Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = moment-resisting joint

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 8188 KB  
Article
Experimental Study of the Actual Structural Behaviour of CLT and CLT–Concrete Composite Panels with Embedded Moment-Resisting Joint
by Matúš Farbák, Jozef Gocál and Peter Koteš
Buildings 2025, 15(19), 3534; https://doi.org/10.3390/buildings15193534 - 1 Oct 2025
Abstract
Timber structures and structural members have undergone rapid development in recent decades and are now fully competitive with traditional structures made of reinforced concrete or structural steel in many areas. Low self-weight, high durability, rapid construction assembly, and a favourable environmental footprint predispose [...] Read more.
Timber structures and structural members have undergone rapid development in recent decades and are now fully competitive with traditional structures made of reinforced concrete or structural steel in many areas. Low self-weight, high durability, rapid construction assembly, and a favourable environmental footprint predispose timber structures for wider future use. A persisting drawback is the often-complicated joining of individual elements, especially when moment resistance is required. For CLT panels, this issue is more urgent due to their relatively small thickness and cross-laminated lay-up. This paper presents experimental research investigating parameters related to the actual behaviour of a moment-resisting embedded joint of CLT panels. The test programme consisted of four series (12 specimens) loaded in four-point bending to failure. The proposed and tested joint consists of high-strength steel rods glued into the two connected parts of the CLT panel. In addition to a detailed investigation of the resistance and stiffness of the joint, this research evaluates the effect of composite action with a reinforced-concrete slab on the performance of this type of joint. The experimental results and their detailed analysis are also extended to propose a framework concept for creating a theoretical (mechanical) model based on the component method. Full article
(This article belongs to the Special Issue Advances and Applications in Timber Structures)
Show Figures

Figure 1

17 pages, 6770 KB  
Article
Research on Impact Resistance of Steel Frame Beam-Column Structure Under Fire
by Zhi Li, Yu-Tong Feng and Tian-Qi Xue
Buildings 2025, 15(17), 3144; https://doi.org/10.3390/buildings15173144 - 2 Sep 2025
Viewed by 533
Abstract
In this study, the impact resistance of WUF-B steel frame beam–column joints under fire was investigated using ABAQUS finite element software through a sequential thermal–mechanical coupling approach. By integrating a room-temperature impact model with a single-sided fire field applied to the lower flange [...] Read more.
In this study, the impact resistance of WUF-B steel frame beam–column joints under fire was investigated using ABAQUS finite element software through a sequential thermal–mechanical coupling approach. By integrating a room-temperature impact model with a single-sided fire field applied to the lower flange of the steel beam, the multi-parameter influence mechanisms—including temperature (150–750 °C), fire area distribution, and impact momentum—were systematically analyzed. Results indicate that elevated temperatures significantly degrade structural impact resistance. At 750 °C, the peak impact force decreases by 73.3% compared to room temperature, while the mid-span bending moment increases by 63.3%. When the fire zone is near the impact point, localized thermal softening further reduces the peak impact force. Under constant impact energy, lower momentum (i.e., higher velocity) accelerates the rebound of the falling mass, revealing the role of momentum transfer efficiency in governing the transient response of high-temperature structures. Additionally, an analytical prediction model based on Timoshenko beam theory and thermo-mechanical stiffness degradation is developed. By introducing a segmented temperature reduction function, the model significantly enhances the accuracy of mid-span displacement predictions for steel structures under fire. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 6161 KB  
Article
Investigation of Screw Layout and Hole Geometry on Cold-Formed Steel Bending Performance Using Finite Element Model and Statistical Methods
by Zeynep Yaman, Mahyar Maali, Ekin Abanoz, Elif Ağcakoca, Mohammad Saber Sadid and Türker Fedai Çavuş
Buildings 2025, 15(17), 3101; https://doi.org/10.3390/buildings15173101 - 29 Aug 2025
Viewed by 563
Abstract
The affordability, ease of manufacturing, and assembly efficiency of cold-formed steel profiles have contributed to their widespread use in structural applications. However, the presence of holes in these profile webs is likely to reduce their mechanical resistance. This study explores the bending behavior [...] Read more.
The affordability, ease of manufacturing, and assembly efficiency of cold-formed steel profiles have contributed to their widespread use in structural applications. However, the presence of holes in these profile webs is likely to reduce their mechanical resistance. This study explores the bending behavior of a built-up box section constructed using lipped and unlipped C-profiles, which are commonly utilized in the construction industry. The investigation focuses on the influence of self-drilling screw layout density and hole distribution within the section. A total of 30 different models were analyzed, considering three primary variables: the spacing of self-drilling screws, hole diameter, and the number of holes. The steel profiles were connected using self-drilling screws with spacing intervals of 100, 200, and 400 mm. Key parameters, such as moment capacity, effects on elastic zones, shear forces on screws, and ductility, were examined in relation to these variables. The findings indicate that reducing screw spacing and increasing the number of holes are crucial design factors for improving joint strength. However, while greater screw spacing enhances ductility, it leads to lower plastic deformation rates. Additionally, optimizing the number of holes in the section proved to be an effective strategy for improving ductility in the analyzed models. Mathematical evaluation confirmed that hole number and screw spacing significantly affect moment capacity and estimation stability, highlighting the need for their joint optimization in structural design. Full article
(This article belongs to the Special Issue Cold-Formed Steel Structures)
Show Figures

