Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (80)

Search Parameters:
Keywords = mixotrophic cultivation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 849 KB  
Review
Astaxanthin from Haematococcus pluvialis and Chromochloris zofingiensis: Biosynthetic Pathways, Engineering Strategies, and Industrial Prospects
by Shufang Yang, Xue Lu, Jia Wang, Ye Liu, Man Nie, Jin Liu and Han Sun
Mar. Drugs 2025, 23(12), 485; https://doi.org/10.3390/md23120485 - 18 Dec 2025
Viewed by 1309
Abstract
Astaxanthin, a high-value keto-carotenoid with potent antioxidant and health-promoting properties, has gained global attention as a sustainable nutraceutical and biotechnological product. The green microalgae Haematococcus pluvialis and Chromochloris zofingiensis represent two promising natural producers, yet they differ markedly in physiology, productivity, and industrial [...] Read more.
Astaxanthin, a high-value keto-carotenoid with potent antioxidant and health-promoting properties, has gained global attention as a sustainable nutraceutical and biotechnological product. The green microalgae Haematococcus pluvialis and Chromochloris zofingiensis represent two promising natural producers, yet they differ markedly in physiology, productivity, and industrial scalability. This review provides a focused comparative analysis of these two species, emphasizing their quantitative performance differences. H. pluvialis can accumulate astaxanthin up to ~3–5% of dry biomass but typically reaches biomass densities of only 5–10 g L−1, whereas C. zofingiensis achieves ultrahigh biomass concentrations of 100–220 g L−1 under heterotrophic fed-batch fermentation, although its astaxanthin content is much lower (~0.1–0.5% DW). While H. pluvialis remains the benchmark for natural astaxanthin due to its exceptionally high cellular content, its thick cell wall, slow growth, and strict phototrophic requirements impose major cost and operational barriers. In contrast, C. zofingiensis exhibits rapid and flexible growth under heterotrophic, mixotrophic, or phototrophic conditions and can achieve ultrahigh biomass in fermentation, though its ketocarotenoid flux and astaxanthin accumulation remain comparatively limited. Meanwhile, a rapidly growing patent landscape demonstrates global technological competition, with major portfolios emerging in China, the United States, and Europe, spanning chemical synthesis, microbial fermentation, algal metabolic engineering, and high-density cultivation methods. These patents reveal clear innovation trends—ranging from solvent-free green synthesis routes to engineered microalgae and yeast chassis for enhanced astaxanthin production—which increasingly shape industrial development strategies. By synthesizing recent advances in metabolic engineering, two-stage cultivation, and green extraction technologies, this review identifies key knowledge gaps and outlines a practical roadmap for developing next-generation astaxanthin biorefineries, with an emphasis on scalable production and future integration into broader biorefinery frameworks. The findings aim to guide future research and provide actionable insights for scaling sustainable, cost-effective production of natural astaxanthin. Full article
(This article belongs to the Special Issue Fermentation Processes for Obtaining Marine Bioactive Products)
Show Figures

Figure 1

29 pages, 2161 KB  
Review
Waste-to-Resource Strategies: The Potential of Agro-Industrial Residues for Microalgal Bioproducts in Indonesia
by Widyah Budinarta, Nur Ajijah and Anastasia Aliesa Hermosaningtyas
Phycology 2025, 5(4), 81; https://doi.org/10.3390/phycology5040081 - 1 Dec 2025
Viewed by 704
Abstract
The agro-industrial sector in Indonesia produces significant amounts of nutrient-rich waste and wastewater, which pose environmental risks but also present opportunities for valorization within a circular bioeconomy. Microalgae provide a promising solution for transforming these wastewaters into valuable products such as biomass for [...] Read more.
The agro-industrial sector in Indonesia produces significant amounts of nutrient-rich waste and wastewater, which pose environmental risks but also present opportunities for valorization within a circular bioeconomy. Microalgae provide a promising solution for transforming these wastewaters into valuable products such as biomass for bioenergy, biofertilizers, or pigments, all while helping to remediate pollutants. This review synthesizes current knowledge on the use of major Indonesian agro-industrial effluents, specifically palm oil mill effluent (POME), byproducts from cassava and sugarcane, and soybean residues, as substrates for microalgal biomass production and cultivation. Furthermore, various cultivation strategies are summarized, including autotrophic, heterotrophic, and mixotrophic methods, as well as the use of open ponds, photobioreactors, and hybrid systems. These cultivation processes influence biomass yield, metabolite production, and nutrient removal. Reported studies indicate high removal efficiencies for organic loads, nitrogen, and phosphorus, along with considerable production of lipids, proteins, pigments, and biofuels. Yet, effluent pretreatment, concerns about heavy metal and pathogen contamination, high downstream processing costs, and biosafety issues remains as challenges. Nonetheless, the application of microalgal cultivation into Indonesia’s agro-industrial wastes treatment can provide the dual benefits of waste mitigation and resource recovery, helping to advance climate goals and promote rural development. Full article
Show Figures

