Cognition, Cytokines, Blood–Brain Barrier, and Beyond in COVID-19: A Narrative Review
Abstract
1. Introduction
2. Sequelae in Cognition in COVID-19 Phases Related to Cytokines and Blood–Brain Barrier Disruption
2.1. Neuropsychological Consequences of COVID-19
2.1.1. Cognition in Acute Phase (From Week 1 to Week 4)
| References | Time Window * | Illness Severity | Sample Size | Cognitive Assessment Tools | IMPAIRED COGNITIVE DOMAINS | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Attention | Learning Memory | Working Memory | Executive Function | Processing Speed | Language | Visuoperception | Objective Performance | Subjective Performance | |||||
| Alemanno et al., 2021 [37] | 5–20 days | mild to severe | 87 | MOCA, MMSE | |||||||||
| Ermis et al., 2021 [38] | initial weeks | NA | 13 | MOCA | |||||||||
| Helms et al., 2020 [39] | <30 days | NA | 39 | Clinical criteria + Confusion Assessment Method for ICU | |||||||||
| Hosp et al., 2021 [40] | 16–21 days (MOCA) 16–43 days (cognitive battery) | NA | 26 (MOCA) 13 (cognitive battery) | MOCA/Cognitive test battery [HVLT-R, TMT, Stroop, WAIS-IV (DS, SDMT), Semantic and Phonemic Fluency] | |||||||||
| Kanberg et al., 2021 [41] | <21 days after symptoms onset | mild to severe | 100 | Self-reported | |||||||||
2.1.2. Cognition in Post-Acute COVID-19 Phase I (From Week 5 to Week 12)
| References | Time Window * | Illness Severity | Sample Size | Cognitive Assessment Tools | IMPAIRED COGNITIVE DOMAINS | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Attention | Learning Memory | Working Memory | Executive Function | Processing Speed | Language | Visuoperception | Objective Performance | Subjective Performance | |||||
| Almeria et al., 2020 [42] | 10–35 days after hospital discharge (mean hospital stay: 10.8 days) | NA | 35 | TAVEC, WMS-IV, Digits Forward and Backward, Letter and Numbers, TMT, SDMT, Stroop, Phonemic and Semantic Fluency and NN. | |||||||||
| Groiss et al., 2020 [43] | 4–10 weeks | severe | 4 | MOCA, MMSE, SDMT | |||||||||
| Jaywant et al., 2021 [44] | 24–62 days | NA | 57 | BMET, TMT | |||||||||
| Méndez et al., 2021 [45] | 4–12 weeks | mild to severe | 179 | SCIP, COWAT, WAIS-III (subtest Digit Span backward) | |||||||||
| Negrini et al., 2021 [46] | 29–61 days (after admission) | severe | 9 | MMSE, FAB | |||||||||
| Ortelli et al., 2021 [47] | 9–13 weeks | recovered from the acute phase | 12 | MOCA, FAB, VT, SIT, NT | |||||||||
2.1.3. Cognition in Post-Acute COVID-19 Phase II (From Week 13 to Week 24)
| References | Time Window * | Illness Severity | Sample Size | Cognitive Assessment Tools | IMPAIRED COGNITIVE DOMAINS | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Attention | Learning Memory | Working Memory | Executive Function | Processing Speed | Language | Visuoperception | Objective Performance | Subjective Performance | |||||
| Chaumont et al., 2022 [48] | 24 weeks | mild to critical | 60 | MOCA-Blind, CDS | |||||||||
| Davis et al., 2021 [49] | 8–28 weeks | no symptoms to very severe | 3762 | Online Survey (cognitive complaints) | |||||||||
| Ferrando et al., 2022 [50] | 24–32 weeks | absent to severe | 60 | TOPF, PAOF, RBANS, Stroop, TMT, Verbal Fluency | |||||||||
| Krishnan et al., 2022 [51] | 24 weeks (mean) 11–46 weeks (range) | mild (majority) | 20 | WMS-IV, RAVLT, BVMT-R, WRAT-IV, BNT, Lexical and Semantic Verbal Fluencies, JLO, WAIS-IV (DS, MR, S, C and SS subscales), DKEFS, TMT, WSCT, CPT-3, SDMT | |||||||||
| Pilotto et al., 2021 [52] | 24 weeks | mild to severe | 165 | MOCA, Questionnaire for Cognitive Manifestations | |||||||||
2.1.4. Cognition in Post-Acute COVID-19 Phase III (More than 24 Weeks)
| References | Time Window * | Illness Severity | Sample Size | Cognitive Assessment Tools | IMPAIRED COGNITIVE DOMAINS | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Attention | Learning Memory | Working Memory | Executive Function | Processing Speed | Language | Visuo- perception | Objective Performance | Subjective Performance | |||||
| García-Sánchez et al., 2022 [53] | 26.7 weeks (+14.1 weeks) | across the spectrum of disease severity | 63 | MOCA, CPT-II, RAVLT, ROCFT, WAIS-IV, BNT, TMT, Stroop, verbal fluency tasks, and 15-OT | |||||||||
| Méndez et al., 2022 [54] | 52 weeks after hospital discharge | moderate to severe | 171 | NA | |||||||||
| Miskowiak et al., 2022 [55] | 52 weeks after hospital discharge | severe | 25 | SCIP-D, TMT, CFQ | |||||||||
| Ruzicka et al., 2024 [56] | 16–52 weeks | uncomplicated/complicated/critical phases ** | 78 | WST—Wortschatztest; RBANS; TMT; LNS; d2-R; patient-reported cognitive symptoms | |||||||||
| Staudt et al., 2022 [57] | 40 weeks after hospitalization | severe | 101 | Cognitive impairment as a symptom asked in the phone interview | |||||||||
| Taquet et al., 2024 [58] | 84–152 weeks after hospitalization | mild to very severe | 475 | Cognition battery; CCI-20 | |||||||||
| Wood et al., 2024 [59] | 55 weeks | mild to severe | 351 | Cognition battery; a binary question for assessing subjective cognitive impairment | |||||||||
2.2. Temporal Profile of Altered Cytokines in the Blood of COVID-19 Patients
