beta-hydroxyandrosterone-3-glucuronide]. | Fatty acyls: oleamide and ethyl 7-epi-12-hydroxyjasmonate glucoside *. Lignans: argenteane *. Organic acids: l-isoleucyl-l-proline [ile-pro]. Organoheterocyclic compounds: creatinine. Sterol lipids: cortolone-3-glucuronide. | MCP-1 | Singh, 2024 [73] | |
| Recommended diet according to the 2010 Dietary Guidelines for Americans | Benzenoids: vanillic acid 4-O-sulfate [vanillic acid 4-sulfate], hippuric acid. Fatty acyls: isobutyryl carnitine [CAR 3:0;2Me], myristoylcarnitine [CAR 14:0], ethyl 7-epi-12-hydroxyjasmonate glucoside and 8-hydroxyfalcarinone *. Lignans: argenteane *. Organic acids: l-isoleucyl-l-proline [ile-pro]. Organoheterocyclic compounds: creatinine. Sterol lipids: 11-β-hydroxyandrosterone-3-glucuronide [11beta-hydroxyandrosterone-3-glucuronide] and 11-oxo-androsterone glucuronide. | Fatty acyls: cis-5-tetradecenoylcarnitine [CAR 14:1] and linoleamide. Lignans: enterodiol-glucuronide [enterodiol] and enterolactone 3’-glucuronide *. | MCP-1 and IL-6 | |||
| Typical American Diet | Benzenoids: hippuric acid. Fatty acyls: isobutyryl carnitine [CAR 3:0;2Me], ethyl 7-epi-12-hydroxyjasmonate glucoside, 8-Hydroxyfalcarinone *. Organic acids: l-isoleucyl-l-proline [ile-pro] and phenylacetylglutamine [alpha-n-phenylacetylglutamine]. Organoheterocyclic compounds: creatinine. Sterol lipids: 11-β-hydroxyandrosterone-3-glucuronide [11beta-hydroxyandrosterone-3-glucuronide], cortolone-3-glucuronide, 11-oxo-androsterone glucuronide. | Fatty acyls: cis-5-tetradecenoylcarnitine [CAR 14:1]. Lignans: enterodiol-glucuronide [enterodiol], enterolactone 3’-glucuronide * and argenteane*. | MCP-1 | |||
| Healthy Nordic Diet | Plasma | Alkaloids: trigonelline Organic acids: pipecolic acid betaine [(s)-homostachydrine] Organic nitrogen compounds: trimethylamine-n-oxide | No effect of pipecolic acid betaine and trigonelline on IL-1 | Tuomainen, 2019 [55] | ||
| Walnut-Enriched diet | Serum | Fatty acyls: 14,15-dihydroxy-eicosatrienoic acid [14,15-DiHETrE] | Fatty acyls: 5,6-dihydroxy-epoxyeicosatrienoic acid [5,6-DiHETrE], 9-HOTrE, 13-HOTrE, α-12(13)-EpODE, 14,15-DiHETrE and 5-HETE [5S-HETE] | Not assessed | Cofán, 2024 [70] | |
| Cruciferous vegetables servings added to diet | Urine | Organic acids: s-methyl cysteine sulfoxide | No effect on IL-6 and CRP | Connolly, 2024 [71] | ||
| Plasma | Organic acids: s-methyl cysteine sulfoxide Organosulfur compounds: sulforaphane | |||||
| Serum | Prenol lipids: lutein, lycopene, α-carotene β-carotene and total carotenoids | |||||
| Whole grain-rich diet | Urine | Benzenoids: pyrocatechol-glucuronide [pyrocalechol] *. Fatty acyls: 3-methyladipic acid. Organic acids: 2-aminophenol-sulfate, [2-aminophenyl sulfate] *. Organosulfur compounds: pyrocatechol-sulfate *. Phenylpropanoids and polyketides: DHPPA-glucuronide [3-(3,5-dihydroxyphenyl)propionic acid] *. | IL-6, IL-1β and TNFα | Roager, 2019 [58] | ||
