Advanced Research on Seismic Performance of Steel Structures

A special issue of Buildings (ISSN 2075-5309). This special issue belongs to the section "Building Structures".

Deadline for manuscript submissions: closed (31 July 2025) | Viewed by 578

Special Issue Editor


E-Mail Website
Guest Editor
Department of Structures for Engineering and Architecture, University of Naples Federico, 80131 Naples, Italy
Interests: steel structures; seismic design; bracings; seismic code; steel beam-to-column joints; Eurocode 8
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The seismic performance of steel structures remains a key focus of civil engineering research due to their widespread application in high-risk seismic zones and their inherent ductility and adaptability.

This Special Issue will explore innovative methodologies aimed at enhancing the seismic resilience of steel structures, paying attention to both traditional and innovative seismic resisting steel systems and devices.

We welcome contributions addressing various aspects, including but not limited to the following:

  • Design and assessment of steel structures;
  • Numerical and experimental investigations;
  • Seismic hazard analyses;
  • Seismic loss estimation.

We look forward to your valuable contributions to this exciting Special Issue.

Dr. Silvia Costanzo
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Buildings is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • seismic design
  • earthquake
  • buildings
  • seismic performance
  • numerical simulation
  • experimental investigation
  • seismic hazard
  • seismic loss
  • energy dissipation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 4059 KB  
Article
Robustness of Steel Moment-Resisting Frames Under Column Loss Scenarios with and without Prior Seismic Damage
by Silvia Costanzo, David Cassiano and Mario D’Aniello
Buildings 2025, 15(14), 2490; https://doi.org/10.3390/buildings15142490 - 16 Jul 2025
Viewed by 352
Abstract
This study investigates the robustness of steel moment-resisting frames (MRFs) under column loss scenarios, both in undamaged and post-seismic conditions. In this context, robustness is defined as the ability of a damaged structure to prevent progressive collapse following an earthquake. A parametric investigation [...] Read more.
This study investigates the robustness of steel moment-resisting frames (MRFs) under column loss scenarios, both in undamaged and post-seismic conditions. In this context, robustness is defined as the ability of a damaged structure to prevent progressive collapse following an earthquake. A parametric investigation was conducted on 48 three-dimensional MRF configurations, varying key design and geometric parameters such as the number of storeys, span length, and design load combinations. Nonlinear dynamic analyses were performed using realistic ground motions and column loss scenarios defined by UFC guidelines. The effects of pre-existing seismic damage, façade claddings, and joint typologies were explicitly accounted for using validated component-based modelling approaches. The results indicate that long-span, low-rise frames are more vulnerable to collapse initiation due to higher plastic demands, while higher-rise frames benefit from load redistribution through their increased redundancy. In detail, long-span, low-rise frames experience roughly ten times higher displacement demands than their short-span counterparts, and post-seismic damage has limited influence, yielding rotational demands within 5–10% of the undamaged case. The Reserve Displacement Ductility (RDR) ranges from approximately 6.3 for low-rise, long-span frames to 21.5 for high-rise frames, highlighting the significant role of geometry in post-seismic robustness. The post-seismic damage was found to have a limited influence on the dynamic displacement and rotational demands, suggesting that the robustness of steel MRFs after a moderate earthquake is largely comparable to that of the initially undamaged structure. These findings support the development of more accurate design and retrofit provisions for seismic and multi-hazard scenarios. Full article
(This article belongs to the Special Issue Advanced Research on Seismic Performance of Steel Structures)
Show Figures

Figure 1

Back to TopTop