Figure 1

26 pages, 1977 KB  
Article
Sustainable Nutrient Recovery from Wastewater Mixture to Optimize Microalgal Lipid Production: A Vision of Zero Water Footprint
by Marco Alberto Mamani Condori, Danae Colque Ollachica, Abel Roberto Ccapa Loncone, José C. M. Pires and Ana María Gagneten
Bioengineering 2025, 12(12), 1291; https://doi.org/10.3390/bioengineering12121291 - 24 Nov 2025
Viewed by 765
Abstract
In this study, two native microalgae, Chlorella sp. MC18 (CH) and Scenedesmus sp. MJ23-R (SC) were cultivated in bubble column photobioreactors for wastewater treatment. Domestic wastewater (DWW) was used as the main culture medium, alone (100%) and blended (10%) with vinasse, whey, or [...] Read more.
In this study, two native microalgae, Chlorella sp. MC18 (CH) and Scenedesmus sp. MJ23-R (SC) were cultivated in bubble column photobioreactors for wastewater treatment. Domestic wastewater (DWW) was used as the main culture medium, alone (100%) and blended (10%) with vinasse, whey, or agro-food waste (AFW), respectively. Both species thrived in 100% DWW, achieving significantly high removal efficiencies for chemical oxygen demand, total nitrogen, and total phosphorus. Mineral removal exceeded 90% in all blended systems, highlighting the strong nutrient uptake capacity of both strains. The maximum specific growth rate (µmax) in 100% DWW was higher for SC than in standard BG11 medium, and supplementation with vinasse, whey, or AFW further increased µmax for both species. Blending DWW significantly enhanced microalgal biomass and lipid production compared to 100% DWW. Lipid production (max., 374 mg L−1), proximate lipid composition (max., 30.4%), and lipid productivity (max., 52.9 mg L−1 d−1) significantly increased in all supplemented cultures relative to DWW alone, demonstrating the potential of co-substrate supplementation to optimize microalgal cultivation. This study contributes to reducing the water footprint and fills a gap in the bioprocessing potential of algae-based systems, highlighting wastewater blending as a circular economy-aligned approach that supports sustainable bioprocesses and resource recovery. Full article
Show Figures

Figure 1

15 pages, 743 KB  
Article
Evaluation of the Microalga Graesiella emersonii Growth on Concentrated Cheese Whey Permeate
by Sergejs Kolesovs, Inese Strazdina, Linards Klavins and Armands Vigants
Appl. Microbiol. 2025, 5(4), 124; https://doi.org/10.3390/applmicrobiol5040124 - 5 Nov 2025
Viewed by 386
Abstract
The use of lactose-utilizing microalgae offers a sustainable and cost-effective approach for the bioconversion of dairy industry side-streams and the reduction in microalgae production costs. This work aims to improve the biomass productivity of the lactose-utilizing microalgal strain Graesiella emersonii MSCL 1718 in [...] Read more.
The use of lactose-utilizing microalgae offers a sustainable and cost-effective approach for the bioconversion of dairy industry side-streams and the reduction in microalgae production costs. This work aims to improve the biomass productivity of the lactose-utilizing microalgal strain Graesiella emersonii MSCL 1718 in concentrated cheese whey permeate. It was demonstrated that the mixotrophic growth of the axenic G. emersonii culture resulted in a significantly higher biomass productivity in 20% permeate medium compared to the heterotrophic cultivation. Furthermore, supplementation of the permeate medium with iron, zinc, cobalt, and molybdenum resulted in 12.8%, 12.9%, 9.3%, and 28.9% significant increases (p < 0.05) in biomass synthesis, respectively, compared to the control permeate group. In the subsequent experiment, G. emersonii cultivated in molybdenum-supplemented permeate resulted in 0.34 ± 0.02 g/(L·d) biomass productivity and twofold higher lipid content (30.21 ± 1.29%) compared to the photoautotrophic control in defined synthetic medium. Analysis of the fatty acid composition revealed a twofold increase in saturated fatty acids, reaching 62.16% under mixotrophic cultivation in permeate, compared with the photoautotrophic control. Overall, concentrated cheese permeate proved to be a suitable medium for G. emersonii biomass production, supporting both enhanced growth and increased lipid accumulation. Full article
Show Figures