2.2.1. Cytokines in Acute Phase (From Week 1 to Week 4)
2.2.2. Cytokines in Post-Acute COVID-19 Phase I (From Week 5 to Week 12)
2.2.3. Cytokines in Post-Acute COVID-19 Phase II (From Week 13 to Week 24)
2.2.4. Cytokines in Post-Acute COVID-19 Phase III (More than 24 Weeks)
| Antiviral | Inflammatory | Chemoattractant | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Time Phase | References | Time Window (Weeks) | CXCL1 | CXCL10 (IP-10) | IFN-γ | IL-1β | IL-4 | IL-6 | IL-2 | IL-8 | IL-7 | IL-10 | TNFα | GM-CSF | G-SCF | MCP1 (CCL2) | MIP-1α (CCL3) |
| Acute (up to 4 weeks) | Bonetto et al. 2022 [64] | 0–2 | ICU vs. Neuro | ||||||||||||||
| Chen et al., 2020 [63] | N/A | ||||||||||||||||
| Greene et al. 2024 [65] | N/A | Moderate Severe | Moderate Severe | Moderate Severe | Moderate Severe | Moderate Severe | Severe | Severe | |||||||||
| Huang et al., 2020 [13] | N/A | ICU | ICU | ICU | ICU | ICU | ICU | ICU | |||||||||
| Nuber-Champier et al., 2024 [71] 1 | 0 | Verbal Memory | Verbal Memory | ||||||||||||||
| Thwaites et al., 2021 [61] | N/A | ||||||||||||||||
| Post-Acute II (13 to 24 Weeks) | Bonetto et al. 2022 [64] | 2–12 | Severe Death | ||||||||||||||
| Colarusso et al. 2021 [72] | 4–12 | Down | |||||||||||||||
| Kwon et al., 2025 [73] | 4–24 | ||||||||||||||||
| Ortelli et al., 2021 [47] | 9–12 | ||||||||||||||||
| Peluso et al. 2022 [67] | <13 | Neuro | Neuro | Neuro | |||||||||||||
| Wechsler et al. 2022 [74] 2 | 3–32 | ||||||||||||||||
| Zhao et al. 2022 [75] 3 | >12 Up to 41 | Long | |||||||||||||||
| Post-Acute II (13 to 24 weeks) | Ong et al. 2021 [69] | 24 | Persistent | ||||||||||||||
| Peluso et al. 2022 [67] | >12 | Neuro | Neuro | Neuro | |||||||||||||
| Patterson et al. 2021 [68] | >12 | Down | |||||||||||||||
| Post-Acute III (>24 Weeks) | Ferrando et al. 2022 [50] | 24–32 | Cognition | ||||||||||||||
| Greene et al. 2024 [65] 4 | 24 and 72 | Long | Down 72 weeks | 72 weeks Brain Fog | Brain Fog | ||||||||||||
| Mouton et al., 2025 [66] | 24 | Severe | Severe | ||||||||||||||
| Schultheiß et al. 2022 [70] | 2–40 | ||||||||||||||||
2.3. Temporal Profile of Altered Proteins of the Neurovascular Unit in Blood of COVID-19 Patients
2.3.1. BBB Proteins in Acute Phase (From Week 1 to Week 4)
2.3.2. BBB Proteins in Post-Acute COVID-19 Phase I (From Week 5 to Week 12)
2.3.3. BBB Proteins in Post-Acute COVID-19 Phase II (From Week 13 to Week 24)
2.3.4. BBB Proteins in Post-Acute COVID-19 Phase III (More than 24 Weeks)
| Neurovascular Unit Proteins | |||||||
|---|---|---|---|---|---|---|---|
| Extracellular Matrix | Glia | Neurons | |||||
| Time Phase | References | Time Window (Weeks) | PPIA | MMP-9 | S100β | GFAP | NfL |
| Acute (up to 4 weeks) | Bonetto et al. 2022 [64] | 0–2 | Neuro ICU | ICU Neuro | Neuro ICU | Neuro ICU | Neuro ICU |
| Hanson et al. 2022 [77] 1 | 3 | Encephalopathy vs. Neuro | CE vs. Neuro | ||||
| Kanberg et al. 2021 [41] | Moderate | Moderate | |||||
| Ramezani et al., 2023 [76] | N/A | Neuro vs. healthy | |||||
| Post-acute I (5 to 12 weeks) | Bonetto et al. 2022 [64] | 2–12 | Severe vs. Moderate | Severe vs. Moderate | |||
| Cavalcante et al. 2024 [78] | N/A | Severe Critical vs. Control | |||||
| Magdy et al. 2022 [80] 3 | 5–17 | Pain vs. Recovered | |||||
| Peluso et al. 2022 [67] | <12 | Neuro | |||||
| Telser et al. 2023 [79] 23 | >8 | Long | |||||
| Post-acute II (13 to 24 weeks) | Telser et al. 2023 [79] 2 | 20 | Non-change | Non-change | |||
| Wallensten et al., 2024 [81] | 16 | Extracellular Vesicles | |||||
| Post-acute III (>24 weeks) | Greene et al. 2024 [65] | 24 & 72 | Brain Fog | Brain Fog | |||
| Kanberg et al. 2021 [41] | 24 | Normalized levels | Normalized levels | ||||
| Telser et al. 2023 [79] 2 | 40 | Non-change | Non-change | ||||
| Wallensten et al., 2024 [81] 4 | 48 | Normalized levels | Normalized levels | ||||
3. Conclusions
3.1. Clinical Implications
3.2. Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| COVID-19 | Coronavirus disease 19 |
| GM-CSF | Granulocyte-macrophage colony-stimulating factor |
| IL | Interleukin |
| INF | Interferon |
| IP-10 | Interferon gamma-induced protein 10 |
| MCP1 | Monocyte chemoattractant protein-1 |
| MIP1α | Macrophage inflammatory protein 1α |
| MMP | Matrix metalloprotease protein |
| PPIA | Peptidyl prolyl cistrans isomerase A |
| SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
| TGFβ | Tumor growth factor β |
| TNFα | Tumor necrosis factor α |
References
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and Clinical Characteristics of 99 Cases of 2019 Novel Coronavirus Pneumonia in Wuhan, China: A Descriptive Study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef]
- Rabinovitz, B.; Jaywant, A.; Fridman, C.B. Neuropsychological Functioning in Severe Acute Respiratory Disorders Caused by the Coronavirus: Implications for the Current COVID-19 Pandemic. Clin. Neuropsychol. 2020, 34, 1453–1479. [Google Scholar] [CrossRef]
- World Health Organization. Coronavirus Disease (COVID-19). 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/coronavirus-disease-(covid-19) (accessed on 28 July 2025).