Figure 1

12 pages, 1749 KB  
Article
Influence of Thigh and Shank Lengths and Ratios on Kinematic and Kinetic Characteristics of the Knee Joint During Barbell Back Squat
by Jaewoo Lee, Moonseok Kwon and Junsung Park
Appl. Sci. 2025, 15(17), 9448; https://doi.org/10.3390/app15179448 - 28 Aug 2025
Viewed by 516
Abstract
The barbell back squat, a prevalent lower-limb resistance exercise characterized by a closed kinetic chain and multi-joint movement, results in the greatest knee joint range of motion. Variations in thigh and shank lengths and their ratios may influence knee joint mechanics. This study [...] Read more.
The barbell back squat, a prevalent lower-limb resistance exercise characterized by a closed kinetic chain and multi-joint movement, results in the greatest knee joint range of motion. Variations in thigh and shank lengths and their ratios may influence knee joint mechanics. This study investigated the effects of thigh and shank lengths and their ratios on knee kinematics and kinetics during the barbell back squat. Fifty resistance-trained adult men participated. Kinematic and kinetic data were collected using an eight-camera motion capture system and two force plates. Correlation and simple linear regression analyses were conducted to evaluate the relationships between thigh and shank length parameters and knee joint mechanics. Greater thigh length was significantly associated with increased anterior knee displacement and knee extension moment. Additionally, longer shank length and a higher shank-to-thigh ratio were associated with greater knee abduction and internal rotation angles. Consequently, increased thigh length may contribute to greater anterior knee displacement, while increased shank length may be associated with increased knee abduction and internal rotation. Accordingly, trainers and trainees should evaluate individual thigh and shank lengths. For participants with relatively longer shank and thigh segments, compensatory knee movements should be closely monitored to mitigate the risk of musculoskeletal injuries. Full article
(This article belongs to the Special Issue Recent Advances in Sports Injuries and Physical Rehabilitation)
Show Figures

Figure 1

22 pages, 4059 KB  
Article
Robustness of Steel Moment-Resisting Frames Under Column Loss Scenarios with and without Prior Seismic Damage
by Silvia Costanzo, David Cassiano and Mario D’Aniello
Buildings 2025, 15(14), 2490; https://doi.org/10.3390/buildings15142490 - 16 Jul 2025
Cited by 1 | Viewed by 468
Abstract
This study investigates the robustness of steel moment-resisting frames (MRFs) under column loss scenarios, both in undamaged and post-seismic conditions. In this context, robustness is defined as the ability of a damaged structure to prevent progressive collapse following an earthquake. A parametric investigation [...] Read more.
This study investigates the robustness of steel moment-resisting frames (MRFs) under column loss scenarios, both in undamaged and post-seismic conditions. In this context, robustness is defined as the ability of a damaged structure to prevent progressive collapse following an earthquake. A parametric investigation was conducted on 48 three-dimensional MRF configurations, varying key design and geometric parameters such as the number of storeys, span length, and design load combinations. Nonlinear dynamic analyses were performed using realistic ground motions and column loss scenarios defined by UFC guidelines. The effects of pre-existing seismic damage, façade claddings, and joint typologies were explicitly accounted for using validated component-based modelling approaches. The results indicate that long-span, low-rise frames are more vulnerable to collapse initiation due to higher plastic demands, while higher-rise frames benefit from load redistribution through their increased redundancy. In detail, long-span, low-rise frames experience roughly ten times higher displacement demands than their short-span counterparts, and post-seismic damage has limited influence, yielding rotational demands within 5–10% of the undamaged case. The Reserve Displacement Ductility (RDR) ranges from approximately 6.3 for low-rise, long-span frames to 21.5 for high-rise frames, highlighting the significant role of geometry in post-seismic robustness. The post-seismic damage was found to have a limited influence on the dynamic displacement and rotational demands, suggesting that the robustness of steel MRFs after a moderate earthquake is largely comparable to that of the initially undamaged structure. These findings support the development of more accurate design and retrofit provisions for seismic and multi-hazard scenarios. Full article
(This article belongs to the Special Issue Advanced Research on Seismic Performance of Steel Structures)
Show Figures

