Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (887)

Search Parameters:
Keywords = moisture vegetation indexes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6618 KiB  
Article
Comparison of Deep Learning Models for LAI Simulation and Interpretable Hydrothermal Coupling in the Loess Plateau
by Junpo Yu, Yajun Si, Wen Zhao, Zeyu Zhou, Jiming Jin, Wenjun Yan, Xiangyu Shao, Zhixiang Xu and Junwei Gan
Plants 2025, 14(15), 2391; https://doi.org/10.3390/plants14152391 (registering DOI) - 2 Aug 2025
Abstract
As the world’s largest loess deposit region, the Loess Plateau’s vegetation dynamics are crucial for its regional water–heat balance and ecosystem functioning. Leaf Area Index (LAI) serves as a key indicator bridging canopy architecture and plant physiological activities. Existing studies have made significant [...] Read more.
As the world’s largest loess deposit region, the Loess Plateau’s vegetation dynamics are crucial for its regional water–heat balance and ecosystem functioning. Leaf Area Index (LAI) serves as a key indicator bridging canopy architecture and plant physiological activities. Existing studies have made significant advancements in simulating LAI, yet accurate LAI simulation remains challenging. To address this challenge and gain deeper insights into the environmental controls of LAI, this study aims to accurately simulate LAI in the Loess Plateau using deep learning models and to elucidate the spatiotemporal influence of soil moisture and temperature on LAI dynamics. For this purpose, we used three deep learning models, namely Artificial Neural Network (ANN), Long Short-Term Memory (LSTM), and Interpretable Multivariable (IMV)-LSTM, to simulate LAI in the Loess Plateau, only using soil moisture and temperature as inputs. Results indicated that our approach outperformed traditional models and effectively captured LAI variations across different vegetation types. The attention analysis revealed that soil moisture mainly influenced LAI in the arid northwest and temperature was the predominant effect in the humid southeast. Seasonally, soil moisture was crucial in spring and summer, notably in grasslands and croplands, whereas temperature dominated in autumn and winter. Notably, forests had the longest temperature-sensitive periods. As LAI increased, soil moisture became more influential, and at peak LAI, both factors exerted varying controls on different vegetation types. These findings demonstrated the strength of deep learning for simulating vegetation–climate interactions and provided insights into hydrothermal regulation mechanisms in semiarid regions. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

20 pages, 11785 KiB  
Article
Spatiotemporal Variation in NDVI in the Sunkoshi River Watershed During 2000–2021 and Its Response to Climate Factors and Soil Moisture
by Zhipeng Jian, Qinli Yang, Junming Shao, Guoqing Wang and Vishnu Prasad Pandey
Water 2025, 17(15), 2232; https://doi.org/10.3390/w17152232 - 26 Jul 2025
Viewed by 351
Abstract
Given that the Sunkoshi River watershed (located in the southern foot of the Himalayas) is sensitive to climate change and its mountain ecosystem provides important services, we aim to evaluate its spatial and temporal variation patterns of vegetation, represented by the Normalized Difference [...] Read more.
Given that the Sunkoshi River watershed (located in the southern foot of the Himalayas) is sensitive to climate change and its mountain ecosystem provides important services, we aim to evaluate its spatial and temporal variation patterns of vegetation, represented by the Normalized Difference Vegetation Index (NDVI), during 2000–2021 and identify the dominant driving factors of vegetation change. Based on the NDVI dataset (MOD13A1), we used the simple linear trend model, seasonal and trend decomposition using loess (STL) method, and Mann–Kendall test to investigate the spatiotemporal variation features of NDVI during 2000–2021 on multiple scales (annual, seasonal, monthly). We used the partial correlation coefficient (PCC) to quantify the response of the NDVI to land surface temperature (LST), precipitation, humidity, and soil moisture. The results indicate that the annual NDVI in 52.6% of the study area (with elevation of 1–3 km) increased significantly, while 0.9% of the study area (due to urbanization) degraded significantly during 2000–2021. Daytime LST dominates NDVI changes on spring, summer, and winter scales, while precipitation, soil moisture, and nighttime LST are the primary impact factors on annual NDVI changes. After removing the influence of soil moisture, the contributions of climate factors to NDVI change are enhanced. Precipitation shows a 3-month lag effect and a 5-month cumulative effect on the NDVI; both daytime LST and soil moisture have a 4-month lag effect on the NDVI; and humidity exhibits a 2-month cumulative effect on the NDVI. Overall, the study area turned green during 2000–2021. The dominant driving factors of NDVI change may vary on different time scales. The findings will be beneficial for climate change impact assessment on the regional eco-environment, and for integrated watershed management. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