- Nouraeinejad, A. Brain Fog as a Long-Term Sequela of COVID-19. SN Compr. Clin. Med. 2023, 5, 9. [Google Scholar] [CrossRef]
- Jason, L.A.; Islam, M.; Conroy, K.; Cotler, J.; Torres, C.; Johnson, M.; Mabie, B. COVID-19 Symptoms Over Time: Comparing Long-Haulers to ME/CFS. Fatigue 2021, 9, 59–68. [Google Scholar] [CrossRef]
- Perrottelli, A.; Sansone, N.; Giordano, G.M.; Caporusso, E.; Giuliani, L.; Melillo, A.; Pezzella, P.; Bucci, P.; Mucci, A.; Galderisi, S. Personalized Medicine Systematic Review Cognitive Impairment after Post-Acute COVID-19 Infection: A Systematic Review of the Literature. J. Pers. Med. 2022, 12, 2070. [Google Scholar] [CrossRef]
- Tay, M.Z.; Poh, C.M.; Rénia, L.; MacAry, P.A.; Ng, L.F.P. The Trinity of COVID-19: Immunity, Inflammation and Intervention. Nat. Rev. Immunol. 2020, 20, 363–374. [Google Scholar] [CrossRef]
- Gao, Y.M.; Xu, G.; Wang, B.; Liu, B.C. Cytokine Storm Syndrome in Coronavirus Disease 2019: A Narrative Review. J. Intern. Med. 2021, 289, 147–161. [Google Scholar] [CrossRef]
- Choi, H.; Shin, E.C. Hyper-Inflammatory Responses in COVID-19 and Anti-Inflammatory Therapeutic Approaches. BMB Rep. 2022, 55, 11–19. [Google Scholar] [CrossRef]
- Ritchie, K.; Chan, D.; Watermeyer, T. The Cognitive Consequences of the COVID-19 Epidemic: Collateral Damage? Brain Commun. 2020, 2, fcaa069. [Google Scholar] [CrossRef]
- Steardo, L.; Steardo, L.J.; Zorec, R.; Verkhratsky, A. Neuroinfection May Contribute to Pathophysiology and Clinical Manifestations of COVID-19. Acta Physiol. 2020, 229, e13473. [Google Scholar] [CrossRef]
- Fink, S.L.; Cookson, B.T. Apoptosis, Pyroptosis, and Necrosis: Mechanistic Description of Dead and Dying Eukaryotic Cells. Infect. Immun. 2005, 73, 1907–1916. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet 2020, 395, 497–506, Erratum in Lancet 2020, 395, 496. [Google Scholar] [CrossRef]
- Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; et al. Pathological Findings of COVID-19 Associated with Acute Respiratory Distress Syndrome. Lancet Respir. Med. 2020, 8, 420–422, Correction in Lancet Respir. Med. 2020, 8, e26. [Google Scholar] [CrossRef]
- Gubernatorova, E.O.; Gorshkova, E.A.; Polinova, A.I.; Drutskaya, M.S. IL-6: Relevance for Immunopathology of SARS-CoV-2. Cytokine Growth Factor. Rev. 2020, 53, 13–24. [Google Scholar] [CrossRef]
- Liao, M.; Liu, Y.; Yuan, J.; Wen, Y.; Xu, G.; Zhao, J.; Cheng, L.; Li, J.; Wang, X.; Wang, F.; et al. Single-Cell Landscape of Bronchoalveolar Immune Cells in Patients with COVID-19. Nat. Med. 2020, 26, 842–844. [Google Scholar] [CrossRef]
- Zhou, Y.; Fu, B.; Zheng, X.; Wang, D.; Zhao, C.; Qi, Y.; Sun, R.; Tian, Z.; Xu, X.; Wei, H. Pathogenic T-Cells and Inflammatory Monocytes Incite Inflammatory Storms in Severe COVID-19 Patients. Natl. Sci. Rev. 2020, 7, 998–1002. [Google Scholar] [CrossRef]
- Diamanti, A.P.; Rosado, M.M.; Pioli, C.; Sesti, G.; Laganà, B. Cytokine Release Syndrome in COVID-19 Patients, a New Scenario for an Old Concern: The Fragile Balance between Infections and Autoimmunity. Int. J. Mol. Sci. 2020, 21, 3330. [Google Scholar] [CrossRef]
- Fenrich, M.; Mrdenovic, S.; Balog, M.; Tomic, S.; Zjalic, M.; Roncevic, A.; Mandic, D.; Debeljak, Z.; Heffer, M. SARS-CoV-2 Dissemination Through Peripheral Nerves Explains Multiple Organ Injury. Front. Cell Neurosci. 2020, 14, 229. [Google Scholar] [CrossRef]
- Yachou, Y.; El Idrissi, A.; Belapasov, V.; Ait Benali, S. Neuroinvasion, Neurotropic, and Neuroinflammatory Events of SARS-CoV-2: Understanding the Neurological Manifestations in COVID-19 Patients. Neurol. Sci. 2020, 41, 2657–2669. [Google Scholar] [CrossRef]