Figure 1

32 pages, 11521 KB  
Article
Ultimate Capacity of a GFRP-Reinforced Concrete Bridge Barrier–Deck Anchorage Subjected to Transverse Loading
by Gledis Dervishhasani, Khaled Sennah, Hamdy M. Afefy and Ahmed Diab
Appl. Sci. 2025, 15(14), 7771; https://doi.org/10.3390/app15147771 - 10 Jul 2025
Cited by 1 | Viewed by 735
Abstract
This paper outlines a structural qualification process to assess the use of newly developed high-modulus (HM) glass fiber-reinforced polymer (GFRP) bars with headed ends in the joint between concrete bridge barriers and decks. The main goals of the study are to evaluate the [...] Read more.
This paper outlines a structural qualification process to assess the use of newly developed high-modulus (HM) glass fiber-reinforced polymer (GFRP) bars with headed ends in the joint between concrete bridge barriers and decks. The main goals of the study are to evaluate the structural performance of GFRP-reinforced TL-5 barrier–deck systems under transverse loading and to determine the pullout capacity of GFRP anchorage systems for both new construction and retrofit applications. The research is divided into two phases. In the first phase, six full-scale Test-Level 5 (TL-5) barrier wall–deck specimens, divided into three systems, were constructed and tested up to failure. The first system used headed-end GFRP bars to connect the barrier wall to a non-deformable thick deck slab. The second system was similar to the first but had a deck slab overhang for improved anchorage. The third system utilized postinstalled GFRP bars in a non-deformable thick deck slab, bonded with a commercial epoxy adhesive as a solution for deteriorated barrier replacement. The second phase involves an experimental program to evaluate the pullout strength of the GFRP bar anchorage in normal-strength concrete. The experimental results from the tested specimens were then compared to the factored applied moments in existing literature based on traffic loads in the Canadian Highway Bridge Design Code. Experimental results confirmed that GFRP-reinforced TL-5 barrier–deck systems exceeded factored design moments, with capacity-to-demand ratios above 1.38 (above 1.17 with the inclusion of an environmental reduction factor of 0.85). A 195 mm embedment length proved sufficient for both pre- and postinstalled bars. Headed-end GFRP bars improved pullout strength compared to straight-end bars, especially when bonded. Failure modes occurred at high loads, demonstrating structural integrity. Postinstalled bars bonded with epoxy performed comparably to preinstalled bars. A design equation for the barrier resistance due to a diagonal concrete crack at the barrier–deck corner was developed and validated using experimental findings. This equation offers a conservative and safe design approach for evaluating barrier–deck anchorage. Full article
Show Figures