9 pages, 1701 KiB  
Proceeding Paper
Phenological Evaluation in Ravine Forests Through Remote Sensing and Topographic Analysis: Case of Los Nogales Nature Sanctuary, Metropolitan Region of Chile
by Jesica Garrido-Leiva, Leonardo Durán-Gárate, Dylan Craven and Waldo Pérez-Martínez
Eng. Proc. 2025, 94(1), 9; https://doi.org/10.3390/engproc2025094009 - 22 Jul 2025
Viewed by 202
Abstract
Ravine forests are key to conserving biodiversity and maintaining ecosystem processes in fragmented landscapes. Here, we evaluated the phenology of plant species in the Los Nogales Nature Sanctuary (Lo Barnechea, Chile) using Sentinel-2 images (2019–2024) and the Alos Palsar DEM (12.5 m). We [...] Read more.
Ravine forests are key to conserving biodiversity and maintaining ecosystem processes in fragmented landscapes. Here, we evaluated the phenology of plant species in the Los Nogales Nature Sanctuary (Lo Barnechea, Chile) using Sentinel-2 images (2019–2024) and the Alos Palsar DEM (12.5 m). We calculated the Normalized Difference Vegetation Index (NDVI), the Topographic Position Index (TPI), and Diurnal Anisotropic Heat (DAH) to assess vegetation dynamics across different topographic and thermal gradients. Generalized Additive Models (GAM) revealed that tree species exhibited more stable, regular seasonal NDVI trajectories, while shrubs showed moderate fluctuations, and herbaceous species displayed high interannual variability, likely reflecting sensitivity to climatic events. Spatial analysis indicated that trees predominated on steep slopes and higher elevations, herbs were concentrated in low-lying, moisture-retaining areas, and shrubs were more common in areas with higher thermal load. These findings highlight the significant role of terrain and temperature in shaping plant phenology and distribution, underscoring the utility of remote sensing and topographic indices for monitoring ecological processes in complex mountainous environments. Full article
Show Figures

Figure 1

25 pages, 9183 KiB  
Article
Development and Evaluation of the Forest Drought Response Index (ForDRI): An Integrated Tool for Monitoring Drought Stress Across Forest Ecosystems in the Contiguous United States
by Tsegaye Tadesse, Stephanie Connolly, Brian Wardlow, Mark Svoboda, Beichen Zhang, Brian A. Fuchs, Hasnat Aslam, Christopher Asaro, Frank H. Koch, Tonya Bernadt, Calvin Poulsen, Jeff Wisner, Jeffrey Nothwehr, Ian Ratcliffe, Kelsey Varisco, Lindsay Johnson and Curtis Riganti
Forests 2025, 16(7), 1187; https://doi.org/10.3390/f16071187 - 18 Jul 2025
Viewed by 336
Abstract
Forest drought monitoring tools are crucial for managing tree water stress and enhancing ecosystem resilience. The Forest Drought Response Index (ForDRI) was developed to monitor drought conditions in forested areas across the contiguous United States (CONUS), integrating vegetation health, climate data, groundwater, and [...] Read more.
Forest drought monitoring tools are crucial for managing tree water stress and enhancing ecosystem resilience. The Forest Drought Response Index (ForDRI) was developed to monitor drought conditions in forested areas across the contiguous United States (CONUS), integrating vegetation health, climate data, groundwater, and soil moisture content. This study evaluated ForDRI using Pearson correlations with the Bowen Ratio (BR) at 24 AmeriFlux sites and Spearman correlations with the Tree-Ring Growth Index (TRSGI) at 135 sites, along with feedback from 58 stakeholders. CONUS was divided into four forest subgroups: (1) the West/Pacific Northwest, (2) Rocky Mountains/Southwest, (3) East/Northeast, and (4) South/Central/Southeast Forest regions. Strong positive ForDRI-TRSGI correlations (ρ > 0.7, p < 0.05) were observed in the western regions, where drought significantly impacts growth, while moderate alignment with BR (R = 0.35–0.65, p < 0.05) was noted. In contrast, correlations in Eastern and Southern forests were weak to moderate (ρ = 0.4–0.6 for TRSGI and R = 0.1–0.3 for BR). Stakeholders’ feedback indicated that ForDRI realistically maps historical drought years and recent trends, though suggestions for improvements, including trend maps and enhanced visualizations, were made. ForDRI is a valuable complementary tool for monitoring forest droughts and informing management decisions. Full article
(This article belongs to the Special Issue Impacts of Climate Extremes on Forests)
Show Figures