- Zubair, A.S.; McAlpine, L.S.; Gardin, T.; Farhadian, S.; Kuruvilla, D.E.; Spudich, S. Neuropathogenesis and Neurologic Manifestations of the Coronaviruses in the Age of Coronavirus Disease 2019: A Review. JAMA Neurol. 2020, 77, 1018–1027. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Wu, L.; Niu, S.; Song, C.; Zhang, Z.; Lu, G.; Qiao, C.; Hu, Y.; Yuen, K.-Y.; et al. Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell 2020, 181, 894–904.e9. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, W.; Chen, F.; Cui, L. COVID-19 and Cognitive Impairment: Neuroinvasive and Blood‒brain Barrier Dysfunction. J. Neuroinflamm. 2022, 19, 222. [Google Scholar] [CrossRef] [PubMed]
- Matschke, J.; Lütgehetmann, M.; Hagel, C.; Sperhake, J.P.; Schröder, A.S.; Edler, C.; Mushumba, H.; Fitzek, A.; Allweiss, L.; Dandri, M.; et al. Neuropathology of Patients with COVID-19 in Germany: A Post-Mortem Case Series. Lancet Neurol. 2020, 19, 919–929. [Google Scholar] [CrossRef]
- Erickson, M.A.; Banks, W.A. Neuroimmune Axes of the Blood-Brain Barriers and Blood-Brain Interfaces: Bases for Physiological Regulation, Disease States, and Pharmacological Interventions. Pharmacol. Rev. 2018, 70, 278–314. [Google Scholar] [CrossRef] [PubMed]
- Marchi, N.; Rasmussen, P.; Kapural, M.; Fazio, V.; Kight, K.; Mayberg, M.R.; Kanner, A.; Ayumar, B.; Albensi, B.; Cavaglia, M.; et al. Peripheral Markers of Brain Damage and Blood-Brain Barrier Dysfunction. Restor. Neurol. Neurosci. 2003, 21, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Liu, K.J.; Qi, Z. Occludin Regulation of Blood-Brain Barrier and Potential Therapeutic Target in Ischemic Stroke. Brain Circ. 2020, 6, 152–162. [Google Scholar] [CrossRef]
- DeKosky, S.T.; Kochanek, P.M.; Valadka, A.B.; Clark, R.S.B.; Chou, S.H.-Y.; Au, A.K.; Horvat, C.; Jha, R.M.; Mannix, R.; Wisniewski, S.R.; et al. Blood Biomarkers for Detection of Brain Injury in COVID-19 Patients. J. Neurotrauma 2021, 38, 1–43. [Google Scholar] [CrossRef]
- Marten, N.W.; Zhou, J. The Role of Metalloproteinases in Corona Virus Infection. In Experimental Models of Multiple Sclerosis; Springer: Boston, MA, 2005; pp. 839–848. [Google Scholar]
- Kempuraj, D.; Aenlle, K.K.; Cohen, J.; Mathew, A.; Isler, D.; Pangeni, R.P.; Nathanson, L.; Theoharides, T.C.; Klimas, N.G. COVID-19 and Long COVID: Disruption of the Neurovascular Unit, Blood-Brain Barrier, and Tight Junctions. Neuroscientist 2024, 30, 421–439. [Google Scholar] [CrossRef]
- Coelho, S.V.A.; e Souza, G.L.; Bezerra, B.B.; Lima, L.R.; Correa, I.A.; de Almeida, D.V.; da Silva-Aguiar, R.P.; Pinheiro, A.A.S.; Sirois, P.; Caruso-Neves, C.; et al. SARS-CoV-2 Replication in a Blood–Brain Barrier Model Established with Human Brain Microvascular Endothelial Cells Induces Permeability and Disables ACE2-Dependent Regulation of Bradykinin B1 Receptor. Int. J. Mol. Sci. 2025, 26, 5540. [Google Scholar] [CrossRef]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-Acute COVID-19 Syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef]
- Monje, M.; Iwasaki, A. The Neurobiology of Long COVID. Neuron 2022, 110, 3484–3496. [Google Scholar] [CrossRef]
- Kubota, T.; Kuroda, N.; Sone, D. Neuropsychiatric Aspects of Long COVID: A Comprehensive Review. Psychiatry Clin. Neurosci. 2023, 77, 84–93. [Google Scholar] [CrossRef]
- Fernández-de-Las-Peñas, C.; Palacios-Ceña, D.; Gómez-Mayordomo, V.; Cuadrado, M.L.; Florencio, L.L. Defining Post-COVID Symptoms (Post-Acute COVID, Long COVID, Persistent Post-COVID): An Integrative Classification. Int. J. Environ. Res. Public. Health 2021, 18, 2621. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence (NICE); Scottish Intercollegiate Guidelines Network (SIGN); Royal College of General Practitioners (RCGP). COVID-19 Rapid Guideline: Managing the Long-Term Effects of COVID-19; National Institute for Health and Care Excellence: London, UK, 2020. [Google Scholar]
- Alemanno, F.; Houdayer, E.; Parma, A.; Spina, A.; Del Forno, A.; Scatolini, A.; Angelone, S.; Brugliera, L.; Tettamanti, A.; Beretta, L.; et al. COVID-19 Cognitive Deficits after Respiratory Assistance in the Subacute Phase: A COVID-Rehabilitation Unit Experience. PLoS ONE 2021, 16, e0246590. [Google Scholar] [CrossRef] [PubMed]
