Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (650)

Search Parameters:
Keywords = momentum theory

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5693 KB  
Article
Active Control of the Precession Frequency of the Vortex Core Using Rotating Jets
by Daniil Suslov and Sergey Skripkin
Energies 2026, 19(3), 719; https://doi.org/10.3390/en19030719 - 29 Jan 2026
Viewed by 165
Abstract
The precessing vortex core (PVC) is a major source of low-frequency harmful pressure pulsations that constrain the stable operating range of Francis turbines under part-load regimes. This study presents an experimental demonstration of active frequency control for the PVC in an aerodynamic turbine [...] Read more.
The precessing vortex core (PVC) is a major source of low-frequency harmful pressure pulsations that constrain the stable operating range of Francis turbines under part-load regimes. This study presents an experimental demonstration of active frequency control for the PVC in an aerodynamic turbine model (at Reynolds number 1.5 × 104), employing a resonant forcing strategy grounded in linear stability theory. Low-energy air injection with a momentum flux coefficient in the range of approximately 0.06% to 1.56% was applied via rotating actuators positioned within the flow region of highest receptivity. The core finding is the observation of frequency, where the PVC’s natural precession frequency synchronizes with that of the rotating actuator. A comparative analysis of actuator geometry revealed that a single-jet configuration achieves a significantly greater frequency shift, up to 22%, and a wider lock-in range than a dual-jet actuator (8% shift). This enhanced performance is attributed to the higher momentum flux density and more spatially coherent forcing generated by the single jet, which couples more effectively with the global instability mode. The results validate the successful adaptation of a highly efficient, physics-based control paradigm from reacting flows to hydraulic machinery, offering a promising approach to mitigate vortex-induced vibrations and expanding turbine operational flexibility. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

20 pages, 358 KB  
Article
A Note on the Existence of Equal-Time Correlators
by Bruno Bucciotti
Universe 2026, 12(2), 35; https://doi.org/10.3390/universe12020035 - 27 Jan 2026
Viewed by 75
Abstract
We study the conditions under which momentum-space equal-time correlators of scalar fields are finite in flat space. We identify cases where these correlators can be divergent even after renormalization, and we provide sufficient criteria for their existence. Concrete examples are discussed, including the [...] Read more.
We study the conditions under which momentum-space equal-time correlators of scalar fields are finite in flat space. We identify cases where these correlators can be divergent even after renormalization, and we provide sufficient criteria for their existence. Concrete examples are discussed, including the well-known λϕ4 model, composite operators, and effective field theories. Full article
(This article belongs to the Section Foundations of Quantum Mechanics and Quantum Gravity)
Show Figures

Figure A1

16 pages, 291 KB  
Article
Leading for a Sustainable Future: Sustainable Leadership in Cyprus Primary Schools
by Maria Karamanidou
Educ. Sci. 2026, 16(2), 177; https://doi.org/10.3390/educsci16020177 - 23 Jan 2026
Viewed by 214
Abstract
Education systems worldwide face a growing pressure to align with Sustainable Development Goal 4.7 by embedding Education for Sustainable Development (ESD) into school life. This study examines how primary school headteachers in Cyprus interpret and enact sustainable leadership to advance ESD within a [...] Read more.
Education systems worldwide face a growing pressure to align with Sustainable Development Goal 4.7 by embedding Education for Sustainable Development (ESD) into school life. This study examines how primary school headteachers in Cyprus interpret and enact sustainable leadership to advance ESD within a small, highly centralised system. Drawing on sustainable and distributed leadership theories and a whole-school lens, the study employed semi-structured interviews with ten headteachers from diverse regions (urban, rural, and semi-rural). Reflective thematic analysis identified four patterns: (1) leaders sought a strategic integration of ESD into planning and culture; (2) empowerment and participation were pursued through teacher working groups, student eco-councils, and community partnerships; (3) systemic constraints, a rigid curriculum, limited autonomy, and scarce professional development produced a policy–practice gap; and (4) leaders relied on adaptive, collaborative micro-practices to sustain momentum. The findings suggest that, in Cyprus, sustainable leadership operates as a values-based stewardship enacted through ‘quiet activism’. The study highlights implications for leadership development, such as reflexivity, systems thinking, and ethical reasoning, as well as policy design, such as time, autonomy, and structured support for whole-school ESD, in small-state contexts. Full article
21 pages, 2949 KB  
Article
Numerical Simulations and Experimental Tests for Tailored Tidal Turbine Design
by Pietro Scandura, Stefano Mauro, Michele Messina and Sebastian Brusca
J. Mar. Sci. Eng. 2026, 14(3), 236; https://doi.org/10.3390/jmse14030236 - 23 Jan 2026
Viewed by 180
Abstract
This paper outlines the design and testing of a horizontal-axis tidal turbine (HATT) at a scale of 1:20, employing numerical simulations and experimental validation. The design employed an in-house code based on the Blade Element Momentum (BEM) theory. As reliable lift and drag [...] Read more.
This paper outlines the design and testing of a horizontal-axis tidal turbine (HATT) at a scale of 1:20, employing numerical simulations and experimental validation. The design employed an in-house code based on the Blade Element Momentum (BEM) theory. As reliable lift and drag coefficients for this scale are not present in the literature due to the low Reynolds number of the airfoil, Computational Fluid Dynamics (CFD) simulations were conducted to generate accurate polar diagrams for the NACA 4412 airfoil. The turbine was then 3D-printed and the rotor tested in a subsonic wind tunnel at various fixed rotational speeds to determine the power coefficient. Fluid dynamic similarity was achieved by matching the Reynolds number and tip-speed ratio in air to their values in water. Three-dimensional CFD simulations were also performed, yielding turbine efficiency results that agreed fairly well with the experimental data. However, both the experimental and numerical simulation results indicated a higher power coefficient than that predicted by BEM theory. The CFD results revealed the presence of radial velocity components and vortex structures that could reduce flow separation. The BEM model does not capture these phenomena, which explains why the power coefficient detected by experiments and numerical simulations is larger than that predicted by the BEM theory. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

