Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (159)

Search Parameters:
Keywords = mixture of herbicides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2970 KiB  
Review
The Rise of Eleusine indica as Brazil’s Most Troublesome Weed
by Ricardo Alcántara-de la Cruz, Laryssa Barbosa Xavier da Silva, Hudson K. Takano, Lucas Heringer Barcellos Júnior and Kassio Ferreira Mendes
Agronomy 2025, 15(8), 1759; https://doi.org/10.3390/agronomy15081759 - 23 Jul 2025
Viewed by 540
Abstract
Goosegrass (Eleusine indica) is a major weed in Brazilian soybean, corn, and cotton systems, infesting over 60% of grain-producing areas and potentially reducing yields by more than 50%. Its competitiveness is due to its rapid emergence, fast tillering, C4 metabolism, and [...] Read more.
Goosegrass (Eleusine indica) is a major weed in Brazilian soybean, corn, and cotton systems, infesting over 60% of grain-producing areas and potentially reducing yields by more than 50%. Its competitiveness is due to its rapid emergence, fast tillering, C4 metabolism, and adaptability to various environmental conditions. A critical challenge relates to its widespread resistance to multiple herbicide modes of action, notably glyphosate and acetyl-CoA carboxylate (ACCase) inhibitors. Resistance mechanisms include 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) target-site mutations, gene amplification, reduced translocation, glyphosate detoxification, and mainly ACCase target-site mutations. This literature review summarizes the current knowledge on herbicide resistance in goosegrass and its management in Brazil, with an emphasis on integrating chemical and non-chemical strategies. Mechanical and physical controls are effective in early or local infestations but must be combined with chemical methods for lasting control. Herbicides applied post-emergence of weeds, especially systemic ACCase inhibitors and glyphosate, remain important tools, although widespread resistance limits their effectiveness. Sequential applications and mixtures with contact herbicides such as glufosinate and protoporphyrinogen oxidase (PPO) inhibitors can improve control. Pre-emergence herbicides are effective when used before or immediately after planting, with adequate soil moisture being essential for their activation and effectiveness. Given the complexity of resistance mechanisms, chemical control alone is not enough. Integrated weed management programs, combining diverse herbicides, sequential treatments, and local resistance monitoring, are essential for sustainable goosegrass management. Full article
(This article belongs to the Section Weed Science and Weed Management)
Show Figures

Figure 1

19 pages, 3549 KiB  
Article
Oxidative Stress, Phytochemical Screening, and Antioxidant Activity on Microalgae (Arthrospira platensis) After Exposure to Glyphosate and Microplastics
by Dércia Santos, Edna Cabecinha, Jesús Gago, Sandra Mariza Monteiro and Ana Luzio
J. Xenobiot. 2025, 15(4), 106; https://doi.org/10.3390/jox15040106 - 3 Jul 2025
Viewed by 404
Abstract
The knowledge about the potential toxic effects of microplastics (MPs) combined with herbicides at lower trophic levels is still largely unknown. The present study aimed to evaluate the potential toxic effects of polyethylene terephthalate (PET) and polyamide (PA), isolated or combined with the [...] Read more.
The knowledge about the potential toxic effects of microplastics (MPs) combined with herbicides at lower trophic levels is still largely unknown. The present study aimed to evaluate the potential toxic effects of polyethylene terephthalate (PET) and polyamide (PA), isolated or combined with the pesticide glyphosate (GLY), on the microalgae Arthrospira platensis. For this, microalgae were exposed to control, GLY (3 μg/L), PET (0.5 and 1 mg/L), PA (0.5 and 1 mg/L), and the respective mixtures of each MP with GLY, for 12 days. The photosynthetic pigment content, phytochemicals, antioxidants, and enzymatic activity were determined. Cell growth was significantly enhanced on day 4 in the GLY+PA1 group (~80%), compared to the control. At day 12, biomass was significantly higher in the GLY (~25%) and GLY+PET0.5 (~26%) groups relative to the control. Significant effects on the enzymatic and detoxification mechanisms were observed, including increased SOD (PET0.5, p = 0.011) and CarE (GLY, PA and GLY+PA, p < 0.01), and decreased GST in combined exposures, which support stress-induced enzymatic activation and adaptive biochemical responses. Significant effects on phytochemicals and antioxidant activity were also observed, with PET0.5 significantly reducing total carotenoids (~65%), and flavonoids (p < 0.001) and ortho-diphenols (p < 0.05) being decreased in all exposure groups, in comparison to the control group. The decrease in flavonoids and ortho-diphenols, important antioxidant molecules, suggests the depletion of these key compounds under stress. DPPH scavenging activity, a measure of antioxidant potential, was inhibited in the GLY+PA groups, indicating compromised antioxidant defense. Results confirmed that combined stressors elicit distinct and sometimes deleterious responses not predicted by single exposures. Our findings highlight that the combined exposure to glyphosate and MPs significantly disrupts antioxidant defenses and enzymatic activity in A. platensis, indicating potential risks to primary producers in aquatic ecosystems and underscoring the ecological implications of co-contaminant stressors. In fact, the results indicate that MPs can modify herbicide toxicity, posing enhanced risks to microalgal physiology and potentially affecting primary productivity and nutrient cycling in aquatic ecosystems. In turn, negative effects of MPs on microalgae can have serious consequences for food webs, food security, and ecological health. Full article
Show Figures