Figure 1

16 pages, 12939 KB  
Article
Strategic Carbon Source Selection Enhances Biomass and Paramylon Yields in Mixotrophic Euglena gracilis Cultivation
by Xue Xiao, Rui He, Xinyue Guo, Xinxin Zhao, Zhengfei Yang, Yongqi Yin, Minato Wakisaka and Jiangyu Zhu
Microorganisms 2025, 13(10), 2339; https://doi.org/10.3390/microorganisms13102339 - 11 Oct 2025
Cited by 2 | Viewed by 889
Abstract
Euglena gracilis’s mixotrophic metabolism offers biotechnological potential. This study investigated how glucose, sodium acetate, ethanol, and propanetriol regulate its growth, photosynthesis, and paramylon production. All carbon sources boosted paramylon yield versus photoautotrophic controls. Ethanol and glucose were both highly effective, supporting the [...] Read more.
Euglena gracilis’s mixotrophic metabolism offers biotechnological potential. This study investigated how glucose, sodium acetate, ethanol, and propanetriol regulate its growth, photosynthesis, and paramylon production. All carbon sources boosted paramylon yield versus photoautotrophic controls. Ethanol and glucose were both highly effective, supporting the highest biomass accumulation (5.71 and 4.42-fold increases, respectively) and paramylon content without a significant difference between them. Ethanol supplementation enhanced chlorophyll b via coupled TCA cycle/glyoxylate shunt activity, while glucose showed the strongest tendency for high paramylon and the highest carotenoid content (13.36-fold higher). Sodium acetate triggered alkaline stress (pH 8.5), suppressing pigments and inducing spherical cells. Propanetriol reduced biomass but enhanced PSII efficiency (Fv/Fm). These results demonstrate carbon source-driven metabolic partitioning: ethanol and glucose both excel in promoting growth and storage, while additionally directing carbon toward chlorophyll b or carotenoids, respectively. These findings enable targeted bioprocess optimization: selection between ethanol or glucose can be based on the value of co-products, advancing E. gracilis as a sustainable cell factory. Full article
Show Figures