Figure 1

22 pages, 3162 KiB  
Article
Assessing Mangrove Forest Recovery in the British Virgin Islands After Hurricanes Irma and Maria with Sentinel-2 Imagery and Google Earth Engine
by Michael R. Routhier, Gregg E. Moore, Barrett N. Rock, Stanley Glidden, Matthew Duckett and Susan Zaluski
Remote Sens. 2025, 17(14), 2485; https://doi.org/10.3390/rs17142485 - 17 Jul 2025
Viewed by 827
Abstract
Mangroves form the dominant coastal plant community of low-energy tropical intertidal habitats and provide critical ecosystem services to humans and the environment. However, more frequent and increasingly powerful hurricanes and storm surges are creating additional pressure on the natural resilience of these threatened [...] Read more.
Mangroves form the dominant coastal plant community of low-energy tropical intertidal habitats and provide critical ecosystem services to humans and the environment. However, more frequent and increasingly powerful hurricanes and storm surges are creating additional pressure on the natural resilience of these threatened coastal ecosystems. Advances in remote sensing techniques and approaches are critical to providing robust quantitative monitoring of post-storm mangrove forest recovery to better prioritize the often-limited resources available for the restoration of these storm-damaged habitats. Here, we build on previously utilized spatial and temporal ranges of European Space Agency (ESA) Sentinel satellite imagery to monitor and map the recovery of the mangrove forests of the British Virgin Islands (BVI) since the occurrence of back-to-back category 5 hurricanes, Irma and Maria, on September 6 and 19 of 2017, respectively. Pre- to post-storm changes in coastal mangrove forest health were assessed annually using the normalized difference vegetation index (NDVI) and moisture stress index (MSI) from 2016 to 2023 using Google Earth Engine. Results reveal a steady trajectory towards forest health recovery on many of the Territory’s islands since the storms’ impacts in 2017. However, some mangrove patches are slower to recover, such as those on the islands of Virgin Gorda and Jost Van Dyke, and, in some cases, have shown a continued decline (e.g., Prickly Pear Island). Our work also uses a linear ANCOVA model to assess a variety of geospatial, environmental, and anthropogenic drivers for mangrove recovery as a function of NDVI pre-storm and post-storm conditions. The model suggests that roughly 58% of the variability in the 7-year difference (2016 to 2023) in NDVI may be related by a positive linear relationship with the variable of population within 0.5 km and a negative linear relationship with the variables of northwest aspect vs. southwest aspect, island size, temperature, and slope. Full article
(This article belongs to the Special Issue Remote Sensing in Mangroves IV)
Show Figures