Figure 1

14 pages, 3570 KiB  
Article
In Vitro Study of the Effects of Pesticide Mixtures Used in Maize Cultivation in Ecuador
by Ana Paulina Arévalo-Jaramillo, Jackeline Elizabeth Guamán Hurtado, Gabriela Cevallos-Solorzano and Natalia Bailon-Moscoso
Toxics 2025, 13(7), 530; https://doi.org/10.3390/toxics13070530 - 24 Jun 2025
Viewed by 374
Abstract
Ecuador, located in South America, ranks among the countries with the highest rates of pesticide use per unit of cropland. Pesticide exposure is linked to genotoxic effects and carcinogenicity. While most studies evaluating the effects of pesticides focus on the active ingredient, commercial [...] Read more.
Ecuador, located in South America, ranks among the countries with the highest rates of pesticide use per unit of cropland. Pesticide exposure is linked to genotoxic effects and carcinogenicity. While most studies evaluating the effects of pesticides focus on the active ingredient, commercial formulations are complex mixtures of several components that may alter their toxicological profile. In this study, we analyzed four pesticides commonly used in corn cultivation, and their typical field mixtures, including the herbicides atrazine and pendimethalin, the insecticides chlorpyrifos and cypermethrin, and a fertilizer, to evaluate their genotoxic effects, oxidative status, and potential to induce cellular transformation. CHO-K1 cells were treated with subtoxic doses of these formulations. MTS, comet, micronucleus, H2AX expression, SOD and GPx activity, and wound healing assays were performed. The results showed these formulations induced genotoxicity, evidenced by the comet assay. Additionally, exposure activated cellular DNA repair mechanisms, evidenced by a 1.89- to 2.63-fold increase in H2AX expression across all treatments and mixtures after 10 h. Notably, pendimethalin was associated with signs of cellular transformation, as evidenced by a 1.4-times greater cell migration observed in the wound healing assay. These findings suggest that even at subtoxic concentrations, these pesticide formulations can cause genetic damage and potentially alter cellular control mechanisms. Full article
(This article belongs to the Section Agrochemicals and Food Toxicology)
Show Figures