Graphical abstract

24 pages, 346 KB  
Review
Valorization of Food Processing Wastewater for Astaxanthin Production by the Mixotrophic Fermentation of Microalgae: A Review
by Qian Lu, Limin Yang and Xiaowei Zhang
Fermentation 2025, 11(10), 580; https://doi.org/10.3390/fermentation11100580 - 9 Oct 2025
Viewed by 1069
Abstract
Food processing wastewater (FPW) poses significant environmental risks due to its high nutrient load yet offers untapped potential as a low-cost feedstock for high-value compound production. This review critically evaluates the valorization of FPW for astaxanthin production through the mixotrophic fermentation of microalgae. [...] Read more.
Food processing wastewater (FPW) poses significant environmental risks due to its high nutrient load yet offers untapped potential as a low-cost feedstock for high-value compound production. This review critically evaluates the valorization of FPW for astaxanthin production through the mixotrophic fermentation of microalgae. Key microalgal species (e.g., Haematococcus pluvialis and Chromochloris zofingiensis) effectively remediate nutrients (nutrients removal of up to 100%) while synthesizing astaxanthin under stress-inducing conditions, such as nutrient starvation, salinity, and oxidative stress. Advanced strategies, such as two-stage cultivation, nutrient profile adjustment, and microbial co-cultivation, which could enhance astaxanthin yields and wastewater treatment efficiency were reviewed comprehensively. The resulting astaxanthin-rich biomass demonstrates multifunctional benefits in animal feed, improving meat quality, immunity, growth, and shelf life. However, this review identifies some challenges, including wastewater management risks, low digestibility of microalgae biomass, and astaxanthin instability during feed processing, which should be addressed properly in real-world applications. This integrated approach aligns with circular bio-economy principles, transforming FPW from an environmental liability into a resource for sustainable biotechnology. Full article
22 pages, 2011 KB  
Article
Advanced Municipal Wastewater Treatment and Bioproduct Generation via Optimized Autotrophic and Mixotrophic Microalgal Cultivation
by Juan Nápoles-Armenta, Itzel Celeste Romero-Soto, Luis Samaniego-Moreno, Lourdes Mariana Díaz-Tenorio, Luis Alonso Leyva Soto, Celia De La Mora-Orozco, Rafael González Pérez, Edgardo Martínez-Orozco, Celestino García-Gómez and Laura Izascum Pérez-Valencia
Sustainability 2025, 17(14), 6539; https://doi.org/10.3390/su17146539 - 17 Jul 2025
Cited by 2 | Viewed by 1103
Abstract
In this paper, the production of biomass, pigments, lipids, and carbohydrates and the elimination of ammonium and orthophosphate by the microalgae Chlorella vulgaris, grown in synthetic wastewater (SWW), were studied under different light intensities (3000–10,000 lux), pH (7.5–9.5) and daily illumination time [...] Read more.
In this paper, the production of biomass, pigments, lipids, and carbohydrates and the elimination of ammonium and orthophosphate by the microalgae Chlorella vulgaris, grown in synthetic wastewater (SWW), were studied under different light intensities (3000–10,000 lux), pH (7.5–9.5) and daily illumination time (8–16 h). The best conditions for the autotrophic culture of microalgae were predicted using response surface methodology (RSM). The results showed that the adaptation of the microalgae for this nutrient source was effective. The best conditions for the cultivation of Chlorella vulgaris in SWW were 8.44 pH and a light intensity of 8433 lux in the daily illumination time of 16 h. Under optimal conditions, the production of microalgal biomass, chlorophyll-a, chlorophyll-b, carotenoids, lipids and carbohydrates was 0.534 g/L, 7.46 mg/mL, 3.53 mg/mL, 2.01 mg/mL, 21.40% and 28.46%, respectively. The removal efficiencies of ammonium and orthophosphate from SWW were 97.66% and 58.78% in autotrophic cultures. This investigation introduces a new aspect by verifying the optimized cultivation conditions with real municipal wastewater, indicating that the procedure could be utilized for sustainable production of bioproducts and efficient treatment of municipal wastewater. Full article
Show Figures

Figure 1

13 pages, 1794 KB  
Article
Synergistic Enhancement of Paramylon Production in Edible Microalga Euglena gracilis via Ethanol-Guaiacol Co-Regulation
by Xinyi Yan, Hao Xu, Zhengfei Yang, Yongqi Yin, Weiming Fang, Minato Wakisaka and Jiangyu Zhu
Foods 2025, 14(14), 2457; https://doi.org/10.3390/foods14142457 - 12 Jul 2025
Viewed by 1082
Abstract
Biomass-derived growth stimulants are widely recognized as green and economical solutions that can significantly enhance microalgae culture efficiency and optimize the biomanufacturing process of target products. In this paper, we investigated the effect of ethanol synergized with guaiacol (GA) on biomass and β-1,3 [...] Read more.
Biomass-derived growth stimulants are widely recognized as green and economical solutions that can significantly enhance microalgae culture efficiency and optimize the biomanufacturing process of target products. In this paper, we investigated the effect of ethanol synergized with guaiacol (GA) on biomass and β-1,3 glucan accumulation in edible microalgae, namely Euglena gracilis. The ethanol-induced mixotrophic mode significantly increased biomass and paramylon production by 12.68 and 6.43 times, respectively, compared to the autotrophic control group. GA further exerted toxic excitatory effects (hormesis) on top of ethanol mixotrophic nutrition. At the optimal concentration of 10 mg·L−1 GA, chlorophyll a, carotenoids, and paramylon production increased by 8.96%, 11.75%, and 16.67%, respectively, compared to the ethanol-treated group. However, at higher concentrations, the biomass and paramylon yield decreased significantly. This study not only establishes an effective combinatorial strategy for enhancing paramylon biosynthesis but also provides novel insights into the hormesis mechanism of phenolic compounds in microalgae cultivation. The developed approach demonstrates promising potential for sustainable production of high-value algal metabolites while reducing cultivation costs, which could significantly advance the commercialization of microalgae-based biorefineries in food and pharmaceutical industries. Full article
Show Figures