43 pages, 614 KB  
Article
The Collingridge Dilemma and Its Implications for Regulating Financial and Economic Crime (FEC) in the United Kingdom: Navigating the Tension Between Innovation and Control
by Adam Abukari
Laws 2026, 15(1), 5; https://doi.org/10.3390/laws15010005 - 15 Jan 2026
Viewed by 387
Abstract
The capacity of the United Kingdom (UK) to prosecute technology-enabled financial and economic crime (FEC) is increasingly shaped by the Collingridge dilemma. Even though the dilemma was broadly conceptualized in technology governance, its application to prosecutorial and enforcement practice, evidentiary standards, and criminal [...] Read more.
The capacity of the United Kingdom (UK) to prosecute technology-enabled financial and economic crime (FEC) is increasingly shaped by the Collingridge dilemma. Even though the dilemma was broadly conceptualized in technology governance, its application to prosecutorial and enforcement practice, evidentiary standards, and criminal liability attribution represents uncharted scholarly territory. Through socio-legal mixed methods combining doctrinal analysis, case studies, and comparative analysis, the paper shows how the dilemma’s two horns or pillars (i.e., early epistemic uncertainty and late institutional inertia) manifest in criminal law and regulatory contexts. The paper finds that just like the European Union and United States, the UK criminal enforcement ecosystem exhibits both horns across cryptocurrency, algorithmic trading, artificial intelligence (AI), and fintech domains. By integrating supplementary theories such as responsive regulation, precautionary principles and technological momentum, the study advances a socio-legal framework that explains enforcement inertia and doctrinal gaps in liability attribution for emerging technologies. The paper demonstrates how epistemic uncertainty and institutional entrenchment shape enforcement outcomes and proposes adaptive strategies for anticipatory governance including technology-literate capacity building, anticipatory legal reform, and data-driven public-private coordination. These recommendations balance ex-ante legal clarity (reducing uncertainty) with ex-post enforcement agility (overcoming entrenchment) to provide a normative framework for navigating the Collingridge dilemma in FEC prosecution. Full article
21 pages, 3769 KB  
Article
Response Surface Methodology-Driven Design Optimization for Ducted Fans
by Weijie Gong, Kaihua Fu and Hong Chen
Aerospace 2026, 13(1), 76; https://doi.org/10.3390/aerospace13010076 - 11 Jan 2026
Viewed by 315
Abstract
Due to the complexity of aerodynamic coupling between the duct and propeller, the overall design and optimization of ducted fans often require extensive experience and time. Meanwhile, traditional design methods based on Blade Element Momentum Theory, Lifting Surface Theory, Vortex Lattice Methods, and [...] Read more.
Due to the complexity of aerodynamic coupling between the duct and propeller, the overall design and optimization of ducted fans often require extensive experience and time. Meanwhile, traditional design methods based on Blade Element Momentum Theory, Lifting Surface Theory, Vortex Lattice Methods, and Panel Method usually exhibit certain deviations between their design results and actual outcomes. This is because these approaches struggle to accurately calculate the aerodynamic coupling effects between the duct and propeller, coupled with numerous simplifications inherent in the methods themselves. Considering the strong nonlinear coupling relationship between the duct and propeller, the Response Surface Method (RSM), which enables efficient and accurate analysis of multi-variable coupling effects, was selected for the parameter design and optimization of ducted fans. Computational Fluid Dynamics (CFD) was applied to evaluate the impact of design parameters on overall aerodynamic performance. This approach addresses the limitations of traditional methods, including low design accuracy, high computational cost, and insufficient multi–objective optimization capability. It explicitly models multi-parameter coupling and nonlinear effects using a small number of experimental points, combined with the Multi-Objective Genetic Algorithm (MOGA) to find the global optimum. Compared to the baseline duct fan, the optimized duct fan achieved a 9.6% increase in overall lift and a 9.5% improvement in lift efficiency. Full article
Show Figures