Figure 1

29 pages, 4371 KB  
Article
An Explainable Machine Learning-Based Prediction of Backbone Curves for Reduced Beam Section Connections Under Cyclic Loading
by Emrah Tasdemir, Mustafa Yavuz Cetinkaya, Furkan Uysal and Samer El-Zahab
Buildings 2025, 15(13), 2307; https://doi.org/10.3390/buildings15132307 - 30 Jun 2025
Viewed by 732
Abstract
Reduced Beam Sections (RBS) are used in steel design to promote ductile behavior by shifting inelastic deformation away from critical joints, enhancing seismic performance through controlled energy dissipation. While current design guidelines assist in detailing RBS connections, moment–rotation curves—essential for understanding energy dissipation—require [...] Read more.
Reduced Beam Sections (RBS) are used in steel design to promote ductile behavior by shifting inelastic deformation away from critical joints, enhancing seismic performance through controlled energy dissipation. While current design guidelines assist in detailing RBS connections, moment–rotation curves—essential for understanding energy dissipation—require extensive testing and/or modeling. Machine learning (ML) offers a promising alternative for predicting these curves, yet few studies have explored ML-based approaches, and none, to the best of the authors’ knowledge, have applied Explainable Artificial Intelligence (XAI) to interpret model predictions. This study presents an ML framework using Artificial Neural Networks (ANN), Random Forest (RF), Support Vector Machines (SVM), Gradient Boosting (GB), and Ridge Regression (RR) trained on 500 numerical models to predict the moment–rotation backbone curve of RBS connections under cyclic loading. Among all the models applied, the ANN obtained the highest R2 value of 99.964%, resulting in superior accuracy. Additionally, Shapley values from XAI are employed to evaluate the influence of input parameters on model predictions. The average SHAP values provide important insights into the performance of RBS connections, revealing that cross-sectional characteristics significantly influence moment capacity. In particular, flange thickness (tf), flange width (bf), and the parameter “c” are critical factors, as the flanges contribute the most substantially to resisting bending moments. Full article
Show Figures

Figure 1

27 pages, 9265 KB  
Article
Seismic Behavior and Resilience of an Endplate Rigid Connection for Circular Concrete-Filled Steel Tube Columns
by Yu Gao, Peilin Zhu, Junping Liu and Feng Lou
Buildings 2025, 15(12), 2035; https://doi.org/10.3390/buildings15122035 - 13 Jun 2025
Viewed by 654
Abstract
A novel endplate bolted rigid joint is proposed in this study for connecting circular concrete-filled steel tube (CCFT) columns to wide-flange (WF) steel beams. The seismic performance and potential failure mechanisms of the proposed joint were investigated through quasi-static cyclic tests and finite [...] Read more.
A novel endplate bolted rigid joint is proposed in this study for connecting circular concrete-filled steel tube (CCFT) columns to wide-flange (WF) steel beams. The seismic performance and potential failure mechanisms of the proposed joint were investigated through quasi-static cyclic tests and finite element (FE) simulations. This study aims to address several engineering challenges commonly observed in existing joint configurations, including an irrational force-resisting mechanism, complicated detailing and installation, on-site construction difficulties, constraints on beam size, and limited repairability. By optimizing the force transfer path, the new joint effectively reduces the number of critical tension welds, thereby enhancing the ductility and reliability. The experimental results indicate that the joint exhibits adequate flexural strength, stiffness, and ductility, with stable moment–rotation hysteresis loops under cyclic loading. Moreover, full restoration of the joint can be achieved by replacing only the steel beam and endplate, facilitating post-earthquake repair. FE analysis reveals that, under the ultimate bending moment at the beam end, multiple through cracks develop in the high-strength grout—which serves as a key load-transferring component—and significant debonding occurs between the grout and the surrounding steel members. However, due to confinement from adjacent components, these internal cracks do not compromise the overall strength and stiffness of the joint. This research provides an efficient and practical connection solution, along with valuable experimental insights, for the application of CCFT columns in moment-resisting frames located in high seismic zones. Full article
Show Figures

Figure 1

14 pages, 2268 KB  
Article
Self-Manual Resistance Lat Pulldown Generates a Relatively High Shoulder Adduction Moment and Increases Posterior Deltoid Muscle Activity, with Limited Latissimus Dorsi Activation
by Michiya Tanimoto, Fumiya Nemoto, Hiroaki Noro, Hiroshi Arakawa and Toshio Yanagiya
Biomechanics 2025, 5(2), 33; https://doi.org/10.3390/biomechanics5020033 - 15 May 2025
Viewed by 3493
Abstract
This study investigated kinetic and physiological load characteristics of Self-Manual Resistance Training (SMRT) lat pulldown. SMRT lat pulldown is a training method in which practitioner generates resistance manually using their own muscular force by gripping a towel with both hands and pulling it [...] Read more.
This study investigated kinetic and physiological load characteristics of Self-Manual Resistance Training (SMRT) lat pulldown. SMRT lat pulldown is a training method in which practitioner generates resistance manually using their own muscular force by gripping a towel with both hands and pulling it outward in a horizontal direction. We analyzed shoulder and elbow joint moments in frontal plane (2D) and muscle activity levels of latissimus dorsi (LD), posterior deltoid (PD), biceps brachii (BB), and triceps brachii (TB) during 10 maximal-effort repetitions of SMRT lat pulldown in 11 resistance-trained men. For comparison, we also measured muscle activity levels during a machine lat pulldown for 10 reps at 75% 1 RM load in same participants. Peak shoulder adduction and elbow extension moments during SMRT lat pulldown were both approximately 70% MVC. Mean rectified EMG of LD was significantly greater during machine lat pulldown than SMRT lat pulldown, whereas that of PD was significantly greater during SMRT than machine version. Mean rectified EMG of TB was high during SMRT, and that of BB was high in machine version. SMRT lat pulldown appears to produce relatively large shoulder adduction and elbow extension moments, increasing PD and TB activation and limiting LD activation. Full article
(This article belongs to the Section Sports Biomechanics)
Show Figures