Graphical abstract

11 pages, 1072 KiB  
Article
Integrating Cytochrome P450-Mediated Herbicide Tolerance into Anthocyanin-Rich Maize Through Conventional Breeding
by Sergio Arias-Martínez, Luis Jesús Peña-Vázquez, Jose Manuel Oregel-Zamudio, José Andrés Barajas-Chávez, Ernesto Oregel-Zamudio and Jesús Rubén Torres-García
Agronomy 2025, 15(6), 1308; https://doi.org/10.3390/agronomy15061308 - 27 May 2025
Viewed by 477
Abstract
Meeting the rising demand for staple grains now requires cultivars that combine high yield, enhanced nutritional value, and strong chemical resilience. Blue-kernel landraces from central Mexico are rich in anthocyanins yet remain highly susceptible to post-emergence herbicides, whereas modern hybrids detoxify these compounds [...] Read more.
Meeting the rising demand for staple grains now requires cultivars that combine high yield, enhanced nutritional value, and strong chemical resilience. Blue-kernel landraces from central Mexico are rich in anthocyanins yet remain highly susceptible to post-emergence herbicides, whereas modern hybrids detoxify these compounds through cytochrome P450 (CYP450) enzymes. We crossed the anthocyanin-rich variety Polimaize with a CYP450-tolerant hybrid and evaluated the two parents and their F1 segregants (designated “White” and “Yellow”) under greenhouse applications of mesotrione (75 g a.i. ha−1), nicosulfuron (30 g a.i. ha−1), and their mixture. Across 160 plants, the hybrid retained 95% of control dry matter and showed ≤7% foliar injury under all treatments, whereas Polimaize lost 28% biomass and exhibited 36% injury after nicosulfuron. The Yellow class matched hybrid performance while maintaining a blue pericarp and a β-carotene-rich endosperm, demonstrating that nutritional and agronomic traits can be stacked. The White class displayed heterosis-driven compensatory growth, exceeding its untreated biomass by 60% with nicosulfuron and by 82% with the mixture despite transient bleaching. Chlorophyll and carotenoid fluorescence revealed rapid, zeaxanthin-linked photoprotection in all tolerant genotypes, consistent with accelerated CYP450-mediated detoxification. These findings show that broad-spectrum herbicide tolerance can be introgressed into pigment-rich germplasm through conventional breeding, providing a non-transgenic path to herbicide-ready, anthocyanin-rich maize. The strategy preserves local biodiversity while delivering cultivars suited to intensive, weed-competitive agriculture and offers a template for integrating metabolic resilience into other native crops. Full article
(This article belongs to the Special Issue Maize Germplasm Improvement and Innovation)
Show Figures

Figure 1

13 pages, 1909 KiB  
Article
Do Isopropylammonium Glyphosate and LiCl Impact the Spore Diversity and Functions of Aquatic Fungi Involved in Plant Litter Decomposition in Streams?
by Jorge Rodrigues, Hernâni Gerós, Manuela Côrte-Real and Fernanda Cássio
J. Xenobiot. 2025, 15(3), 65; https://doi.org/10.3390/jox15030065 - 1 May 2025
Viewed by 447
Abstract
Glyphosate based-herbicides are stressors of great concern because they can impact aquatic ecosystems. Similarly, lithium, a metal, is currently of concern because of its increasing use worldwide. Because glyphosate-based herbicides and lithium might co-occur in aquatic environments, there is a need to assess [...] Read more.
Glyphosate based-herbicides are stressors of great concern because they can impact aquatic ecosystems. Similarly, lithium, a metal, is currently of concern because of its increasing use worldwide. Because glyphosate-based herbicides and lithium might co-occur in aquatic environments, there is a need to assess their impacts on aquatic organisms, such as aquatic fungi, as they play a key role in plant litter decomposition in streams. Microcosm assays were used to examine the effects of lithium and the herbicide isopropylammonium glyphosate (IPAG), alone or in mixtures, on microbial leaf mass loss, total fungal sporulation and biomass production. IPAG (alone and combined with LiCl) neither affected plant litter decomposition nor fungal biomass production, but boosted total fungal sporulation. Dimorphospora foliicola, the most tolerant species among the twelfth leaf inhabitant fungal species, is the major contributor to total fungal sporulation. IPAG interacts with LiCl in the total fungal sporulation and sporulation of D. foliicola, A. tetracladia, and F. curvula, indicating a species dependent-effect. IPAG alone or combined with LiCl greatly decreased the diversity of spores, as did as LiCl alone, but to a lesser extent. Finally, aquatic fungal communities reveal redundancy and resiliency to IPAG and LiCL, maintaining the health of aquatic ecosystems. Full article
Show Figures