Figure 1

22 pages, 16069 KB  
Article
Metabolomic Insights into the Adaptations and Biotechnological Potential of Euglena gracilis Under Different Trophic Conditions
by Sahutchai Inwongwan, Sutthiphat Sriwari and Chayakorn Pumas
Plants 2025, 14(11), 1580; https://doi.org/10.3390/plants14111580 - 22 May 2025
Cited by 6 | Viewed by 2531
Abstract
Euglena gracilis is a metabolically versatile microalga capable of thriving under photoautotrophic (light, no ethanol), mixotrophic (light with 1% v/v ethanol), and heterotrophic (dark with 1% v/v ethanol) conditions. Here, we applied untargeted LC-MS metabolomics (Agilent 1290 LC, 6545XT [...] Read more.
Euglena gracilis is a metabolically versatile microalga capable of thriving under photoautotrophic (light, no ethanol), mixotrophic (light with 1% v/v ethanol), and heterotrophic (dark with 1% v/v ethanol) conditions. Here, we applied untargeted LC-MS metabolomics (Agilent 1290 LC, 6545XT QTOF-MS; Agilent Technologies, Santa Clara, California, USA) to investigate its trophic-mode-dependent metabolic adaptations and assess its biotechnological potential. Metabolites were separated on a C18 column and analyzed in both positive and negative ion modes. Multivariate analyses (PCA and sPLS-DA) revealed clear and reproducible metabolic separations among growth modes (p < 0.001). Photoautotrophic cultures were enriched in phenolic acids, flavonoids, and lipid classes associated with oxidative stress protection. Mixotrophy induced a broader spectrum of upregulated metabolite classes, including saccharolipids, macrolactams, and triterpenoids, reflecting a hybrid metabolism combining photosynthesis and ethanol utilization. Heterotrophic cultures showed elevated levels of polyamines and amino acids (e.g., putrescine, proline), indicative of redox regulation and stress adaptation in dark, ethanol-rich conditions. Class-level comparisons identified distinct and shared metabolite categories, with photoautotrophy favoring antioxidant biosynthesis and mixotrophy supporting metabolic diversity. These findings provide metabolite-level insights into the extraordinary plasticity of E. gracilis and offer a framework for optimizing cultivation strategies to enhance the targeted production of high-value bioproducts. Full article
(This article belongs to the Special Issue Mechanisms of Algae Adapting to Environmental Changes)
Show Figures

Figure 1

19 pages, 3895 KB  
Article
Enhancing Biomass Production of Chlorella vulgaris in Anaerobically Digested Swine Wastewater Using Carbon Supplementation and Simultaneous Lipid Production
by Chenkai Zhou, Mingmin Yuan, Cuifeng Huang, Qiqi Chen, Jiamin Wang, Xinting Chen, Hua Yang, Jun Fang and Bo Yang
Appl. Sci. 2025, 15(9), 5103; https://doi.org/10.3390/app15095103 - 4 May 2025
Cited by 2 | Viewed by 1243
Abstract
This study investigated anaerobically digested swine wastewater (ADSW) as a nutrient source for Chlorella vulgaris FACHB-8 cultivation under mixotrophic conditions with carbon supplementation. The microalgal strain was grown in ADSW supplemented with six carbon sources, followed by concentration optimization. Under optimized conditions (20 [...] Read more.
This study investigated anaerobically digested swine wastewater (ADSW) as a nutrient source for Chlorella vulgaris FACHB-8 cultivation under mixotrophic conditions with carbon supplementation. The microalgal strain was grown in ADSW supplemented with six carbon sources, followed by concentration optimization. Under optimized conditions (20 g/L glucose), FACHB-8 demonstrated a high biomass productivity (271.31 mg/L/day) and a specific growth rate of 0.42 per day. The system achieved an 88.70% total nitrogen removal and an 82.93% total phosphorus removal. The biomass contained 45.59% lipids, 29.72% proteins, and 13.05% carbohydrates, with fatty acid methyl esters showing balanced proportions of saturated (50.77%) and unsaturated fatty acids (49.23%). These findings highlight the potential of glucose-based mixotrophic cultivation for simultaneous wastewater treatment, renewable biomass production, and value-added lipid production. This work proposes a scalable swine wastewater treatment system that synergizes bioremediation and renewable energy production via carbon-enhanced microalgae cultivation, offering a dual-functional strategy for sustainable livestock wastewater reuse. Full article
Show Figures