Figure 1

18 pages, 576 KB  
Article
A Gravity Tensor and Gauge Equations for Newtonian Dynamics
by Jing Tang Xing
Axioms 2026, 15(1), 51; https://doi.org/10.3390/axioms15010051 - 9 Jan 2026
Viewed by 233
Abstract
It is revealed that the material derivative of a variable in gravity field is its directional derivative, from which and energy/complementary-energy conservations with exterior derivatives, two sets of gauge equations of Newton’s dynamic gravity field are derived, which has same mathematical structure with [...] Read more.
It is revealed that the material derivative of a variable in gravity field is its directional derivative, from which and energy/complementary-energy conservations with exterior derivatives, two sets of gauge equations of Newton’s dynamic gravity field are derived, which has same mathematical structure with the gauge ones for the Maxwell equations in electromagnetic fields, revealing that gravity force and curl momentum in Newton’s gravity field, respectively, play the roles like the electric E  and the magnetic B of the Maxwell equations in the electromagnetic field. The gravity tensor of Newton’s gravitational field is constructed, and an example is given to validate it. This finding allows Newton’s gravity to be governed by a gauge theory, addressing the historic issue that “Newton’s gravitation is an exception to the Yang–Mills gauge theory”. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Graphical abstract

18 pages, 5540 KB  
Article
Numerical and Experimental Study on Jet Flame Behavior and Smoke Pattern Characteristics of 50 Ah NCM Lithium-Ion Battery Thermal Runaway
by Xuehui Wang, Zilin Fan, Zhuo’er Sun, Xin Fu, Mingyu Jin, Yang Shen, Shu Lin and Zhi Wang
Batteries 2026, 12(1), 23; https://doi.org/10.3390/batteries12010023 - 8 Jan 2026
Viewed by 354
Abstract
This paper investigates the flame behavior and smoke pattern characteristics of lithium-ion battery (LIB) fires using an integrated experimental and numerical simulation approach. Based on fire dynamics theory, a jet flame model for LIB thermal runaway (TR) is developed to analyze the flame [...] Read more.
This paper investigates the flame behavior and smoke pattern characteristics of lithium-ion battery (LIB) fires using an integrated experimental and numerical simulation approach. Based on fire dynamics theory, a jet flame model for LIB thermal runaway (TR) is developed to analyze the flame height and dynamic characteristics. The results reveal two distinct regimes in LIB jet flames: momentum-controlled dominance in the early TR stage (lasting approximately 3 s) and buoyancy-controlled dominance in subsequent combustion. The jet flame shifts from a momentum-dominated regime (Fr > 5) to a buoyancy-dominated plume (Fr < 5) as the vent velocity decays below 12 m/s. The simulated flame heights align with experimental measurements and the Delichatsios model, validating the numerical approach. Furthermore, the distribution of flame components (e.g., H2, CO, CO2, CH4, C2H4) is analyzed, highlighting the influence of multi-component gases on combustion heterogeneity. Smoke pattern analysis demonstrates that soot deposition varies significantly between momentum- and buoyancy-controlled stages, with the former producing darker, concentrated deposits and the latter yielding wider, lighter patterns. These findings provide a theoretical basis for forensic fire investigation (accident reconstruction) and targeted suppression strategies for different combustion stages. Full article
(This article belongs to the Special Issue Control, Modelling, and Management of Batteries)
Show Figures