Figure 1

19 pages, 9778 KB  
Article
Experimental and Numerical Research on the Mechanical Properties of a Novel Prefabricated Diaphragm Wall–Beam Joint
by Yang Liu, Guisheng Yang, Chunyu Qi, Peng Zhang, Tao Cui and Ran Song
Buildings 2025, 15(7), 1158; https://doi.org/10.3390/buildings15071158 - 2 Apr 2025
Cited by 2 | Viewed by 802
Abstract
Based on the engineering context of prefabricated underground station structures, this paper proposed a novel diaphragm wall–beam joint based on post-poured ultra-high-performance concrete (UHPC) and non-contact lap-spliced steel bars. This research study designed and conducted a full-scale experiment on the diaphragm wall–beam joints. [...] Read more.
Based on the engineering context of prefabricated underground station structures, this paper proposed a novel diaphragm wall–beam joint based on post-poured ultra-high-performance concrete (UHPC) and non-contact lap-spliced steel bars. This research study designed and conducted a full-scale experiment on the diaphragm wall–beam joints. The failure modes, bearing capacity, overall stiffness, crack resistance performance, and force transmission mechanism of the new diaphragm wall–beam joint were investigated. Additionally, a three-dimensional finite element model (FEM) of the wall–beam joint was developed using the software ABAQUS 2020. The model was validated against experimental results and used for further analysis. The results showed that the tensile through-cracks at the UHPC-diaphragm wall interface characterize the final failure process. The proposed UHPC joint could satisfy the structural design requirements in terms of crack resistance and bearing capacity. No rebar pulled-out damage was observed, and the non-contact lap-spliced length of 10d in the UHPC joint was sufficient. Compared with the traditional cast-in-place concrete joint, the cracking moment and yield moment of the proposed UHPC joint increased by 8.7% and 5.4%, respectively. Full article
Show Figures

Figure 1

21 pages, 3784 KB  
Review
The Development of Continuous Connections for Multi-Span Precast Prestressed Girder Bridges: A Review
by Narek Galustanian, Mohamed T. Elshazli, Harpreet Kaur, Alaa Elsisi and Sarah Orton
CivilEng 2025, 6(2), 16; https://doi.org/10.3390/civileng6020016 - 26 Mar 2025
Viewed by 3781
Abstract
The construction of highway bridges using continuous precast prestressed concrete girders provides an economical solution by minimizing formwork requirements and accelerating construction. Different ways can be used to integrate bridge continuity and enable the development of negative bending moments at piers. Continuous bridge [...] Read more.
The construction of highway bridges using continuous precast prestressed concrete girders provides an economical solution by minimizing formwork requirements and accelerating construction. Different ways can be used to integrate bridge continuity and enable the development of negative bending moments at piers. Continuous bridge connections enhance structural integrity by reducing deflections and distributing loads more efficiently. Research has led to the development of various continuity details, categorized into partial and full integration, to improve performance under diverse loading conditions. This review summarizes studies on both partial and fully integrated continuous bridges, highlighting improvements in connection resilience and the incorporation of advanced construction technologies. While extended deck reinforcement presents an economical solution for partial continuity, it has limitations, especially in longer spans. However, full integration provides additional benefits, such as further reduced deflections and bending moments, contributing to improved overall structural performance. Positive-moment connections using bent bars have shown enhanced performance in achieving continuity, though skewed bridge configurations may reduce the effectiveness of continuity. Ultra-High-Performance Concrete (UHPC) has been identified as a superior material for joint connections, providing greater load capacity, durability, and seismic resistance. Additionally, mechanical splices, such as threaded rod systems, have proven effective in achieving continuity across various load types. The seismic performance of precast prestressed concrete girders relies on robust joint connections, particularly at column–foundation and column–cap points, where reinforcements such as steel plates, fiber-reinforced shells, and unbonded post-tensioning are important for shear and compression transfer. Full article
(This article belongs to the Collection Recent Advances and Development in Civil Engineering)
Show Figures