Figure 1

19 pages, 2396 KB  
Article
Valorizing Agro-Industrial By-Products for Sustainable Cultivation of Chlorella sorokiniana: Enhancing Biomass, Lipid Accumulation, Metabolites, and Antimicrobial Potential
by Elia Lio, Carlo Esposito, Jacopo Paini, Stefano Gandolfi, Francesco Secundo and Gianluca Ottolina
Metabolites 2025, 15(3), 212; https://doi.org/10.3390/metabo15030212 - 20 Mar 2025
Cited by 2 | Viewed by 1135
Abstract
Background/Objectives: Mixotrophic cultivation of microalgae using agro-industrial by-products as supplements offers a sustainable strategy to enhance biomass production and bioactive compound synthesis. This study aimed to evaluate the effects of different agro-industrial by-products—orange peel extract, Cladophora glomerata macroalgal hydrolysate, and solid-state fungal fermentation [...] Read more.
Background/Objectives: Mixotrophic cultivation of microalgae using agro-industrial by-products as supplements offers a sustainable strategy to enhance biomass production and bioactive compound synthesis. This study aimed to evaluate the effects of different agro-industrial by-products—orange peel extract, Cladophora glomerata macroalgal hydrolysate, and solid-state fungal fermentation hydrolysate—on the growth and bioactivity of Chlorella sorokiniana. Methods: Microalgae were cultivated under mixotrophic conditions with different agro-industrial by-products as organic carbon sources. Biomass accumulation was monitored through dry weight measurements. Lipid extraction was carried out using dimethyl carbonate. The antimicrobial activity of the extracted compounds was assessed against Escherichia coli, Bacillus megaterium, and Bacillus subtilis by determining the minimal inhibitconcentrations. Results: Orange peel extract supplementation resulted in the highest biomass production. It increased dry weight by 13.86-fold compared to autotrophic conditions. Cladophora glomerata macroalgal hydrolysate followed with a 5.79-fold increase, and solid-state fungal fermentation hydrolysate showed a 4.14-fold increase. The lipophilic fraction extracted from microalgal biomass showed high yields. Orange peel extract supplementation achieved the highest extraction yield (274.36 mg/g DW). Antimicrobial activity varied based on the supplement used: biomass cultivated with orange peel extract exhibited superior activity against E. coli, whereas Cladophora glomerata macroalgal hydrolysate biomass demonstrated potent activity against B. subtilis (MIC: 5.67 g/mL). Conclusions: These findings underscore the potential of agro-industrial by-products for enhancing microalgal biomass and metabolite production. The observed antimicrobial properties highlight the application of microalgal-derived compounds in sustainable bioprocesses, supporting their use in pharmaceutical and biotechnological applications. Full article
(This article belongs to the Special Issue Metabolism of Bioactives and Natural Products)
Show Figures