Figure 1

16 pages, 310 KB  
Article
Momentum Transport in Ferromagnetic–Plasmon Heterostructures Within the Keldysh Formalism
by Feiyi Liu, Min Guo, Mingyang Liu and Yang Wang
Universe 2026, 12(1), 15; https://doi.org/10.3390/universe12010015 - 3 Jan 2026
Viewed by 169
Abstract
We investigate momentum transport in ferromagnetic–plasmon heterostructures using Keldysh field theory and energy–momentum tensor formalism. A three-layer model reveals that plasmon frequency shifts generate a non-zero expectation value for the xz-component of the energy–momentum tensor Txz through [...] Read more.
We investigate momentum transport in ferromagnetic–plasmon heterostructures using Keldysh field theory and energy–momentum tensor formalism. A three-layer model reveals that plasmon frequency shifts generate a non-zero expectation value for the xz-component of the energy–momentum tensor Txz through magnon–plasmon coupling. The momentum transport exhibits linear velocity dependence, with temperature behavior transitioning from exponential suppression at low temperatures to linear growth at high temperatures, governed by the magnon energy gap. Spatial oscillations follow sin(2nπz/h) patterns within the ferromagnetic layer. This framework provides fundamental insights into quantum momentum transport mechanisms in magnetic systems. Full article
(This article belongs to the Section Field Theory)
54 pages, 4904 KB  
Review
Nonlocal Effective Field Theory and Its Applications
by Ping Wang, Zhengyang Gao, Fangcheng He, Chueng-Ryong Ji, Wally Melnitchouk and Yusupujiang Salamu
Symmetry 2026, 18(1), 31; https://doi.org/10.3390/sym18010031 - 23 Dec 2025
Viewed by 336
Abstract
We review recent applications of nonlocal effective field theory, particularly focusing on nonlocal chiral effective theory and nonlocal quantum electrodynamics (QED), as well as an extension of nonlocal effective theory to curved spacetime. For the chiral effective theory, we discuss the calculation of [...] Read more.
We review recent applications of nonlocal effective field theory, particularly focusing on nonlocal chiral effective theory and nonlocal quantum electrodynamics (QED), as well as an extension of nonlocal effective theory to curved spacetime. For the chiral effective theory, we discuss the calculation of generalized parton distributions (GPDs) of the nucleon at nonzero skewness, along with the corresponding gravitational (or mechanical) form factors, within the convolution framework. In the QED application, we extend the nonlocal formulation to construct the most general nonlocal QED interaction, in which both the propagator and fundamental QED vertex are modified due to the nonlocal Lagrangian, while preserving the Ward–Green–Takahashi identities. For consistency with the modified propagator, a solid quantization is proposed, and the nonlocal QED is applied to explain the lepton g2 anomalies without the introduction of new particles beyond the standard model. Finally, with an extension of the chiral effective action to curved spacetime, we investigate the nonlocal energy–momentum tensor and gravitational form factors of the nucleon with a nonlocal pion–nucleon interaction. Full article
(This article belongs to the Special Issue Chiral Symmetry, and Restoration in Nuclear Dense Matter)
Show Figures

Figure 1

36 pages, 7794 KB  
Article
Design and Performance Study of Small Multirotor UAVs with Adjunctive Folding-Wing Range Extender
by Ronghao Zhang, Yang Lu, Xice Xu, Heyang Zhang and Kai Guan
Drones 2025, 9(12), 877; https://doi.org/10.3390/drones9120877 - 18 Dec 2025
Viewed by 689
Abstract
Small multi-rotor UAVs face endurance limitations during long-range missions due to high rotor energy consumption and limited battery capacity. This paper proposes a folding-wing range extender integrating a sliding-rotating two-degree-of-freedom folding wing—which, when deployed, quadruples the fuselage length yet folds within its profile—and [...] Read more.
Small multi-rotor UAVs face endurance limitations during long-range missions due to high rotor energy consumption and limited battery capacity. This paper proposes a folding-wing range extender integrating a sliding-rotating two-degree-of-freedom folding wing—which, when deployed, quadruples the fuselage length yet folds within its profile—and a tail-thrust propeller. The device can be rapidly installed on host small multi-rotor UAVs. During cruise, it utilizes wing unloading and incoming horizontal airflow to reduce rotor power consumption, significantly extending range while minimally impacting portability, operational convenience, and maneuverability. To evaluate its performance, a 1-kg-class quadrotor test platform and matching folding-wing extender were developed. An energy consumption model was established using Blade Element Momentum Theory, followed by simulation analysis of three flight conditions. Results show that after installation, the required rotor power decreases substantially with increasing speed, while total system power growth slows noticeably. Although the added weight and drag increase low-speed power consumption, net range extension emerges near 15 m/s and intensifies with speed. Subsequent parametric sensitivity analysis and mission profile analysis indicate that weight reduction and aerodynamic optimization can effectively enhance the device’s performance. Furthermore, computational fluid dynamics (CFD) analysis confirms the effectiveness of the dihedral wing design in mitigating mutual interference between the rotor and the wing. Flight tests covering five conditions validated the extender’s effectiveness, demonstrating at 20 m/s cruise: 20% reduction in total power, 25% improvement in endurance/range, 34% lower specific power, and 52% higher equivalent lift-to-drag ratio compared to the baseline UAV. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