Figure 1

19 pages, 4835 KB  
Article
Study on the Fire Resistance of Castellated Composite Beams with Semi-Rigid Restraints
by Zongxuan Zhang, Junli Lyu, Guixin Shi, Wenhao Li and Chen Wang
Buildings 2025, 15(7), 1016; https://doi.org/10.3390/buildings15071016 - 21 Mar 2025
Cited by 1 | Viewed by 546
Abstract
To study the fire resistance of castellated composite beams with semi-rigid restraints, temperature rise tests with constant loads were performed on two full-scale castellated composite beams with circular holes and semi-rigid restraints to compare the influence of whether stiffeners were set or not [...] Read more.
To study the fire resistance of castellated composite beams with semi-rigid restraints, temperature rise tests with constant loads were performed on two full-scale castellated composite beams with circular holes and semi-rigid restraints to compare the influence of whether stiffeners were set or not under semi-rigid restraints on the fire resistance of castellated composite beams. The results indicate that during the fire, the primary failure mode of castellated composite beams with semi-rigid restraints is the buckling failure of the web and lower flange in the negative moment zone at the beam end. Composite beams with stiffeners exhibited less buckling of the web and lower flange than those without stiffeners; for steel beams without stiffeners, the web and lower flange show overall lateral instability. Following the fire, the composite beams initially exhibit downward vertical deformation. After 5–10 min, when the web temperature is around 500 °C, it matures upward to the initial position. After 50 min, when the temperature of the web is around 800 °C, it starts to deform downward continuously. During the cooling stage, the end plates at the lower flange of the steel beam and the steel column show a separation phenomenon. By comparing the joint deformation and the mid-span displacement, the fire resistance performance of semi-rigid restrained castellated composite beams is better than that of hinged and rigid restraints. Numerical simulation analyses were carried out on the castellated composite beams. The simulation results showed a high degree of consistency with the test results, which effectively validated the accuracy and reliability of the proposed finite-element model. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 9680 KB  
Article
Flexural Performance of an Innovative Girder-to-Pier Joint for Composite Bridges with Integral Piers: Full-Scale Test
by Wei Xie, Binju Zhang, Litao Yu, Qingtian Su and Fawas O. Matanmi
Materials 2025, 18(5), 1157; https://doi.org/10.3390/ma18051157 - 5 Mar 2025
Cited by 1 | Viewed by 731
Abstract
To reduce the maintenance requirements during the service life of highway bridges and enhance the cracking resistance of concrete slabs in the hogging moment zone of continuous composite girders, this paper proposes an innovative girder-to-pier joint for composite bridges with integral piers. Compared [...] Read more.
To reduce the maintenance requirements during the service life of highway bridges and enhance the cracking resistance of concrete slabs in the hogging moment zone of continuous composite girders, this paper proposes an innovative girder-to-pier joint for composite bridges with integral piers. Compared to the existing ones, this new joint has structural differences. The middle part of the embedded web is hollowed out to facilitate the construction, and the upper and bottom flanges of the steel girder within this joint are widened. Moreover, cast-in-place ultra-high-performance concrete (UHPC) is applied instead of normal concrete (NC) only on the top surface of the pier. A full-scale test was carried out for this new joint to evaluate the load–displacement relationship, load–strain relationship, crack initiation, and crack propagation. Compared with the numerical simulation results of the reference engineering, the test results demonstrated that the proposed joint exhibited excellent flexural performance and cracking resistance. This paper also proposes a calculation method for the elastic flexural capacity of the girder-to-pier joint incorporating the tensile strength of UHPC, and the calculated result was in good agreement with the experimental result. Full article
Show Figures