Figure 1

33 pages, 5186 KB  
Article
Mixotrophic Cultivation of Dunaliella tertiolecta in Cheese Whey Effluents to Enhance Biomass and Exopolysaccharides (EPS) Production: Biochemical and Functional Insights
by Konstantina Tsotsouli, Spyros Didos, Konstantinos Koukaras and Anagnostis Argiriou
Mar. Drugs 2025, 23(3), 120; https://doi.org/10.3390/md23030120 - 11 Mar 2025
Cited by 7 | Viewed by 1671
Abstract
The rapid growth of the dairy industry has resulted in a significant increase in the generation of effluents, which are characterized by a high organic content that poses environmental challenges. In alignment with sustainable practices and the principles of the circular economy, this [...] Read more.
The rapid growth of the dairy industry has resulted in a significant increase in the generation of effluents, which are characterized by a high organic content that poses environmental challenges. In alignment with sustainable practices and the principles of the circular economy, this study investigates the valorization of cheese whey (CW) effluents through the cultivation of the microalga Dunaliella tertiolecta under mixotrophic conditions. The research aims to utilize cheese whey effluents as a supplemental growth medium to enhance the production of algal biomass and extracellular polymeric substances (EPSs). The results reveal that CW facilitated a 37% improvement in D. tertiolecta growth and led to an approximately eight times greater biomass productivity compared to under photoautotrophic conditions, while the EPS production increased by 30%. Chemical and techno-functional analyses of the microalgal biomass and EPSs suggest promising applications as natural product additives for the food industry. Biomass derived from photoautotrophic culture demonstrated greater antioxidant activity and total polyphenols content. Additionally, the lipid profile revealed 16 distinct fatty acids. On the other hand, biomass from the mixotrophic culture exhibited higher protein levels and eight fatty acids, indicating the influence of the cultivation mode on the biochemical composition. Regarding the EPSs, mixotrophic cultivation resulted in elevated antioxidant activity and total polyphenols content, as well as higher protein and sugar levels. Furthermore, the EPSs produced under mixotrophic conditions exhibited superior techno-functional properties compared to those of the photoautotrophic culture, making them ideal candidates for use as alternative natural food additives. Full article
(This article belongs to the Special Issue Marine Microalgal Biorefinery for Bioactive Compound Production 2024)
Show Figures

Figure 1

19 pages, 2839 KB  
Article
Mixotrophy in Marine Microalgae to Enhance Their Bioactivity
by Gabriella Licata, Christian Galasso, Fortunato Palma Esposito, Antonio Palumbo Piccionello and Valeria Villanova
Microorganisms 2025, 13(2), 338; https://doi.org/10.3390/microorganisms13020338 - 5 Feb 2025
Cited by 2 | Viewed by 1990
Abstract
Photosynthetic microorganisms, such as microalgae, are remarkable for their ability to harness sunlight, fix carbon dioxide, and produce a variety of bioactive compounds. These organisms are pivotal in climate mitigation strategies as they can absorb carbon dioxide while generating valuable biomolecules. Among the [...] Read more.
Photosynthetic microorganisms, such as microalgae, are remarkable for their ability to harness sunlight, fix carbon dioxide, and produce a variety of bioactive compounds. These organisms are pivotal in climate mitigation strategies as they can absorb carbon dioxide while generating valuable biomolecules. Among the diverse cultivation approaches, mixotrophic growth combines light energy with both inorganic and organic carbon sources, offering a unique strategy to enhance biomass production and metabolic diversity in microalgae. Here, microalgal species such as Nannochloropsis granulata, Phaeodactylum tricornutum, and Chlorella sp. were investigated for their potential applications under different cultivation methods, including phototrophy and mixotrophy. Mixotrophic conditions significantly improved biomass production across all tested species. Among these, Phaeodactylum tricornutum, a marine diatom, emerged as a promising candidate for bioactive compound production, exhibiting higher antiproliferative activity against human melanoma cells and antibacterial effects against Staphylococcus aureus. Importantly, Chlorella sp. was also found to possess antibacterial activity against Staphylococcus aureus, broadening its potential applications. Additionally, metabolomics analysis was performed on Chlorella sp. and Phaeodactylum tricornutum to identify the compounds responsible for the observed bioactivity. This study highlights the value of mixotrophic cultivation in enhancing the productivity and bioactivity of microalgae, positioning them as versatile organisms for sustainable biotechnological applications. Full article
Show Figures