12 pages, 1908 KB  
Article
Mapping Cyclic Changes in Laguerre–Gaussian Astigmatic Beams Free from Orbital Angular Momentum onto the Poincaré Sphere and Geometric Phases
by Alexander Volyar, Mikhail Bretsko and Yana Akimova
Physics 2025, 7(4), 65; https://doi.org/10.3390/physics7040065 - 9 Dec 2025
Cited by 1 | Viewed by 488
Abstract
Over the past thirty years, the focus in singular optics has been on structured beams carrying orbital angular momentum (OAM) for diverse applications in science and technology. However, as practice has shown, the OAM-free structured Gaussian beams with several degrees of freedom are [...] Read more.
Over the past thirty years, the focus in singular optics has been on structured beams carrying orbital angular momentum (OAM) for diverse applications in science and technology. However, as practice has shown, the OAM-free structured Gaussian beams with several degrees of freedom are no worse than the OAM beams, especially when propagating through turbulent flows. In this paper, we partially fillthis gap by theoretically and experimentally mapping cyclic changes in vortex-free states (including OAM) as a phase portrait of the beam evolution in an astigmatic optical system. We show that those cyclic variations in the beam parameters are accompanied by the accumulation of the geometric Berry phase, which is an additional degree of freedom. We find also that the geometric phase of cyclic changes in the intensity ellipse shape does not depend on the radial numbers of the Laguerre–Gaussian mode with zero topological charge and is always set by changing the shape of the Gaussian beam. The Stokes parameter formalism was developed to map the beam states’ evolution onto a Poincaré sphere based on physically measurable second-order intensity moments. Theory and experiment are found to be in a good enough agreement. Full article
(This article belongs to the Section Classical Physics)
Show Figures

Figure 1

13 pages, 2868 KB  
Article
Propagation Properties of the COAM Matrix of Twisted Gaussian Schell-Model Beams in Non-Kolmogorov Turbulence
by Jie Miao, Jing Wang, Xianmei Qian, Wenyue Zhu, Yongtao Zhang and Jinhong Li
Photonics 2025, 12(12), 1195; https://doi.org/10.3390/photonics12121195 - 4 Dec 2025
Viewed by 331
Abstract
Based on the extended Huygens–Fresnel principle and mode expansion theory, we derive the expression for the Coherence-Orbital Angular Momentum (COAM) matrix of twisted Gaussian Schell-model (TGSM) beams propagating through non-Kolmogorov turbulence. Using numerical simulations, we compare the evolution characteristics of the COAM matrix [...] Read more.
Based on the extended Huygens–Fresnel principle and mode expansion theory, we derive the expression for the Coherence-Orbital Angular Momentum (COAM) matrix of twisted Gaussian Schell-model (TGSM) beams propagating through non-Kolmogorov turbulence. Using numerical simulations, we compare the evolution characteristics of the COAM matrix in free space and under non-Kolmogorov turbulence conditions. The study analyzes the variation patterns in the absolute values, real parts, and imaginary parts of the COAM matrix elements under different topological charges, and provides a detailed investigation of the influence of various beam parameters and turbulence parameters on these elements. The results show that by selecting appropriate parameters, the negative impact of turbulence on the correlation between orbital angular momentum (OAM) modes can be effectively mitigated. This work provides theoretical support for parameter selection and optimization in atmospheric optical communication systems. Full article
(This article belongs to the Special Issue Advances in the Propagation and Coherence of Light)
Show Figures