| Replacing SFAs with PUFAs in diet | Plasma | Fatty acyls: acetate [acetic acid] Nucleic acids: thiamine Organic acids: serine, cystathionine, proline, citrate and asparagine Sterol lipids: bile acids | Fatty acyls: lipoprotein (XXL-VLDL, XL-VLDL, L-VLDL, M-VLDL, S-VLDL, XS-VLDL, IDL, L-LDL, M-LDL, S-LDL, XL-HDL), cholesterol (total-C, esterified-C, free-C, remnant-C, VLDL-C, LDL-C, HDL3-C), myristoylcarnitine, palmitoylcarnitine [CAR 16:0] and triglycerides (total-TG, VLDL-TG, LDL-TG, HDL-TG) Glycerophospholipids: phospholipids (total-PG, total-chol., PCs, SMs). Organic acids: cystine and kynurenine | Genes involved in inflammation | Ulven, 2019 [56] | |
| Fat-controlled diet: Low-fat diet (fat 20% energy) | Feces | Alkaloids: 3-indolepropionic acid Fatty acyls: butyric acid | Alkaloids: indole Benzenoids: p-cresol | CRP, Thromboxane B2 and prostaglandin E2 (in low and moderate-fat diet compared to high-fat diet) Leukotriene B4 (in low and high-fat diet compared to moderate- fat diet) | Wan, 2019 [57] | |
| Fat-controlled diet: Moderate-fat diet (fat 30% energy) | No effects. | |||||
| Fat-controlled diet: High-fat diet (fat 40% energy) | Alkaloids: indole and indoleacetic acid Fatty acyls: stearic acid, palmitic acid and arachidonic acid | Fatty acyls: butyric acid, valeric acid, ethylmethylacetic acid [2-methylbutyric acid] | ||||
| Supplementation | ||||||
| Mastiha supplementation | Plasma | Sterol lipids: triterpenic acid. Sulfur inorganic compounds: sulfate metabolites. | Not assessed | Amerikanou, 2021 [62] | ||
| Inulin-propionate ester supplementation | Plasma | Fatty acyls: propionate [propionic acid] | IgG (compared to inulin and cellulose) | IL-8 (compared to inulin and cellulose) | Chambers, 2019 [49] | |
| Inulin supplementation | No association | No effects | ||||
| Curcumin–phospholipid complex supplementation | Serum | Alkaloids: indoxyl sulfate Benzenoids: hippuric acid Organic acids: kynurenine, citric acid, 3-methyl-2-oxovaleric acid, 3-hydroxyisobutyrate acid, cuccinic acid and 2-ketoglutaric acid [2-oxoglutaric acid] Organic nitrogen compounds: trimethylamine and methylamine Sterol lipids: chenodeoxycholic acid, taurocholic acid and lithocholic acid | Not assessed | Chashmniam, 2019 [50] | ||
| Liquid essential amino acids, whey protein and vitamin D supplementation combined with physical activity and a standard diet program | Plasma | Fatty acyls: oleic acid, palmitic acid, stearic acid and SFAs Organic nitrogen compounds: glutathione reductase | Fatty acyls: linoleic acid and omega-6 PUFAs | ESR and CRP (due to palmitic, stearic and gamma-linolenic acids) | Corsetto, 2019 [51] | |
| Mohana Choorna (ayurvedic herbal preparation) supplementation | Urine | No association | Upregulated gene sets involved in inflammation signaling pathways and immune function | Esser, 2021 [63] | ||
| Anthocyanins supplementation | Plasma | Organic acids: citric acid Organic oxygen compounds: 5-hydroxy-6-methoxyindole glucuronide | Organic nitrogen compounds: N-acetyl-L-leucine | No effects on IL-6 or other markers of inflammation assessed | Estévez-Santiago, 2019 [52] | |