Figure 1

25 pages, 7406 KiB  
Article
Landslide Susceptibility Level Mapping in Kozhikode, Kerala, Using Machine Learning-Based Random Forest, Remote Sensing, and GIS Techniques
by Pradeep Kumar Badapalli, Anusha Boya Nakkala, Raghu Babu Kottala, Sakram Gugulothu, Fahdah Falah Ben Hasher, Varun Narayan Mishra and Mohamed Zhran
Land 2025, 14(7), 1453; https://doi.org/10.3390/land14071453 - 12 Jul 2025
Viewed by 1082
Abstract
Landslides are among the most destructive natural hazards in the Western Ghats region of Kerala, driven by complex interactions between geological, hydrological, and anthropogenic factors. This study aims to generate a high-resolution Landslide Susceptibility Level Map (LSLM) using a machine learning (ML)-based Random [...] Read more.
Landslides are among the most destructive natural hazards in the Western Ghats region of Kerala, driven by complex interactions between geological, hydrological, and anthropogenic factors. This study aims to generate a high-resolution Landslide Susceptibility Level Map (LSLM) using a machine learning (ML)-based Random Forest (RF) model integrated with Geographic Information Systems (GIS). A total of 231 historical landslide locations obtained from the Bhukosh portal were used as reference data. Eight predictive factors—Stream Order, Drainage Density, Slope, Aspect, Geology, Land Use/Land Cover (LULC), Normalized Difference Vegetation Index (NDVI), and Moisture Stress Index (MSI)—were derived from remote sensing and ancillary datasets, preprocessed, and reclassified for model input. The RF model was trained and validated using a 50:50 split of landslide and non-landslide points, with variable importance values derived to weight each predictive factor of the raster layer in ArcGIS. The resulting Landslide Susceptibility Index (LSI) was reclassified into five susceptibility zones: Very Low, Low, Moderate, High, and Very High. Results indicate that approximately 17.82% of the study area falls under high to very high susceptibility, predominantly in the steep, weathered, and high rainfall zones of the Western Ghats. Validation using Area Under the Curve–Receiver Operating Characteristic (AUC-ROC) analysis yielded an accuracy of 0.890, demonstrating excellent model performance. The output LSM provides valuable spatial insights for planners, disaster managers, and policymakers, enabling targeted mitigation strategies and sustainable land-use planning in landslide-prone regions. Full article
Show Figures

Figure 1

27 pages, 50073 KiB  
Article
A Spatiotemporal Analysis of Drought Conditions Framework in Vast Paddy Cultivation Areas of Thung Kula Ronghai, Thailand
by Pariwate Varnakovida, Nathapat Punturasan, Usa Humphries, Anisara Tibkaew and Sornkitja Boonprong
Agriculture 2025, 15(14), 1503; https://doi.org/10.3390/agriculture15141503 - 12 Jul 2025
Viewed by 375
Abstract
This study presents an integrated spatiotemporal assessment of drought conditions in the Thung Kula Ronghai region of Northeastern Thailand from 2001 to 2023. Multiple satellite-derived drought indices, including SPI, SPEI, RDI, and AI, together with NDVI anomalies, were used to detect seasonal and [...] Read more.
This study presents an integrated spatiotemporal assessment of drought conditions in the Thung Kula Ronghai region of Northeastern Thailand from 2001 to 2023. Multiple satellite-derived drought indices, including SPI, SPEI, RDI, and AI, together with NDVI anomalies, were used to detect seasonal and long-term drought dynamics affecting rainfed Hom Mali rice production. The results show that dry season droughts now affect up to 17 percent of the region’s agricultural land in some years, while severe drought zones persist across more than 2.5 million hectares over the 20-year period. In the most recent 5 years, approximately 50 percent of cultivated areas experienced moderate to severe drought conditions. The RDI showed the strongest correlation with NDVI anomalies (r = 0.22), indicating its relative value for assessing vegetation response to moisture deficits. The combined index approach delineated high-risk sub-regions, particularly in central Thung Kula Ronghai and lower Surin, where drought frequency and severity have intensified. These findings underscore the region’s increasing exposure to dry-season water stress and highlight the need for site-specific irrigation development and adaptive cropping strategies. The methodological framework demonstrated here provides a practical basis for improving drought monitoring and early warning systems to support the resilience of Thailand’s high-value rice production under changing climate conditions. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