Graphical abstract

17 pages, 3375 KiB  
Article
Cover Crops for Carbon Mitigation and Biodiversity Enhancement: A Case Study of an Olive Grove in Messinia, Greece
by Ioanna Michail, Christos Pantazis, Stavros Solomos, Michail Michailidis, Athanassios Molassiotis and Vasileios Gkisakis
Agriculture 2025, 15(8), 898; https://doi.org/10.3390/agriculture15080898 - 21 Apr 2025
Viewed by 1203
Abstract
Land desertification is becoming increasingly significant for the Mediterranean basin, particularly due to the rising pressures on agricultural land. Regarding the olive grove sector, intensive farming methods can have detrimental effects on the provision of various agroecosystem services. Conversely, agroecological approaches, such as [...] Read more.
Land desertification is becoming increasingly significant for the Mediterranean basin, particularly due to the rising pressures on agricultural land. Regarding the olive grove sector, intensive farming methods can have detrimental effects on the provision of various agroecosystem services. Conversely, agroecological approaches, such as reduced tillage/no tillage and the use of cover crops, can help mitigate soil degradation and enhance soil arthropod biodiversity. Herein, an experiment was conducted in a hilly olive grove in southern Peloponnese, a key olive production area in Greece. Different soil treatments were implemented across nine plots (three plots per treatment), including the following: (i) the use of a cover crop mixture (Pisum sativum, Vicia faba, Hordeum vulgare), (ii) herbicide application, and (iii) spontaneous vegetation (control). A comprehensive survey was performed at the plot level for monitoring carbon sequestration and ground-dwelling arthropod diversity. The results indicated that cover crops had a positive impact on soil fertility and structure, leading to an increase in total biomass production per plot, while also contributing to the preservation of key soil arthropod populations when compared to treatments that resulted in bare soil. The findings from this in situ study are meant to be integrated into the frames of a long-term monitoring process in order to be used for climate change mitigation and biodiversity management models, enhancing the resilience and regeneration of degraded land. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

14 pages, 1827 KiB  
Article
Effectiveness of Silvicultural Options in Renewal of Trembling Aspen–Jack Pine Mixedwood Stands, 21 Years After Treatment
by Rongzhou Man
Forests 2025, 16(4), 683; https://doi.org/10.3390/f16040683 - 15 Apr 2025
Viewed by 358
Abstract
Regenerating conifers after harvest through planting and postharvest broadcast application of herbicide is effective in ensuring the survival and growth of seedlings, but faces challenges in meeting broad social and ecological objectives of forest management. This study reports the effectiveness of alternative options [...] Read more.
Regenerating conifers after harvest through planting and postharvest broadcast application of herbicide is effective in ensuring the survival and growth of seedlings, but faces challenges in meeting broad social and ecological objectives of forest management. This study reports the effectiveness of alternative options in regenerating jack pine (Pinus banksiana Lamb.), 21 years after harvest of trembling aspen (Populus tremuloides Michx.)-dominated boreal mixedwood stands. The treatment options included (i) preharvest spray—aerial broadcast spray prior to harvest, (ii) postharvest partial spray—ground herbicide application in strips, (iii) partial harvest in strips, (iv) postharvest aerial broadcast, and (v) uncut reference. Twenty-one years after treatments, the four harvest treatments were similar in overstory density (4000 stems/ha) and basal area (BA, 20 m2/ha), but differed in composition and structure. The preharvest spray had an intimate mixture of aspen and jack pine (22% and 57% by BA, respectively), compared to spatial mosaics of aspen and pine corridors in the partial spray (36% and 41%), and aspen and maple corridors in the partial cut (21% and 31%). While the postharvest broadcast was pine-dominated (74% by BA) as expected, uncut and partial cut were similar in pine composition (10% by BA), which is inadequate for aspen and pine mixedwood stands. The early positive effects of preharvest spray and partial harvest on understory species abundance and diversity became neutral 21 years postharvest. The implications of these findings are discussed with respect to stand conditions before harvest, postharvest regeneration dynamics, and treatment objectives for the renewal of trembling aspen and jack pine mixedwood stands after harvest. Full article
(This article belongs to the Special Issue Forest Growth and Regeneration Dynamics)
Show Figures