- Ermis, U.; Rust, M.I.; Bungenberg, J.; Costa, A.; Dreher, M.; Balfanz, P.; Marx, G.; Wiesmann, M.; Reetz, K.; Tauber, S.C.; et al. Neurological Symptoms in COVID-19: A Cross-Sectional Monocentric Study of Hospitalized Patients. Neurol. Res. Pract. 2021, 3, 17. [Google Scholar] [CrossRef] [PubMed]
- Helms, J.; Kremer, S.; Merdji, H.; Clere-Jehl, R.; Schenck, M.; Kummerlen, C.; Collange, O.; Boulay, C.; Fafi-Kremer, S.; Ohana, M.; et al. Neurologic Features in Severe SARS-CoV-2 Infection. N. Engl. J. Med. 2020, 382, 2268–2270. [Google Scholar] [CrossRef]
- Hosp, J.A.; Dressing, A.; Blazhenets, G.; Bormann, T.; Rau, A.; Schwabenland, M.; Thurow, J.; Wagner, D.; Waller, C.; Niesen, W.D.; et al. Cognitive Impairment and Altered Cerebral Glucose Metabolism in the Subacute Stage of COVID-19. Brain 2021, 144, 1263–1276. [Google Scholar] [CrossRef] [PubMed]
- Kanberg, N.; Simrén, J.; Edén, A.; Andersson, L.-M.; Nilsson, S.; Ashton, N.J.; Sundvall, P.-D.; Nellgård, B.; Blennow, K.; Zetterberg, H.; et al. Neurochemical Signs of Astrocytic and Neuronal Injury in Acute COVID-19 Normalizes during Long-Term Follow-Up. EBioMedicine 2021, 70, 103512. [Google Scholar] [CrossRef]
- Almeria, M.; Cejudo, J.C.; Sotoca, J.; Deus, J.; Krupinski, J. Cognitive Profile Following COVID-19 Infection: Clinical Predictors Leading to Neuropsychological Impairment. Brain Behav. Immun. Health 2020, 9, 100163. [Google Scholar] [CrossRef]
- Groiss, S.J.; Balloff, C.; Elben, S.; Brandenburger, T.; Müttel, T.; Kindgen-Milles, D.; Vollmer, C.; Feldt, T.; Kunstein, A.; Ole Jensen, B.-E.; et al. Prolonged Neuropsychological Deficits, Central Nervous System Involvement, and Brain Stem Affection After COVID-19—A Case Series. Front. Neurol. 2020, 11, 574004. [Google Scholar] [CrossRef]
- Jaywant, A.; Vanderlind, W.M.; Alexopoulos, G.S.; Fridman, C.B.; Perlis, R.H.; Gunning, F.M. Frequency and Profile of Objective Cognitive Deficits in Hospitalized Patients Recovering from COVID-19. Neuropsychopharmacology 2021, 46, 2235–2240. [Google Scholar] [CrossRef]
- Méndez, R.; Balanzá-Martínez, V.; Luperdi, S.C.; Estrada, I.; Latorre, A.; González-Jiménez, P.; Feced, L.; Bouzas, L.; Yépez, K.; Ferrando, A.; et al. Short-term Neuropsychiatric Outcomes and Quality of Life in COVID-19 Survivors. J. Intern. Med. 2021, 290, 621–631. [Google Scholar] [CrossRef]
- Negrini, F.; Ferrario, I.; Mazziotti, D.; Berchicci, M.; Bonazzi, M.; de Sire, A.; Negrini, S.; Zapparoli, L. Neuropsychological Features of Severe Hospitalized Coronavirus Disease 2019 Patients at Clinical Stability and Clues for Postacute Rehabilitation. Arch. Phys. Med. Rehabil. 2021, 102, 155–158. [Google Scholar] [CrossRef]
- Ortelli, P.; Ferrazzoli, D.; Sebastianelli, L.; Engl, M.; Romanello, R.; Nardone, R.; Bonini, I.; Koch, G.; Saltuari, L.; Quartarone, A.; et al. Neuropsychological and Neurophysiological Correlates of Fatigue in Post-Acute Patients with Neurological Manifestations of COVID-19: Insights into a Challenging Symptom. J. Neurol. Sci. 2021, 420, 117271. [Google Scholar] [CrossRef] [PubMed]
- Chaumont, H.; Meppiel, E.; Roze, E.; Tressières, B.; de Broucker, T.; Lannuzel, A. Long-Term Outcomes after NeuroCOVID: A 6-Month Follow-up Study on 60 Patients. Rev. Neurol. 2022, 178, 137–143. [Google Scholar] [CrossRef]
- Davis, H.E.; Assaf, G.S.; McCorkell, L.; Wei, H.; Low, R.J.; Re’em, Y.; Redfield, S.; Austin, J.P.; Akrami, A. Characterizing Long COVID in an International Cohort: 7 Months of Symptoms and Their Impact. EClinicalMedicine 2021, 38, 101019. [Google Scholar] [CrossRef] [PubMed]
- Ferrando, S.J.; Dornbush, R.; Lynch, S.; Shahar, S.; Klepacz, L.; Karmen, C.L.; Chen, D.; Lobo, S.A.; Lerman, D. Neuropsychological, Medical, and Psychiatric Findings After Recovery From Acute COVID-19: A Cross-Sectional Study. J. Acad. Consult. Liaison Psychiatry 2022, 63, 474–484. [Google Scholar] [CrossRef]
- Krishnan, K.; Miller, A.K.; Reiter, K.; Bonner-Jackson, A. Neurocognitive Profiles in Patients With Persisting Cognitive Symptoms Associated With COVID-19. Arch. Clin. Neuropsychol. 2022, 37, 729–737. [Google Scholar] [CrossRef]