22 pages, 2762 KiB  
Article
Assessing the Impact of Environmental and Management Variables on Mountain Meadow Yield and Feed Quality Using a Random Forest Model
by Adrián Jarne, Asunción Usón and Ramón Reiné
Plants 2025, 14(14), 2150; https://doi.org/10.3390/plants14142150 - 11 Jul 2025
Viewed by 341
Abstract
Seasonal climate variability and agronomic management profoundly influence both the productivity and nutritive value of temperate hay meadows. We analyzed five years of data (2019, 2020, 2022–2024) from 15 meadows in the central Spanish Pyrenees to quantify how environmental variables (January–June minimum temperatures, [...] Read more.
Seasonal climate variability and agronomic management profoundly influence both the productivity and nutritive value of temperate hay meadows. We analyzed five years of data (2019, 2020, 2022–2024) from 15 meadows in the central Spanish Pyrenees to quantify how environmental variables (January–June minimum temperatures, rainfall), management variables (fertilization rates (N, P, K), livestock load, cutting date), and vegetation (plant biodiversity (Shannon index)) drive total biomass yield (kg ha−1), protein content (%), and Relative Feed Value (RFV). Using Random Forest regression with rigorous cross-validation, our yield model achieved an R2 of 0.802 (RMSE = 983.8 kg ha−1), the protein model an R2 of 0.786 (RMSE = 1.71%), and the RFV model an R2 of 0.718 (RMSE = 13.86). Variable importance analyses revealed that March rainfall was the dominant predictor of yield (importance = 0.430), reflecting the critical role of early-spring moisture in tiller establishment and canopy development. In contrast, cutting date exerted the greatest influence on protein (importance = 0.366) and RFV (importance = 0.344), underscoring the sensitivity of forage quality to harvest timing. Lower minimum temperatures—particularly in March and May—and moderate livestock densities (up to 1 LU) were also positively associated with enhanced protein and RFV, whereas higher biodiversity (Shannon ≥ 3) produced modest gains in feed quality without substantial yield penalties. These findings suggest that adaptive management—prioritizing soil moisture conservation in early spring, timely harvesting, balanced grazing intensity, and maintenance of plant diversity—can optimize both the quantity and quality of hay meadow biomass under variable climatic conditions. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

17 pages, 5798 KiB  
Article
Microbial Allies from the Cold: Antarctic Fungal Endophytes Improve Maize Performance in Water-Limited Fields
by Yessica San Miguel, Rómulo Santelices-Moya, Antonio M. Cabrera-Ariza and Patricio Ramos
Plants 2025, 14(14), 2118; https://doi.org/10.3390/plants14142118 - 9 Jul 2025
Viewed by 363
Abstract
Climate change has intensified drought stress, threatening global food security by affecting sensitive crops like maize (Zea mays). This study evaluated the potential of Antarctic fungal endophytes (Penicillium chrysogenum and P. brevicompactum) to enhance maize drought tolerance under field [...] Read more.
Climate change has intensified drought stress, threatening global food security by affecting sensitive crops like maize (Zea mays). This study evaluated the potential of Antarctic fungal endophytes (Penicillium chrysogenum and P. brevicompactum) to enhance maize drought tolerance under field conditions with different irrigation regimes. Drought stress reduced soil moisture to 59% of field capacity. UAV-based multispectral imagery monitored plant physiological status using vegetation indices (NDVI, NDRE, SIPI, GNDVI). Inoculated plants showed up to two-fold higher index values under drought, indicating improved stress resilience. Physiological analysis revealed increased photochemical efficiency (0.775), higher chlorophyll and carotenoid contents (45.54 mg/mL), and nearly 80% lower lipid peroxidation in inoculated plants. Lower proline accumulation suggested better water status and reduced osmotic stress. Secondary metabolites such as phenolics, flavonoids, and anthocyanins were elevated, particularly under well-watered conditions. Antioxidant enzyme activity shifted: SOD, CAT, and APX were suppressed, while POD activity increased, indicating reprogrammed oxidative stress responses. Yield components, including cob weight and length, improved significantly with inoculation under drought. These findings demonstrate the potential of Antarctic endophytes to enhance drought resilience in maize and underscore the value of integrating microbial biotechnology with UAV-based remote sensing for sustainable crop management under climate-induced water scarcity. Full article
(This article belongs to the Special Issue Plant-Microbiome Interactions)
Show Figures