Figure 1

24 pages, 2805 KB  
Article
Dairy Wastewaters to Promote Mixotrophic Metabolism in Limnospira (Spirulina) platensis: Effect on Biomass Composition, Phycocyanin Content, and Fatty Acid Methyl Ester Profile
by Luca Baraldi, Luca Usai, Serenella Torre, Giacomo Fais, Mattia Casula, Debora Dessi, Paola Nieri, Alessandro Concas and Giovanni Antonio Lutzu
Life 2025, 15(2), 184; https://doi.org/10.3390/life15020184 - 26 Jan 2025
Cited by 9 | Viewed by 3189
Abstract
This study explores the mixotrophic cultivation of Limnospira platensis using dairy byproducts, specifically scotta whey (SW), buttermilk wastewater (BMW), and dairy wastewater (DWW), to promote biomass production and enhance the composition of bioactive compounds. By assessing various concentrations (1%, 2%, and 4% v [...] Read more.
This study explores the mixotrophic cultivation of Limnospira platensis using dairy byproducts, specifically scotta whey (SW), buttermilk wastewater (BMW), and dairy wastewater (DWW), to promote biomass production and enhance the composition of bioactive compounds. By assessing various concentrations (1%, 2%, and 4% v v−1) of these byproducts in a modified growth medium, this study aims to evaluate their effect on L. platensis growth, phycocyanin (C-PC) content, and fatty acid methyl ester (FAME) profiles. The results show that the optimal biomass production was achieved with 2% scotta and dairy wastewater, reaching maximum concentrations of 3.30 g L−1 and 3.19 g L−1, respectively. Mixotrophic cultivation led to increased C-PC yields, especially in buttermilk and dairy wastewater treatments, highlighting the potential for producing valuable pigments. Additionally, the FAME profiles indicated minimal changes compared to the control, with oleic and γ-linolenic acids being dominant in mixotrophic conditions. These findings support the viability of utilizing dairy byproducts for sustainable L. platensis cultivation, contributing to a circular bioeconomy while producing bioactive compounds of nutritional and commercial interest. Full article
Show Figures

Graphical abstract

17 pages, 1612 KB  
Article
Resilience of Chlorella vulgaris to Simulated Atmospheric Gas Compositions of Mars, Jupiter, and Titan
by Ariela Likai, Aikaterini Papazi and Kiriakos Kotzabasis
Life 2025, 15(1), 117; https://doi.org/10.3390/life15010117 - 17 Jan 2025
Cited by 2 | Viewed by 2328
Abstract
This study investigates the resilience of the unicellular green microalga Chlorella vulgaris to extreme atmospheric conditions simulating those of Mars, Jupiter, and Titan. Using Earth as a control, experiments were conducted under autotrophic and mixotrophic conditions to evaluate the organism’s photosynthetic efficiency, oxygen [...] Read more.
This study investigates the resilience of the unicellular green microalga Chlorella vulgaris to extreme atmospheric conditions simulating those of Mars, Jupiter, and Titan. Using Earth as a control, experiments were conducted under autotrophic and mixotrophic conditions to evaluate the organism’s photosynthetic efficiency, oxygen production, and biomass growth over 2, 5, and 12 days. Photosynthetic performance was analyzed through chlorophyll a fluorescence induction (JIP-test), metabolic activity via gas chromatography, and biomass accumulation measurements. Despite the extreme atmospheric compositions—ranging from the CO2-rich, low-pressure Martian atmosphere to the anoxic atmospheres of Jupiter and Titan—C. vulgaris demonstrated resilience and a functional photosynthetic apparatus, maintaining growth and oxygen production. Notably, the Martian atmosphere enhanced photosynthetic performance, with fluorescence curves and Fv/Fm ratios surpassing Earth-like conditions, likely due to elevated CO2 and low pressure. Under mixotrophic conditions, the addition of glucose further enhanced metabolic activity and biomass growth across all atmospheres. These findings highlight the potential of C. vulgaris for bioregenerative life support systems, enabling oxygen production, CO2 sequestration, and resource cultivation in extraterrestrial habitats. The study showcases the organism’s adaptability to extreme environments, with implications for astrobiology, space exploration, and sustainable extraterrestrial ecosystems. These findings expand habitability criteria and explore extremophiles’ potential to support life beyond Earth. Full article
Show Figures

Figure 1

Back to TopTop