Figure 1

17 pages, 4773 KB  
Article
Investigation of Passive Controlled Post-Tensioning System on the Structural Behaviour of Precast Reinforced Concrete Beam–Column Connections
by Recep Kadir Pekgokgoz and Ihsan Yakut
Buildings 2024, 14(12), 3910; https://doi.org/10.3390/buildings14123910 - 6 Dec 2024
Cited by 1 | Viewed by 1192
Abstract
Precast structures are widely used in many parts of the world. This construction technique is more commonly preferred for low-rise industrial buildings than multi-story structures. The most commonly used column–beam connection in precast buildings is the dowel connection (DC). Past earthquakes in various [...] Read more.
Precast structures are widely used in many parts of the world. This construction technique is more commonly preferred for low-rise industrial buildings than multi-story structures. The most commonly used column–beam connection in precast buildings is the dowel connection (DC). Past earthquakes in various parts of the world have shown that these connections do not provide sufficient resistance. The main deficiencies of such connections are that they are sheared or stripped due to the shear force demand from the in-plane effects of large earthquakes, and that they do not provide sufficient resistance to the overturning moments from the out-of-plane effects of the earthquakes. Correspondingly, many prefabricated buildings have collapsed during earthquakes, causing loss of life and property. This study proposes using post-tensioning tendon (PT) systems and systems created by adding steel springs (PTS) to eliminate the weaknesses in column–beam connections in precast structures. To this end, real-sized column and beam specimens used in precast buildings were produced, and experiments were conducted under the cyclic loads defined by the American Concrete Institute (ACI) Committee, Report 374, simulating earthquake effects for three different connection types (DC, PT, and PTS). It was observed that the proposed PTS connection type dissipated approximately one-third of the energy transferred to the joint through elastic deformation in the springs, compared to the DC and PT connection types. This indicates that the PTS specimens transferred significantly less energy to the column–beam connection region. Consequently, the PTS system exhibited much less damage in the column foundation and especially the column–beam connection areas than other test specimens. In conclusion, it can be stated that the use of the PTS connection type in prefabricated structures has high potential to reduce damages due to dynamic loads such as earthquakes. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

28 pages, 13055 KB  
Article
Structural Behavior of Full-Depth Deck Panels Having Developed Closure Strips Reinforced with GFRP Bars and Filled with UHPFRC
by Mahmoud Sayed Ahmed, Khaled Sennah and Hamdy M. Afefy
J. Compos. Sci. 2024, 8(11), 468; https://doi.org/10.3390/jcs8110468 - 12 Nov 2024
Cited by 6 | Viewed by 1403
Abstract
The adoption of prefabricated elements and systems (PBES) in accelerating bridge construction (ABC) and rapidly replacing aging infrastructure has attracted considerable attention from bridge authorities. These prefabricated components facilitate quick assembly, which diminishes the environmental footprint at the construction site, alleviates delays and [...] Read more.
The adoption of prefabricated elements and systems (PBES) in accelerating bridge construction (ABC) and rapidly replacing aging infrastructure has attracted considerable attention from bridge authorities. These prefabricated components facilitate quick assembly, which diminishes the environmental footprint at the construction site, alleviates delays and lane closures, reduces disruption for the traveling public, and ultimately conserves both time and taxpayer resources. The current paper explores the structural behavior of a reinforced concrete (RC) precast full-depth deck panel (FDDP) having 175 mm projected glass-fiber-reinforced polymer (GFRP) bars embedded into a 200 mm wide closure strip filled with ultra-high-performance fiber-reinforced concrete (UHPFRC). Three joint details for moment-resisting connections (MRCs), named the angle joint, C-joint, and zigzag joint, were constructed and loaded to collapse. The controlled slabs and mid-span-connected precast FDDPs were statically loaded to collapse under concentric or eccentric wheel loading. The moment capacity of the controlled slab reinforced with GFRP bars compared with the concrete slab reinforced with steel reinforcing bars was less than 15% for the same reinforcement ratio. The precast FDDPs showed very similar results to those of the controlled slab reinforced with GFRP bars. The RC slab reinforced by steel reinforcing bars failed in the flexural mode, while the slab reinforced by GFRP bars failed in flexural-shear one. Full article
(This article belongs to the Special Issue Novel Cement and Concrete Materials)
Show Figures

Figure 1

Back to TopTop