- Pilotto, A.; Cristillo, V.; Cotti Piccinelli, S.; Zoppi, N.; Bonzi, G.; Sattin, D.; Schiavolin, S.; Raggi, A.; Canale, A.; Gipponi, S.; et al. Long-Term Neurological Manifestations of COVID-19: Prevalence and Predictive Factors. Neurol. Sci. 2021, 42, 4903–4907. [Google Scholar] [CrossRef] [PubMed]
- García-Sánchez, C.; Calabria, M.; Grunden, N.; Pons, C.; Arroyo, J.A.; Gómez-Anson, B.; Lleó, A.; Alcolea, D.; Belvís, R.; Morollón, N.; et al. Neuropsychological Deficits in Patients with Cognitive Complaints after COVID-19. Brain Behav. 2022, 12, e2508. [Google Scholar] [CrossRef]
- Méndez, R.; Balanzá-Martínez, V.; Luperdi, S.C.; Estrada, I.; Latorre, A.; González-Jiménez, P.; Bouzas, L.; Yépez, K.; Ferrando, A.; Reyes, S.; et al. Long-Term Neuropsychiatric Outcomes in COVID-19 Survivors: A 1-Year Longitudinal Study. J. Intern. Med. 2022, 291, 247–251. [Google Scholar] [CrossRef]
- Miskowiak, K.W.; Fugledalen, L.; Jespersen, A.E.; Sattler, S.M.; Podlekareva, D.; Rungby, J.; Porsberg, C.M.; Johnsen, S. Trajectory of Cognitive Impairments over 1 Year after COVID-19 Hospitalisation: Pattern, Severity, and Functional Implications. Eur. Neuropsychopharmacol. 2022, 59, 82–92. [Google Scholar] [CrossRef]
- Ruzicka, M.; Sachenbacher, S.; Heimkes, F.; Uebleis, A.O.; Karch, S.; Grosse-Wentrup, F.; Fonseca, G.J.I.; Wunderlich, N.; Bogner, J.; Mayerle, J.; et al. Characterization of Cognitive Symptoms in Post COVID-19. Patients 2024, 274, 1923–1934. [Google Scholar] [CrossRef]
- Staudt, A.; Jörres, R.A.; Hinterberger, T.; Lehnen, N.; Loew, T.; Budweiser, S. Associations of Post-Acute COVID Syndrome with Physiological and Clinical Measures 10 Months after Hospitalization in Patients of the First Wave. Eur. J. Intern. Med. 2022, 95, 50–60. [Google Scholar] [CrossRef]
- Taquet, M.; Skorniewska, Z.; De Deyn, T.; Hampshire, A.; Trender, W.R.; Hellyer, P.J.; Chalmers, J.D.; Ho, L.P.; Horsley, A.; Marks, M.; et al. Cognitive and Psychiatric Symptom Trajectories 2–3 Years after Hospital Admission for COVID-19: A Longitudinal, Prospective Cohort Study in the UK. Lancet Psychiatry 2024, 11, 696–708. [Google Scholar] [CrossRef] [PubMed]
- Wood, G.K.; Sargent, B.F.; Ahmad, Z.U.A.; Tharmaratnam, K.; Dunai, C.; Egbe, F.N.; Martin, N.H.; Facer, B.; Pendered, S.L.; Rogers, H.C.; et al. Posthospitalization COVID-19 Cognitive Deficits at 1 Year Are Global and Associated with Elevated Brain Injury Markers and Gray Matter Volume Reduction. Nat. Med. 2024, 31, 245–257. [Google Scholar] [CrossRef]
- Miskowiak, K.W.; Pedersen, J.K.; Gunnarsson, D.V.; Roikjer, T.K.; Podlekareva, D.; Hansen, H.; Dall, C.H.; Johnsen, S. Cognitive Impairments among Patients in a Long-COVID Clinic: Prevalence, Pattern and Relation to Illness Severity, Work Function and Quality of Life. J. Affect. Disord. 2023, 324, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Thwaites, R.S.; Uruchurtu, A.S.S.; Siggins, M.K.; Liew, F.; Russell, C.D.; Moore, S.C.; Fairfield, C.; Carter, E.; Abrams, S.; Short, C.E.; et al. Inflammatory Profiles across the Spectrum of Disease Reveal a Distinct Role for GM-CSF in Severe COVID-19. Sci. Immunol. 2021, 6, eabg9873. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.J.; Liu, S.H.; Manachevakul, S.; Lee, T.A.; Kuo, C.T.; Bello, D. Biomarkers in Long COVID-19: A Systematic Review. Front. Med. 2023, 10, 1085988. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, B.; Qu, Y.; Chen, Y.; Xiong, J.; Feng, Y.; Men, D.; Huang, Q.; Liu, Y.; Yang, B.; et al. Detectable Serum Severe Acute Respiratory Syndrome Coronavirus 2 Viral Load (RNAemia) Is Closely Correlated With Drastically Elevated Interleukin 6 Level in Critically Ill Patients With Coronavirus Disease 2019. Clin. Infect. Dis. 2020, 71, 1937–1942. [Google Scholar] [CrossRef]