Figure 1

20 pages, 4973 KiB  
Article
Remote Sensing and Critical Slowing Down Modeling Reveal Vegetation Resilience in the Three Gorges Reservoir Area, China
by Liangliang Zhang, Nan Yang, Bingkun Zhao, Jun Xie, Xiaofei Sun, Shunlin Liang, Huaiyong Shao and Jinhui Wu
Remote Sens. 2025, 17(13), 2297; https://doi.org/10.3390/rs17132297 - 4 Jul 2025
Viewed by 378
Abstract
Globally, ecosystems are affected by climate change, human activities, and natural disasters, which impact ecosystem quality and stability. Vegetation plays a crucial role in ecosystem material cycle and energy transformation, making it important to monitor its resilience under disturbance stress. The Critical Slowing [...] Read more.
Globally, ecosystems are affected by climate change, human activities, and natural disasters, which impact ecosystem quality and stability. Vegetation plays a crucial role in ecosystem material cycle and energy transformation, making it important to monitor its resilience under disturbance stress. The Critical Slowing Down (CSD) indicates that as ecosystems near collapse, the autocorrelation of lag temporal increases and resilience decreases. We used the lag Temporal Autocorrelation (TAC) of long-term remote sensing Leaf Area Index (LAI) to monitor vegetation resilience in the Three Gorges Reservoir Area (TGRA). The Disturbance Event Model (DEM) was used to validate the CSD. The results showed the following: (1) The eastern TGRA exhibited high and increasing vegetation resilience, while most areas showed a decline. (2) Among the various vegetation types, forests demonstrated higher resilience than other vegetation types. (3) Precipitation, temperature, and soil moisture significantly influenced vegetation resilience dynamics within the TGRA. (4) For model accuracy, the CSD’s results were consistent with the DEM, confirming its applicability in the TGRA. Overall, the CSD when applied to long-term remote sensing data, provided valuable quantitative indicators for vegetation resilience. Furthermore, more CSD-based indicators are needed to analyze vegetation resilience dynamics and better understand the biological processes determining vegetation degradation and restoration. Full article
Show Figures

Figure 1

29 pages, 9775 KiB  
Article
Identifying Extreme Heat and Moisture Zones for Vulnerable Populations in Athens: A Geospatial Analysis
by George Faidon D. Papakonstantinou
Land 2025, 14(7), 1375; https://doi.org/10.3390/land14071375 - 30 Jun 2025
Viewed by 493
Abstract
Urban environments are increasingly affected by extreme weather conditions, posing significant risks to vulnerable populations, such as the homeless. This research applies geospatial analysis to identify areas of extreme heat and moisture within the Athens metropolitan area in Greece. The analysis utilizes satellite-derived [...] Read more.
Urban environments are increasingly affected by extreme weather conditions, posing significant risks to vulnerable populations, such as the homeless. This research applies geospatial analysis to identify areas of extreme heat and moisture within the Athens metropolitan area in Greece. The analysis utilizes satellite-derived land surface temperature (LST), vegetation density index (NDVI), build-up density index (NDBI), Topographic Wetness Index (TWI), and other terrain-based factors to develop high-fidelity risk zones. These zones are critical for informing targeted interventions and policy measures aimed at protecting vulnerable groups from heat waves and extreme moisture. This research integrates a geospatial analysis approach for mapping and evaluating heat and moisture vulnerability zones. This approach integrates remote sensing data, GIS-based modeling, and terrain analysis. The findings can provide local authorities and social services with the necessary information to design adaptive strategies for climate change resilience. Full article
Show Figures

Figure 1

24 pages, 7043 KiB  
Article
Machine Learning-Based Detection of Archeological Sites Using Satellite and Meteorological Data: A Case Study of Funnel Beaker Culture Tombs in Poland
by Krystian Kozioł, Natalia Borowiec, Urszula Marmol, Mateusz Rzeszutek, Celso Augusto Guimarães Santos and Jerzy Czerniec
Remote Sens. 2025, 17(13), 2225; https://doi.org/10.3390/rs17132225 - 28 Jun 2025
Viewed by 383
Abstract
The detection of archeological sites in satellite imagery is often hindered by environmental constraints such as vegetation cover and variability in meteorological conditions, which affect the visibility of subsurface structures. This study aimed to develop predictive models for assessing archeological site visibility in [...] Read more.
The detection of archeological sites in satellite imagery is often hindered by environmental constraints such as vegetation cover and variability in meteorological conditions, which affect the visibility of subsurface structures. This study aimed to develop predictive models for assessing archeological site visibility in satellite imagery by integrating vegetation indices and meteorological data using machine learning techniques. The research focused on megalithic tombs associated with the Funnel Beaker culture in Poland. The primary objective was to create models capable of detecting archeological features under varying environmental conditions, thereby enhancing the efficiency of field surveys and reducing associated costs. To this end, a combination of vegetation indices and meteorological parameters was employed. Key indices—including the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Normalized Difference Moisture Index (NDMI), and Normalized Archeological Index (NAI)—were analyzed alongside meteorological variables such as wind speed, temperature, humidity, and total precipitation. By integrating these datasets, the study evaluated how environmental conditions influence the visibility of archeological sites in satellite imagery. The machine learning models, including logistic regression and decision tree-based algorithms, demonstrated strong potential for predicting site visibility. The highest predictive accuracy was achieved during periods of high soil moisture variability and fluctuating weather conditions. These findings enabled the development of visibility prediction maps, guiding the optimal timing of aerial surveys and minimizing the risk of unsuccessful data acquisition. The results underscore the effectiveness of integrating meteorological data with satellite imagery in archeological research. The proposed approach not only improves site detection but also reduces operational costs by concentrating resources on optimal survey conditions. Furthermore, the methodology is applicable to diverse archeological contexts, enhancing the capacity to locate and document heritage sites across varying environmental settings. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Figure 1