| Xanthophylls supplementation | Fatty acyls: dodecanedioic acid | Organic nitrogen compounds: N-acetyleucine | ||||
| Anthocyanins combined with xanthophylls supplementation | Benzenoids: 3,4-dimethoxybenzoic acid, 4-hydroxyhippuric acid and phenol sulfate [phenyl hydrogen sulfate] | Organic nitrogen compounds: n-acetyleucine | ||||
| Low dose vitamin D3 supplementation | Plasma | Glycerophospholipids: phosphatidylcholine 36:5 | Glycerophospholipids: phosphatidylcholine (32:1 e, 32:2 e, 34:1 e, 36:2 e, 36:3 e, 36:4 e, 36:4, 36:5 e, 38:3 e, 38:4 e, 38:5 e, 38:6 e, 40:5 e, 42:4 e, 42:5 e) and phosphatidylethanolamine (38:5 e, 38:6 e) Glycerolipids: diglycerol 40:4, sphingomyelin [d18:0/16:1(9Z)]; sphingomyelin species: 32:0, 34:1, 34:2, 36:0, 36:1, 36:2, 38:1, 38:2, 40:0, 40:1, 40:2, 41:1, 42:1, 42:2, 42:3, 43:1, 43:2 | Not assessed | Fernández-Arroyo, 2019 [53] | |
| High dose vitamin D3 supplementation | Glycerophospholipids: phosphatidylethanolamine 36:4 *. Glycerolipids: diglycerol 40:4 *. Organic acids: phosphatidylcholine: 30:0, 32:0, 34:1e, 34:1, 34:2 e, 34:3, 36:1, 36:2 e, 36:2, 36:5, 38:3 e, 38:4, 38:6 e, 40:4 e, 40:6 *; Sphingolipids: sphingomyelin [d18:0/16:1(9Z)] 32:1; 33:1; 34:2 y 43:1. | Glycerolipids: diglycerol 36:3 * and triglyceride 52:2 *. Organic acids: phosphatidylcholine (38:2 and 38:4e) *. | ||||
| Strawberry adding supplementation | Plasma | Benzenoids: 4-Methoxybenzoic acid-3-sulfate. Organic acids: 3-Methoxyphenylacetic acid and 4-Hydroxyphenylacetic acid. Organosulfur compounds: hydroxybenzoic acid-sulfate *. Phenylpropanoids and polyketides: urolithin A. | No effects on apo B, apo A, and CRP | Huang, 2021 [64] | ||
| Korean red ginseng supplementation | Serum | Sterol lipids: cholesterol | Not assessed | Kwong, 2020 [59] | ||
| 1 g/day EPA supplementation | Plasma | Fatty acyls: PUFA 20:5 (n-3), 22:5 (n-3) and 22:6 (n-3) | Fatty acyls: PUFA 22:5 (n-6) and 18:4 (n-3) | Lamon-Fava, 2020 [65] | ||
| 2 g/day EPA supplementation | Fatty acyls: PUFA 20:5 (n-3), 22:5 (n-3) and 22:6 (n-3) | Fatty acyls: PUFA 20:2 (n-6) | ||||
| 4 g/day EPA supplementation | Fatty acyls: PUFA 20:5 (n-3), 22:5 (n-3) and 22:6 (n-3) | Fatty acyls: PUFA 20:2 (n-6) | AA-derived LXB4 | |||
| Blue mussel (Mytilus edulis) supplementation | Serum | Carbohydrates: glucose. Organic acids: proline + unidentified metabolite in peak | Not assessed. | Lindqvist, 2019 [54] | ||
| Shark liver oil supplementation | Plasma | Glycerophospholipids: Lysoalkylphosphatidylcholine *, alkyl phosphatidylethanolamine * and lysophosphatidylethanolamine *. Organic acids: akyl phosphatidylcholine * and monoalkyldiacylglycerol *. | Glycerophospholipids: phosphatidylethanolamine *, phosphatidylinositol * and lysophosphatidylinositol *. Glycerolipids: diacylglycerol and triacylglycerol. Organic acids: phosphatidylcholine *. Sphingolipids: sphingomyelin [d18:0/16:1(9Z)]), ceramide *. Sterol lipids: cholesterol, cholesteryl ester *. | CRP | Paul, 2021 [67] | |