Figure 1

25 pages, 5384 KiB  
Article
Three Complementary Sampling Approaches Provide Comprehensive Characterization of Pesticide Contamination in Urban Stormwater
by Gab Izma, Melanie Raby, Justin B. Renaud, Mark Sumarah, Paul Helm, Daniel McIsaac, Ryan Prosser and Rebecca Rooney
Urban Sci. 2025, 9(2), 43; https://doi.org/10.3390/urbansci9020043 - 12 Feb 2025
Cited by 2 | Viewed by 939
Abstract
Urban areas are expanding rapidly and experience diverse and complex contamination of their surface waters. Addressing these issues requires different tools to describe exposures and predict toxicological risk to exposed biota. We surveyed 21 stormwater management ponds in Brampton, Ontario using three types [...] Read more.
Urban areas are expanding rapidly and experience diverse and complex contamination of their surface waters. Addressing these issues requires different tools to describe exposures and predict toxicological risk to exposed biota. We surveyed 21 stormwater management ponds in Brampton, Ontario using three types of sampling methods deployed concurrently: time-integrated water sampling, biofilms cultured on artificial substrates, and organic-diffusive gradients in thin films (o-DGT) passive samplers. Our objective was to compare pesticide occurrences and concentrations to inform monitoring in stormwater ponds, which reflect pesticide pollution in urban areas. We detected 82 pesticides across the three sampling matrices, with most detections occurring in o-DGT samplers. The in situ accumulation of pesticides in o-DGTs during deployment and the high analytical sensitivity achieved establishes o-DGTs as excellent tools for capturing the mixtures of pesticides present. Water and biofilm sampling demonstrated that pesticide concentrations available for uptake are relatively low, with most below toxicological thresholds. Yet our results demonstrate that urban areas are subject to a wide range of pesticides, including herbicides, insecticides, and fungicides, and underscores the urgency of research to quantify the risks of chronic exposure to this chemical mixture. Full article
Show Figures

Figure 1

13 pages, 5737 KiB  
Article
Superior Photodegradation of Bentazon and Nile Blue and Their Binary Mixture Using Sol–Gel Synthesized TiO2 Nanoparticles Under UV and Sunlight Sources
by Sadaf Yasmeen, Luca Burratti, Leonardo Duranti, Emanuela Sgreccia, Antonio Agresti and Paolo Prosposito
Appl. Sci. 2025, 15(4), 1899; https://doi.org/10.3390/app15041899 - 12 Feb 2025
Viewed by 956
Abstract
Herbicides and dyes in wastewater are considered serious water pollutants. These water pollutants have harmful effects on the ecosystem and due to this, the degradation of these pollutants is very important. In this article, titanium dioxide (TiO2) nanoparticles were synthesized by [...] Read more.
Herbicides and dyes in wastewater are considered serious water pollutants. These water pollutants have harmful effects on the ecosystem and due to this, the degradation of these pollutants is very important. In this article, titanium dioxide (TiO2) nanoparticles were synthesized by the sol–gel method and used as photocatalysts. TiO2 powder was characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and UV-Visible (UV-Vis) spectroscopy. The XRD analysis revealed the anatase phase for TiO2. The SEM investigation showed that TiO2 nanoparticles exhibit highly irregular block-shaped morphology. TiO2 nanoparticles degrade the organic pollutants under UV as well as sunlight. The photocatalytic activity of such prepared catalyst was carried out in solutions of bentazon herbicide (BZ) and Nile blue dye (NB) and in the mixture of these pollutants, under UV and sunlight. The degradation rate of both BZ and NB was very high in individual solutions as well as in the combination of them. The obtained results show that TiO2 photocatalyst is a potential candidate for the photocatalytic degradation of dyes and herbicides under UV and sunlight. Full article
Show Figures