- Bonetto, V.; Pasetto, L.; Lisi, I.; Carbonara, M.; Zangari, R.; Ferrari, E.; Punzi, V.; Luotti, S.; Bottino, N.; Biagianti, B.; et al. Markers of Blood-Brain Barrier Disruption Increase Early and Persistently in COVID-19 Patients with Neurological Manifestations. Front. Immunol. 2022, 13, 1070379. [Google Scholar] [CrossRef]
- Greene, C.; Connolly, R.; Brennan, D.; Laffan, A.; O’Keeffe, E.; Zaporojan, L.; O’Callaghan, J.; Thomson, B.; Connolly, E.; Argue, R.; et al. Blood–Brain Barrier Disruption and Sustained Systemic Inflammation in Individuals with Long COVID-Associated Cognitive Impairment. Nat. Neurosci. 2024, 27, 421–432. [Google Scholar] [CrossRef]
- Mouton, W.; Djebali, S.; Villard, M.; Allatif, O.; Chauvel, C.; Benezech, S.; Vanhems, P.; Marvel, J.; Walzer, T.; Trouillet-Assant, S. Immunological and Clinical Markers of Post-acute Sequelae of COVID-19: Insights from Mild and Severe Cases 6 Months Post-infection. Eur. J. Immunol. 2025, 55, e51948. [Google Scholar] [CrossRef]
- Peluso, M.J.; Sans, H.M.; Forman, C.A.; Nylander, A.N.; Ho, H.; Lu, S.; Goldberg, S.A.; Hoh, R.; Tai, V.; Munter, S.E.; et al. Plasma Markers of Neurologic Injury and Inflammation in People With Self-Reported Neurologic Postacute Sequelae of SARS-CoV-2 Infection. Neurol. Neuroimmunol. Neuroinflamm. 2022, 9, e200003. [Google Scholar] [CrossRef]
- Patterson, B.K.; Guevara-Coto, J.; Yogendra, R.; Francisco, E.B.; Long, E.; Pise, A.; Rodrigues, H.; Parikh, P.; Mora, J.; Mora-Rodríguez, R.A. Immune-Based Prediction of COVID-19 Severity and Chronicity Decoded Using Machine Learning. Front. Immunol. 2021, 12, 700782. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.W.X.; Fong, S.W.; Young, B.E.; Chan, Y.H.; Lee, B.; Amrun, S.N.; Chee, R.S.L.; Yeo, N.K.W.; Tambyah, P.; Pada, S.; et al. Persistent Symptoms and Association with Inflammatory Cytokine Signatures in Recovered Coronavirus Disease 2019 Patients. Open Forum. Infect. Dis. 2021, 8, ofab156. [Google Scholar] [CrossRef]
- Schultheiß, C.; Willscher, E.; Paschold, L.; Gottschick, C.; Klee, B.; Henkes, S.-S.; Bosurgi, L.; Dutzmann, J.; Sedding, D.; Frese, T.; et al. The IL-1β, IL-6, and TNF Cytokine Triad Is Associated with Post-Acute Sequelae of COVID-19. Cell Rep. Med. 2022, 3, 100663. [Google Scholar] [CrossRef] [PubMed]
- Nuber-Champier, A.; Breville, G.; Voruz, P.; Jacot de Alcântara, I.; Cionca, A.; Allali, G.; Lalive, P.H.; Benzakour, L.; Lövblad, K.-O.; Braillard, O.; et al. Systemic Cytokines Related to Memory Function 6–9 Months and 12–15 Months after SARS-CoV-2 Infection. Sci. Rep. 2024, 14, 22660. [Google Scholar] [CrossRef]
- Colarusso, C.; Maglio, A.; Terlizzi, M.; Vitale, C.; Molino, A.; Pinto, A.; Vatrella, A.; Sorrentino, R. Post-COVID-19 Patients Who Develop Lung Fibrotic-like Changes Have Lower Circulating Levels of IFN-β but Higher Levels of IL-1α and TGF-β. Biomedicines 2021, 9, 1931. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.S.; Chang, E.; Jang, H.M.; Kim, J.Y.; Kim, W.; Son, J.Y.; Cha, J.; Jang, C.Y.; Bae, S.; Jung, J.; et al. Cytokine Profiles Associated with Persisting Symptoms of Post-Acute Sequelae of COVID-19. Korean J. Intern. Med. 2025, 40, 667–675. [Google Scholar] [CrossRef]
- Wechsler, J.B.; Butuci, M.; Wong, A.; Kamboj, A.P.; Youngblood, B.A. Mast Cell Activation Is Associated with Post-Acute COVID-19 Syndrome. Allergy Eur. J. Allergy Clin. Immunol. 2022, 77, 1288–1291. [Google Scholar] [CrossRef]
- Zhao, J.; Schank, M.; Wang, L.; Dang, X.; Cao, D.; Khanal, S.; Nguyen, L.N.T.; Zhang, Y.; Wu, X.Y.; Adkins, J.L.; et al. Plasma Biomarkers for Systemic Inflammation in COVID-19 Survivors. Proteomics Clin. Appl. 2022, 16, 2200031. [Google Scholar] [CrossRef] [PubMed]
- Ramezani, S.; Ezzatifar, F.; Hojjatipour, T.; Hemmatzadeh, M.; Shabgah, A.G.; Navashenaq, J.G.; Aslani, S.; Shomali, N.; Arabi, M.; Babaie, F.; et al. Association of the Matrix Metalloproteinases (MMPs) Family Gene Polymorphisms and the Risk of Coronavirus Disease 2019 (COVID-19); Implications of Contribution for Development of Neurological Symptoms in the COVID-19 Patients. Mol. Biol. Rep. 2023, 50, 173–183, Correction in Mol. Biol. Rep. 2023, 50, 10679–10680. https://doi.org/10.1007/s11033-022-07907-y.. [Google Scholar] [CrossRef] [PubMed]