Figure 1

22 pages, 648 KB  
Article
The Validity of Long Wavelength Approximation in the Evaluation of Two-Photon Decay Rate
by George-Tony Constantin and Cristian Iorga
Atoms 2025, 13(12), 97; https://doi.org/10.3390/atoms13120097 - 4 Dec 2025
Viewed by 388
Abstract
This paper investigates the validity of the long wavelength approximation in the calculation of two-photon decay of 2s1/2 level in hydrogen-like ions with nuclear charge Z=1100 based on time-dependent second-order perturbation theory and angular momentum [...] Read more.
This paper investigates the validity of the long wavelength approximation in the calculation of two-photon decay of 2s1/2 level in hydrogen-like ions with nuclear charge Z=1100 based on time-dependent second-order perturbation theory and angular momentum algebra. While the relativistic structure effects on the two-photon decay rates are highlighted in the literature, the role of slowing effects in the photon electric dipole operators are not discussed extensively. The rate is computed by the sum-over-states method, with bound-bound and bound-free electric dipole matrix elements obtained in the Babushkin and Coulomb gauges, which satisfy the Lorenz gauge condition, as well as their non-relativistic limits in the long-wavelength approximation (Length and Velocity forms, respectively). The present results explicitly show how this approximation breaks gauge invariance by overestimating the Babushkin values by ∼24%(αZ)2 while underestimating the Coulomb rates by ∼31%(αZ)2. Using analytical eigenfunctions of the Dirac equation, we found that the contributions of the negative continuum states to the rate scale are ∼0.0134(αZ)4 in the Babushkin gauge and ∼1.46(αZ)4 in the Coulomb gauge, making the latter gauge more susceptible to errors when attempting to achieve basis completeness in multiphoton calculations. The present results are useful in assessing the complexity requirements of radiative transition rates for atomic systems of interest. Full article
(This article belongs to the Section Atomic, Molecular and Nuclear Spectroscopy and Collisions)
Show Figures

Figure 1

33 pages, 1150 KB  
Article
Modified Heisenberg Commutations Relations and Its Standard Hamiltonian Interpretation
by Mauricio Contreras González, Roberto Ortiz Herrera and José Mauricio González
Mathematics 2025, 13(23), 3872; https://doi.org/10.3390/math13233872 - 3 Dec 2025
Viewed by 401
Abstract
This paper analyzes the modified canonical Heisenberg commutation relations or GUP, from a standard Hamiltonian point of view. For a one-dimensional system, a such modified canonical Heisenberg commutation relation is defined by the commutator between a position x^ and a momentum operator [...] Read more.
This paper analyzes the modified canonical Heisenberg commutation relations or GUP, from a standard Hamiltonian point of view. For a one-dimensional system, a such modified canonical Heisenberg commutation relation is defined by the commutator between a position x^ and a momentum operator p^ (called the deformed momentum), which becomes a function F of the same operators: x^,p^=F(x^,p^), that is, the Heisenberg algebra closes itself in general in a nonlinear way. The function F also depends on a parameter that controls the deformation of the Heisenberg algebra in such a way that for a null parameter value, one recovers the usual Heisenberg algebra x^,p^0=iI. Thus, it naturally raises the following questions: What does a relation of this type mean in Hamiltonian theory from a standard point of view? Is the deformed momentum the canonical variable conjugate to the position in such a relation? Moreover, what are the canonical variables in this model? The answer to these questions comes from the existence of two different phase spaces: The first one, called the non-deformed phase (which is obtained for control parameter value equal to zero), is defined by the Cartesian x^ coordinate and its non-deformed conjugate momentum p^0, which satisfies the standard quantum mechanical Heisenberg commutation relation. The second phase space, the deformed one, is given by the deformed momentum p^ and a new position coordinate y^, which is its canonical conjugate variable, so y^ and p^ also satisfy standard commutation relations. We construct a classical canonical transformation that maps the non-deformed phase space into the deformed one for a specific class of deformation functions F. Additionally, a quantum mechanical operator transformation is found between the two non-commutative phase spaces, which allows the Schrödinger equation to be written in both spaces. Thus, there are two equivalent quantum mechanical descriptions of the same physical process associated with a deformed commutation relation. Full article
Show Figures

Figure 1

Back to TopTop