35 pages, 9804 KiB  
Article
LAI-Derived Atmospheric Moisture Condensation Potential for Forest Health and Land Use Management
by Jung-Jun Lin and Ali Nadir Arslan
Remote Sens. 2025, 17(12), 2104; https://doi.org/10.3390/rs17122104 - 19 Jun 2025
Viewed by 394
Abstract
The interaction between atmospheric moisture condensation (AMC) on leaf surfaces and vegetation health is an emerging area of research, particularly relevant for advancing our understanding of water–vegetation dynamics in the contexts of remote sensing and hydrology. AMC, particularly in the form of dew, [...] Read more.
The interaction between atmospheric moisture condensation (AMC) on leaf surfaces and vegetation health is an emerging area of research, particularly relevant for advancing our understanding of water–vegetation dynamics in the contexts of remote sensing and hydrology. AMC, particularly in the form of dew, plays a vital role in both hydrological and ecological processes. The presence of AMC on leaf surfaces serves as an indicator of leaf water potential and overall ecosystem health. However, the large-scale assessment of AMC on leaf surfaces remains limited. To address this gap, we propose a leaf area index (LAI)-derived condensation potential (LCP) index to estimate potential dew yield, thereby supporting more effective land management and resource allocation. Based on psychrometric principles, we apply the nocturnal condensation potential index (NCPI), using dew point depression (ΔT = Ta − Td) and vapor pressure deficit derived from field meteorological data. Kriging interpolation is used to estimate the spatial and temporal variations in the AMC. For management applications, we develop a management suitability score (MSS) and prioritization (MSP) framework by integrating the NCPI and the LAI. The MSS values are classified into four MSP levels—High, Moderate–High, Moderate, and Low—using the Jenks natural breaks method, with thresholds of 0.15, 0.27, and 0.37. This classification reveals cases where favorable weather conditions coincide with low ecological potential (i.e., low MSS but high MSP), indicating areas that may require active management. Additionally, a pairwise correlation analysis shows that the MSS varies significantly across different LULC types but remains relatively stable across groundwater potential zones. This suggests that the MSS is more responsive to the vegetation and micrometeorological variability inherent in LULC, underscoring its unique value for informed land use management. Overall, this study demonstrates the added value of the LAI-derived AMC modeling for monitoring spatiotemporal micrometeorological and vegetation dynamics. The MSS and MSP framework provides a scalable, data-driven approach to adaptive land use prioritization, offering valuable insights into forest health improvement and ecological water management in the face of climate change. Full article
Show Figures