Figure 1

19 pages, 1673 KiB  
Article
Effect of Zinc Sulfate and Adjuvants on the Physicochemical Properties and Efficacy of Bromoxynil with Terbythylazine and Nicosulfuron Mixtures Against Echinochloa crus-galli L.
by Robert Idziak, Violetta Szuba-Adamska, Hubert Waligóra and Piotr Szulc
Agriculture 2025, 15(3), 293; https://doi.org/10.3390/agriculture15030293 - 29 Jan 2025
Viewed by 782
Abstract
The study aimed to evaluate the effects of methyl esters adjuvant, pH reducer, and zinc sulfate on the physicochemical properties (contact angle, surface tension) of a spray liquid and a bromoxynil + terbuthylazine + nicosulfuron mixture’s efficacy. Cockspur (Echinochloa crus-galli L.) was [...] Read more.
The study aimed to evaluate the effects of methyl esters adjuvant, pH reducer, and zinc sulfate on the physicochemical properties (contact angle, surface tension) of a spray liquid and a bromoxynil + terbuthylazine + nicosulfuron mixture’s efficacy. Cockspur (Echinochloa crus-galli L.) was used as the test plant. The placement of any adjuvant in the spray liquid affected the reduction in contact angle, with zinc sulfate reducing it from 75.9 to 66.3°, methyl esters adjuvant from 61.8 to 47.1°, pH reducer from 58.3 to 47.0°, zinc sulfate + methyl esters adjuvant from 64.9 to 58.4°, and zinc sulfate + pH reducer from 57.1 to 44.6°. A decrease in contact angle was found with a reduction in herbicide doses, from 65.6 to 59.0°. The highest pH of the spray liquid with herbicides was found when the methyl esters adjuvant was added to the liquid (6.82–7.17), followed by 6.43–6.80 when zinc sulfate was added, and 6.05–6.30 for zinc sulfate with methyl esters adjuvant. The inclusion of adjuvant pH reducer very strongly reduced the liquid reaction to 3.28–3.60, and it was reduced to 2.76–2.90 in the presence of zinc sulfate. Bromoxynil + terbuthylazine + nicosulfuron mixtures applied with methyl esters adjuvant and zinc sulfate with pH reducer showed the highest efficacy (85–98% and 82–96%), and the efficacy was 64–81% when methyl esters adjuvant with zinc sulfate were used. The effect of the herbicide mixture with only zinc sulfate was noticeably weaker (40–81%), and it was very weak (13–43%) in the presence of adjuvant pH reducer only. On the basis of the ED50 values, the most favorable mixtures were those containing methyl esters adjuvant, methyl esters adjuvant + zinc sulfate and pH reducer + zinc sulfate in addition to the herbicides. Research has indicated that zinc sulfate could be used as an adjuvant, and will support not only the action of herbicides, but also the development of maize plants. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

32 pages, 4231 KiB  
Review
Environmental Implication of Herbicide Use
by Małgorzata Baćmaga, Jadwiga Wyszkowska and Jan Kucharski
Molecules 2024, 29(24), 5965; https://doi.org/10.3390/molecules29245965 - 18 Dec 2024
Cited by 3 | Viewed by 2548
Abstract
One of the guiding principles of the sustainable use of herbicides is their targeted action exclusively against weeds, consisting of blocking photosynthesis and synthesis of amino acids and growth regulators. Herbicides are major elements of plant production, indispensable to the functioning of modern [...] Read more.
One of the guiding principles of the sustainable use of herbicides is their targeted action exclusively against weeds, consisting of blocking photosynthesis and synthesis of amino acids and growth regulators. Herbicides are major elements of plant production, indispensable to the functioning of modern agriculture. Nevertheless, their influence on all elements of the natural environment needs to be continuously controlled. This review article summarizes research addressing the effects of herbicides on the natural environment and the changes they trigger therein. Herbicides, applied to protect crops against weed infestation, are usually mixtures of various active substances; hence, it is generally difficult to analyze their impact on the environment and organisms. Nonetheless, an attempt was made in this review to discuss the effects of selected herbicides on individual elements of the natural environment (water, soil, and air) and organisms (humans, animals, plants, and microorganisms). In addition, the article presents examples of the biodegradation of selected herbicides and mechanisms of their degradation by bacteria and fungi. Based on this information, it can be concluded that the uncontrolled use of herbicides has led to adverse effects on non-target organisms, as documented in the scientific literature. However, further research on the environmental effects of these chemicals is needed address the missing knowledge on this subject. Full article
(This article belongs to the Special Issue Environmental Analysis of Organic Pollutants, 2nd Edition)
Show Figures