| Nicotinamide riboside supplementation | Plasma | Organic nitrogen compounds: acetylcarnitine | Not associated with TNFα, IL-1α, IL-4, IL-12p70, IL-17α, CXCL10, CCL2, CCL3 or CCL4. | Remie, 2020 [61] | ||
| Cholecalciferol supplementation | Serum | Fatty acyls: lipids-CH2 and lipids-CH=CHl Organic acids: glutamine, histidine Organoheterocyclic compounds: creatinine | Carbohydrates: glucose. Fatty acyls: acetate [acetic acid] Organic acids: creatine and isoleucine | Not assessed | Santos, 2024 [77] | |
| Interventions with probiotics | ||||||
| Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI probiotics supplementation | Serum | Alkaloids: indole-3-propionic acid [3-Indolepropionic acid] and indole-3-lactic acid Organic acids: kynurenine Sterol lipids: chenodeoxycholic acid, deoxycholic acid, taurodeoxycholic acid and ursodeoxycholic acid | Alkaloids: indole-3-acetic acid [indoleacetic acid] | Indole-3-propionic acid was associated with lower levels of IL-1β and TNFα compared with lipopolysaccharide treatment | Kim, 2023 [74] | |
| Bifidobacterium lactis Probio-M8 powder and Symbicort Turbuhaler supplementation | Serum | Benzenoids: syringic acid. Fatty acyls: 5-dodecenoic acid. Glycerolipids: 1-Palmitoylrac-glycerol *. Lignans: enterodiol. Organic acids: succinic acid and l-tryptophan [tryptophan]. Sphingolipids: sphingomyelin [d18:0/16:1(9Z)]. Phenylpropanoids and polyketides:1178-24-1 (3-Methoxynobiletin) *. | Fatty acyls: tetracosanoic acid [lignoceric acid]. Organic nitrogen compounds: 3-methylglutarylcarnitine. Phenylpropanoids and polyketides: schisanhenol *. | Not assessed | Liu, 2021 [66] | |
| Probiotic Lactobacillus casei Shirota supplementation | Urine | No association | MCP-1 | Macnaughtan, 2020 [60] | ||
| No significant differences in plasma IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-1 p70, IL-17A, IFN, MIP-1β, CRP and TNFα concentrations | ||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carlino, B.; Guerrero-Flores, G.N.; Niclis, C.; Segovia-Siapco, G.; Mayta, M.L. Harnessing Metabolomics to Advance Nutrition-Based Therapeutics for Inflammation: A Systematic Review of Randomized Clinical Trials. Metabolites 2025, 15, 705. https://doi.org/10.3390/metabo15110705
Carlino B, Guerrero-Flores GN, Niclis C, Segovia-Siapco G, Mayta ML. Harnessing Metabolomics to Advance Nutrition-Based Therapeutics for Inflammation: A Systematic Review of Randomized Clinical Trials. Metabolites. 2025; 15(11):705. https://doi.org/10.3390/metabo15110705
Chicago/Turabian StyleCarlino, Belén, Gerardo N. Guerrero-Flores, Camila Niclis, Gina Segovia-Siapco, and Martín L. Mayta. 2025. "Harnessing Metabolomics to Advance Nutrition-Based Therapeutics for Inflammation: A Systematic Review of Randomized Clinical Trials" Metabolites 15, no. 11: 705. https://doi.org/10.3390/metabo15110705
APA StyleCarlino, B., Guerrero-Flores, G. N., Niclis, C., Segovia-Siapco, G., & Mayta, M. L. (2025). Harnessing Metabolomics to Advance Nutrition-Based Therapeutics for Inflammation: A Systematic Review of Randomized Clinical Trials. Metabolites, 15(11), 705. https://doi.org/10.3390/metabo15110705