Figure 1

21 pages, 6504 KiB  
Article
Drought Amplifies the Suppressive Effect of Afforestation on Net Primary Productivity in Semi-Arid Ecosystems: A Case Study of the Yellow River Basin
by Futao Wang, Ziqi Zhang, Mingxuan Du, Jianzhong Lu and Xiaoling Chen
Remote Sens. 2025, 17(12), 2100; https://doi.org/10.3390/rs17122100 - 19 Jun 2025
Viewed by 451
Abstract
As a critical ecologicalbarrier in the semi-arid to semi-humid transition zone of northern China, the interaction between afforestation and climatic stressors in the Yellow River Basin constitutes a pivotal scientific challenge for regional sustainable development. However, the synthesis effects of afforestation and climate [...] Read more.
As a critical ecologicalbarrier in the semi-arid to semi-humid transition zone of northern China, the interaction between afforestation and climatic stressors in the Yellow River Basin constitutes a pivotal scientific challenge for regional sustainable development. However, the synthesis effects of afforestation and climate on primary productivity require further investigation. Integrating multi-source remote sensing data (2000–2020), meteorological observations with the Standardized Precipitation Evapotranspiration Index (SPEI) and an improved CASA model, this study systematically investigates spatiotemporal patterns of vegetation net primary productivity (NPP) responses to extreme drought events while quantifying vegetation coverage’s regulatory effects on ecosystem drought sensitivity. Among drought events identified using a three-dimensional clustering algorithm, high-intensity droughts caused an average NPP loss of 23.2 gC·m−2 across the basin. Notably, artificial irrigation practices in the Hetao irrigation district significantly mitigated NPP reduction to −9.03 gC·m−2. Large-scale afforestation projects increased the NDVI at a rate of 3.45 × 10−4 month−1, with a contribution rate of 78%, but soil moisture competition from high-density vegetation reduced carbon-sink benefits. However, mixed forest structural optimization in the Three-North Shelterbelt Forest Program core area achieved local carbon-sink gains, demonstrating that vegetation configuration alleviates water competition pressure. Drought amplified the suppressive effect of afforestation through stomatal conductance-photosynthesis coupling mechanisms, causing additional NPP losses of 7.45–31.00 gC·m−2, yet the April–July 2008 event exhibited reversed suppression effects due to immature artificial communities during the 2000–2004 baseline period. Our work elucidates nonlinear vegetation-climate interactions affecting carbon sequestration in semi-arid ecosystems, providing critical insights for optimizing ecological restoration strategies and climate-adaptive management in the Yellow River Basin. Full article
Show Figures

Graphical abstract

33 pages, 18473 KiB  
Article
Spatiotemporal Assessment of Desertification in Wadi Fatimah
by Abdullah F. Alqurashi and Omar A. Alharbi
Land 2025, 14(6), 1293; https://doi.org/10.3390/land14061293 - 17 Jun 2025
Viewed by 577
Abstract
Over the past four decades, Wadi Fatimah in western Saudi Arabia has undergone significant environmental changes that have contributed to desertification. High-resolution spatial and temporal analyses are essential for monitoring the extent of desertification and understanding its driving factors. This study aimed to [...] Read more.
Over the past four decades, Wadi Fatimah in western Saudi Arabia has undergone significant environmental changes that have contributed to desertification. High-resolution spatial and temporal analyses are essential for monitoring the extent of desertification and understanding its driving factors. This study aimed to assess the spatial distribution of desertification in Wadi Fatimah using satellite and climate data. Landsat imagery from 1984 to 2022 was employed to derive land surface temperature (LST) and assess vegetation trends using the Normalized Difference Vegetation Index (NDVI). Climate variables, including precipitation and evapotranspiration (ET), were sourced from the gridded TerraClimate dataset (1980–2022). LST estimates were validated using MOD11A2 products (2001–2022), while TerraClimate precipitation data were evaluated against observations from four local rain gauge stations: Wadi Muharam, Al-Seal Al-Kabeer, Makkah, and Baharah Al-Jadeedah. A Desertification Index (DI) was developed based on four variables: NDVI, LST, precipitation, and ET. Five regression models—ridge, lasso, elastic net, polynomial regression (degree 2), and random forest regression—were applied to evaluate the predictive capacity of these variables in explaining desertification dynamics. Among these, Random Forest and Polynomial Regression demonstrated superior predictive performance. The classification accuracy of the desertification map showed high overall accuracy and a strong Kappa coefficient. Results revealed extensive land degradation in the central and lower sub-basins of Wadi Fatimah, driven by both climatic stressors and anthropogenic pressures. LST exhibited a clear upward trend between 1984 and 2022, especially in the lower sub-basin. Precipitation and ET analysis confirmed the region’s arid climate, characterized by limited rainfall and high ET, which exacerbate vegetation stress and soil moisture deficits. Validation of LST with MOD11A2 data showed reasonable agreement, with RMSE values ranging from 2 °C to 6 °C and strong correlation coefficients across most years. Precipitation validation revealed low correlation at Al-Seal Al-Kabeer, moderate at Baharah Al-Jadeedah, and high correlations at Wadi Muharam and Makkah stations. These results highlight the importance of developing robust validation methods for gridded climate datasets, especially in data-sparse regions. Promoting sustainable land management and implementing targeted interventions are vital to mitigating desertification and preserving the environmental integrity of Wadi Fatimah. Full article
Show Figures

Figure 1

Back to TopTop