Figure 1

23 pages, 1198 KiB  
Article
Toxicity of Post-Emergent Herbicides on Entomopathogenic Fungi Used in the Management of Corn Leafhopper: In Vitro and In Vivo Assessments
by Matheus Rakes, Maíra Chagas Morais, Maria Eduarda Sperotto, Odimar Zanuzo Zanardi, Daniel Bernardi, Anderson Dionei Grützmacher and Leandro do Prado Ribeiro
Agriculture 2024, 14(12), 2189; https://doi.org/10.3390/agriculture14122189 - 30 Nov 2024
Cited by 2 | Viewed by 1035
Abstract
This is the first study to assess the physicochemical and biological compatibility of herbicides used in corn crops with entomopathogenic fungi used in the management of Dalbulus maidis in Brazil. The biological index was employed to ascertain the in vitro compatibility of the [...] Read more.
This is the first study to assess the physicochemical and biological compatibility of herbicides used in corn crops with entomopathogenic fungi used in the management of Dalbulus maidis in Brazil. The biological index was employed to ascertain the in vitro compatibility of the herbicides with pure spores (not formulated) of tested fungal isolates (Esalq-1296 of Cordyceps javanica and IBCB66 and Simbi BB15 of Beauveria bassiana). The results indicated a significant interaction between herbicides and fungal isolates when colony diameter and colony-forming units (CFU) were considered. Furthermore, changes in physicochemical characteristics were observed in some mixtures of herbicides and mycoinsecticides tested. The number of CFU was significantly reduced as the exposure time increased in the mixtures containing all the herbicides tested. In general, the Esalq-1296 isolate of C. javanica, formulated in a suspension concentrate (Octane®), proved to be more sensitive to the herbicides studied. In vivo bioassays demonstrated that, despite the synergistic effect of the binary mixtures of herbicides and mycoinsecticides on D. maidis mortality, the presence of the herbicide in the mixtures prevented the extrusion of entomopathogens from cadavers; therefore, caution is recommended when combining mycoinsecticides and post-emergent herbicides in tank mixtures aiming to manage D. maidis. Full article
(This article belongs to the Special Issue Integrated Pest Management Systems in Agriculture)
Show Figures

Figure 1

18 pages, 4661 KiB  
Article
Pilot Study on a Liquid Mineral Foliar Fertilizer Mixed with Herbicides for Maize Protection and Nutrition
by Camelia Hodoșan, Lucica Nistor, Paula Poşan, Sorin Iulius Bărbuică, Daniela Ianiţchi, Gabriela Luţă and Lizica Szilagyi
Agriculture 2024, 14(12), 2129; https://doi.org/10.3390/agriculture14122129 - 24 Nov 2024
Viewed by 1810
Abstract
The purpose of this study was to develop a complex composition of a foliar liquid mineral fertilizer containing NPK macroelements and microelements including Fe, Mg, B, S, Zn, Cu, Mo, Ni, V, and Cr. This complex fertilizer aims to support the optimal development [...] Read more.
The purpose of this study was to develop a complex composition of a foliar liquid mineral fertilizer containing NPK macroelements and microelements including Fe, Mg, B, S, Zn, Cu, Mo, Ni, V, and Cr. This complex fertilizer aims to support the optimal development and maturation of maize crops, thereby enhancing both the quality and quantity of production. In our study, an original recipe was established for a complex composition of foliar liquid mineral fertilizer, and a technological process was developed in order to obtain the recipe at the laboratory level. The designed fertilizer was a complex mixture of fertilizers with herbicides with multiple purposes, which can be used in different pedo-climatic areas and which present, at the same time, low toxicity and minimal ecological impact. A wide-spectrum mixture DICOPUR TOP containing 2,4-D acid and Dicamba was chosen as a systemic herbicide which is absorbed by plants both in the root system and also on the leaves. For conditioning the complex mixture of fertilizers with herbicides, different types of polyvinyl alcohol with different degrees of hydrolysis were used. The liquid fertilizer mixture with DICOPUR TOP was applied over two years (2021 and 2022) to the Felix maize hybrid, demonstrating significant positive effects on grain yield while effectively controlling both dicotyledonous and monocotyledonous weeds. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