- Hanson, B.A.; Visvabharathy, L.; Ali, S.T.; Kang, A.K.; Patel, T.R.; Clark, J.R.; Lim, P.H.; Orban, Z.S.; Hwang, S.S.; Mattoon, D.; et al. Plasma Biomarkers of Neuropathogenesis in Hospitalized Patients With COVID-19 and Those with Postacute Sequelae of SARS-CoV-2 Infection. Neurol. Neuroimmunol. Neuroinflamm. 2022, 9, e1151. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante, G.L.; Bonifacio, L.P.; Sanches-lopes, J.M.; Puga, F.G.; de Carvalho, F.S.; Bellissimo-Rodrigues, F.; Tanus-Santos, J.E. Matrix Metalloproteinases Are Associated with Severity of Disease among COVID-19 Patients: A Possible Pharmacological Target. Basic. Clin. Pharmacol. Toxicol. 2024, 134, 727–736. [Google Scholar] [CrossRef]
- Telser, J.; Grossmann, K.; Weideli, O.C.; Hillmann, D.; Aeschbacher, S.; Wohlwend, N.; Velez, L.; Kuhle, J.; Maleska, A.; Benkert, P.; et al. Concentrations of Serum Brain Injury Biomarkers Following SARS-CoV-2 Infection in Individuals with and without Long-COVID—Results from the Prospective Population-Based COVI-GAPP Study. Diagnostics 2023, 13, 2167. [Google Scholar] [CrossRef]
- Magdy, R.; Eid, R.A.; Fathy, W.; Abdel-Aziz, M.M.; Ibrahim, R.E.; Yehia, A.; Sheemy, M.S.; Hussein, M. Characteristics and Risk Factors of Persistent Neuropathic Pain in Recovered COVID-19 Patients. Pain. Med. 2022, 23, 774–781. [Google Scholar] [CrossRef]
- Wallensten, J.; Havervall, S.; Power, Y.; Åsberg, M.; Borg, K.; Nager, A.; Thålin, C.; Mobarrez, F. Oneyear Longitudinal Study on Biomarkers of Blood–Brain Barrier Permeability in COVID-19 Patients. Sci. Rep. 2024, 14, 22735. [Google Scholar] [CrossRef]
- Volk, P.; Rahmani Manesh, M.; Warren, M.E.; Besko, K.; Gonçalves de Andrade, E.; Wicki-Stordeur, L.E.; Swayne, L.A. Long-term Neurological Dysfunction Associated with COVID-19: Lessons from Influenza and Inflammatory Diseases? J. Neurochem. 2023, 168, 3500–3511. [Google Scholar] [CrossRef]
- Clé, M.; Eldin, P.; Briant, L.; Lannuzel, A.; Simonin, Y.; Van de Perre, P.; Cabié, A.; Salinas, S. Neurocognitive Impacts of Arbovirus Infections. J. Neuroinflamm. 2020, 17, 233. [Google Scholar] [CrossRef]
- Peuchmaur, M.; Voisin, J.; Vaillant, M.; Truffot, A.; Lupo, J.; Morand, P.; Le Maréchal, M.; Germi, R. Epstein-Barr Virus Encephalitis: A Review of Case Reports from the Last 25 Years. Microorganisms 2023, 11, 2825. [Google Scholar] [CrossRef] [PubMed]
- Sozzi, M.; Algeri, L.; Corsano, M.; Crivelli, D.; Daga, M.A.; Fumagalli, F.; Gemignani, P.; Granieri, M.C.; Inzaghi, M.G.; Pala, F.; et al. Neuropsychology in the Times of COVID-19. The Role of the Psychologist in Taking Charge of Patients With Alterations of Cognitive Functions. Front. Neurol. 2020, 11, 573207. [Google Scholar] [CrossRef] [PubMed]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Barajas, A.; Riquelme-Alacid, G.; Vera-Montecinos, A.; Ramos, B. Cognition, Cytokines, Blood–Brain Barrier, and Beyond in COVID-19: A Narrative Review. Int. J. Mol. Sci. 2026, 27, 546. https://doi.org/10.3390/ijms27010546
Barajas A, Riquelme-Alacid G, Vera-Montecinos A, Ramos B. Cognition, Cytokines, Blood–Brain Barrier, and Beyond in COVID-19: A Narrative Review. International Journal of Molecular Sciences. 2026; 27(1):546. https://doi.org/10.3390/ijms27010546
Chicago/Turabian StyleBarajas, Ana, Gemma Riquelme-Alacid, América Vera-Montecinos, and Belén Ramos. 2026. "Cognition, Cytokines, Blood–Brain Barrier, and Beyond in COVID-19: A Narrative Review" International Journal of Molecular Sciences 27, no. 1: 546. https://doi.org/10.3390/ijms27010546
APA StyleBarajas, A., Riquelme-Alacid, G., Vera-Montecinos, A., & Ramos, B. (2026). Cognition, Cytokines, Blood–Brain Barrier, and Beyond in COVID-19: A Narrative Review. International Journal of Molecular Sciences, 27(1), 546. https://doi.org/10.3390/ijms27010546