43 pages, 12888 KiB  
Review
Marketable and Banned Pesticides in Agriculture: Categorization, Simulation, and Crystallography Review
by Grigorios L. Kyriakopoulos and Ioannis Sebos
Int. J. Mol. Sci. 2024, 25(22), 11885; https://doi.org/10.3390/ijms252211885 - 5 Nov 2024
Cited by 2 | Viewed by 1676
Abstract
Pesticides are playing a dominant role in modern cultivation practices to increase agricultural production but are also criticized for environmental depletion and soil and underground water degradation in field applications. An imperative need for greener pesticides has emerged in alignment with new innovations [...] Read more.
Pesticides are playing a dominant role in modern cultivation practices to increase agricultural production but are also criticized for environmental depletion and soil and underground water degradation in field applications. An imperative need for greener pesticides has emerged in alignment with new innovations in agrarian and agricultural practices. This study provides a comprehensive review of marketable and banned pesticides that have been applied in past times or are still in use in agriculture. The collected literature production disclosed 35 distinct pesticides that were identified either isolated or in mixtures and residues. These pesticides are primarily applied in agricultural fields, but some of them were also criticized for human implications. Then, these 35 pesticides were grouped into four categories: insecticides (18), herbicides (9), fungicides (6), and acaricides (2). Furthermore, their molecular types, chemical structures, pKa or log Kow values were presented. Based on their chemical structure, the pesticides were also organized into two domains: “marketable simulated” and “banned simulated”, representing 43% and 57% of total pesticides, respectively. The simulations were generated by linking the elemental composition of each pesticide in the corresponding category; therefore, three “marketable simulated” (the acaricides were not marketable representative) and four “banned simulated” were demonstrated. In addition, the calculation of “adjustment factors” (−0.33 up to +0.50) and the “as calculated/marketable (or banned) simulated pesticides” ratios (0.946 up to 1.013) enabled the identification of four clusters of homogeneous characteristics: cluster 1: “Insecticides, Fungicides, marketable”, cluster 2: “Herbicides, marketable”, cluster 3: “Insecticides, Fungicides, banned”, and cluster 4: “Acaricides, Herbicides, banned”. Subsequently, the composition of the elements of C and H enabled the crystallography characterization of only the “marketable” pesticides, not those that are “banned”, with compounds that have been already registered in the “Crystallography Open Database”. Conclusively, implications, challenges, and future research recommendations have been proposed. Full article
(This article belongs to the Special Issue Toxicity Mechanism of Emerging Pollutants)
Show Figures

Figure 1

20 pages, 1162 KiB  
Article
Time of Application of Desiccant Herbicides Affects Photosynthetic Pigments, Physiological Indicators, and the Quality of Cowpea Seeds
by Ester dos Santos Coêlho, João Everthon da Silva Ribeiro, Welder de Araújo Rangel Lopes, Anna Kézia Soares de Oliveira, Pablo Henrique de Almeida Oliveira, Gisele Lopes dos Santos, Ewerton da Silva Barbosa, Valécia Nogueira Santos e Silva, Hamurábi Anizio Lins, Clarisse Pereira Benedito, Lindomar Maria da Silveira, Antonio Cesar de Araujo Filho, Daniel Valadão Silva and Aurélio Paes Barros Júnior
J. Xenobiot. 2024, 14(3), 1312-1331; https://doi.org/10.3390/jox14030074 - 19 Sep 2024
Viewed by 1867
Abstract
Chemical desiccation is widely used in agriculture to anticipate harvest and mitigate the effects of adverse environmental conditions. It is applied to both grains and seeds. Although this practice is widely used, there are still significant gaps in understanding the effects of different [...] Read more.
Chemical desiccation is widely used in agriculture to anticipate harvest and mitigate the effects of adverse environmental conditions. It is applied to both grains and seeds. Although this practice is widely used, there are still significant gaps in understanding the effects of different herbicide application times on seed quality and plant physiological responses. The objective of this study was to evaluate the effects of different herbicide application times on cowpea, focusing on seed quality, physiological responses, and biochemical composition, including chlorophylls, carotenoids, sugars, and proline, under nocturnal desiccation. In the first experiment, eight herbicides and two mixtures were applied at night: diquat, flumioxazin, diquat + flumioxazin, glufosinate ammonium, saflufenacil, carfentrazone, diquat + carfentrazone, atrazine, and glyphosate. All of the tested herbicides caused a reduction in normal seedling formation, with the diquat + carfentrazone combination resulting in 100% abnormal seedlings. A significant decrease in chlorophyll levels (chlorophyll a: 63.5%, chlorophyll b: 50.2%) was observed using diquat, which indicates damage to photosynthetic processes, while the carotenoid content increased. Total soluble sugars and proline were also negatively impacted, reflecting physiological stress and metabolic changes in seedlings. In the second experiment, three application times were tested with diquat, diquat + flumioxazin, and diquat + carfentrazone. Nocturnal application showed the most significant reduction in chlorophyll levels and increased carotenoid levels. Application at noon and late afternoon also significantly changed the soluble sugar and proline levels. These results indicate that the herbicide application time directly influences the seeds’ physiological quality. Full article
Show Figures

Figure 1

Back to TopTop