Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (98)

Search Parameters:
Keywords = mixed-gas permeation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4646 KiB  
Article
The Production of High-Permeable and Macrovoid-Free Polysulfone Hollow Fiber Membranes and Their Utilization in CO2 Capture Applications via the Membrane-Assisted Gas Absorption Technique
by Pavel Țiuleanu, Artem A. Atlaskin, Kirill A. Smorodin, Sergey S. Kryuchkov, Maria E. Atlaskina, Anton N. Petukhov, Andrey V. Vorotyntsev, Nikita S. Tsivkovskiy, Alexander A. Sysoev and Ilya V. Vorotyntsev
Polymers 2025, 17(10), 1407; https://doi.org/10.3390/polym17101407 - 20 May 2025
Viewed by 546
Abstract
This present study covers a complex approach to study a hybrid separation technique: membrane-assisted gas absorption for CO2 capture from flue gases. It includes not only the engineering aspects of the process, particularly the cell design, flow organization, and process conditions, but [...] Read more.
This present study covers a complex approach to study a hybrid separation technique: membrane-assisted gas absorption for CO2 capture from flue gases. It includes not only the engineering aspects of the process, particularly the cell design, flow organization, and process conditions, but also a complex study of the materials. It covers the spinning of hollow fibers with specific properties that provide sufficient mass transfer for their implementation in the hybrid membrane-assisted gas absorption technique and the design of an absorbent with a new ionic liquid—bis(2-hydroxyethyl) dimethylammonium glycinate, which allows the selective capture of carbon dioxide. In addition, the obtained hollow fibers are characterized not only by single gas permeation but with regard to mixed gases, including the transfer of water vapors. A quasi-real flue gas, which consists of nitrogen, oxygen, carbon dioxide, and water vapors, is used to evaluate the separation efficiency of the proposed membrane-assisted gas absorption technique and to determine its ultimate performance in terms of the CO2 content in the product flow and recovery rate. As a result of this study, it is found that highly permeable fibers in combination with the obtained absorbent provide sufficient separation and their implementation is preferable compared to a selective but much less permeable membrane. Full article
(This article belongs to the Special Issue Innovative Polymers and Technology for Membrane Fabrication)
Show Figures

Figure 1

19 pages, 7033 KiB  
Article
Study on Demulsification via Vacuum Filtration with Superamphiphilic Diatomite/G-C3N4/Rice Husk Charcoal Composite Filter Layer
by Yue Wang, Tianxin Chen, Yu Jia, Feng Qin, Junhui Gao, Xingyang Zhang, Jiahong He and Jian He
Nanomaterials 2025, 15(5), 344; https://doi.org/10.3390/nano15050344 - 22 Feb 2025
Viewed by 1039
Abstract
The primary extraction way for unconventional oil/gas resources is hydraulic fracturing to alter the reservoir for commercial production. However, hydraulic fracturing technology consumes a large amount of water, and the flowback water can easily be mixed with hydrocarbon substances to form emulsions. To [...] Read more.
The primary extraction way for unconventional oil/gas resources is hydraulic fracturing to alter the reservoir for commercial production. However, hydraulic fracturing technology consumes a large amount of water, and the flowback water can easily be mixed with hydrocarbon substances to form emulsions. To achieve the recycling of water, it is necessary to develop an efficient continuous demulsification method for treating the flowback fluid. In this study, a composite filtration layer with superhydrophilic and superoleophilic properties was successfully prepared using water-based polyurethane as a binder. The g-C3N4 was used to improve the affinity of the filtration layer to water and oil. The diatomite and rice husk carbon were used as an adsorbent and a filter aid, respectively. The contact angles (CA) of both oil and water on the surface of the filtration layer were measured to be 0°. During the demulsification process, vacuum filtration was employed to increase the pressure difference across the filtration layer, thereby improving the treatment flux of flowback fluid. The experimental results showed that the filtration flux with the addition of rice husk charcoal increased from 160.58 L∙m−2∙h−1 to 174.68 L∙m−2∙h−1 compared to the filter layer without rice husk charcoal. Based on the composite filtration layer, the apparent demulsification efficiency exceeded 90.6% for various types of emulsion. The mechanism of demulsification was investigated by the molecular dynamics method. The results showed that the adsorption layer density of water molecules reached 1.5 g/cm3, and the adsorption layer density of oil molecules exceeded 2.5 g/cm3. The porous structure wall has a strong adsorption effect on both oil and water molecules, resulting in deformation and destruction of the oil–water interface, so that the dispersed phase is adsorbed and aggregated by the filter layer at the same time and permeates from the filter layer after reaching saturation, thus separating the two phases. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

20 pages, 20133 KiB  
Article
Numerical Simulation of CO2 Immiscible Displacement Based on Three-Dimensional Pore Structure
by Feng Shi, Xiaoshan Li, Gen Kou, Huan Liu, Sai Liu, Zhen Liu, Ziheng Zhao and Xiaoyu Jiang
Energies 2025, 18(4), 1009; https://doi.org/10.3390/en18041009 - 19 Feb 2025
Cited by 1 | Viewed by 556
Abstract
CO2-enhanced tight oil production can increase crude oil recovery while part of the injected CO2 is geologically sequestered. This process is influenced by factors such as gas injection rate, oil/gas viscosity ratio, and contact angle. Understanding how these factors affect [...] Read more.
CO2-enhanced tight oil production can increase crude oil recovery while part of the injected CO2 is geologically sequestered. This process is influenced by factors such as gas injection rate, oil/gas viscosity ratio, and contact angle. Understanding how these factors affect recovery during CO2 non-mixed-phase substitution is essential for improving CO2-enhanced tight oil production technology. In this study, three-dimensional pore structure was numerically simulated using physical simulation software. The effects of three key parameters—the gas injection rate, contact angle and viscosity slope—on flow displacement during a CO2 non-mixed-phase drive were analyzed. In addition, the study compares the fluid transport behavior under mixed-phase and non-mixed-phase conditions at the pore scale. The simulation results show that increasing the replacement velocity significantly expands the diffusion range of CO2 and reduces the capillary fingering phenomenon. In addition, the saturation of CO2 increases with the increase in the viscosity ratio, which further improves the diffusion range of CO2. The wetting angle is not simply linearly related to the drive recovery, and the recovery is closely related to the interfacial tension and capillary force under the influence of wettability. The recoveries under mixed-phase conditions were slightly higher than those under unmixed-phase conditions. During the mixed-phase replacement process, CO2 is dissolved into the crude oil, resulting in oil volume expansion, which improves the distance and extent of CO2 permeation. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

15 pages, 6734 KiB  
Article
Self-Assembled Sandwich-like Mixed Matrix Membrane of Defective Zr-MOF for Efficient Gas Separation
by Yuning Li, Xinya Wang, Weiqiu Huang, Xufei Li, Ping Xia, Xiaochi Xu and Fangrui Feng
Nanomaterials 2025, 15(4), 279; https://doi.org/10.3390/nano15040279 - 12 Feb 2025
Cited by 1 | Viewed by 1000
Abstract
Membrane technology has been widely used in industrial CO2 capturing, gas purification and gas separation, arousing attention due to its advantages of high efficiency, energy saving and environmental protection. In the context of reducing global carbon emissions and combating climate change, it [...] Read more.
Membrane technology has been widely used in industrial CO2 capturing, gas purification and gas separation, arousing attention due to its advantages of high efficiency, energy saving and environmental protection. In the context of reducing global carbon emissions and combating climate change, it is particularly important to capture and separate greenhouse gasses such as CO2. Zr-MOF can be used as a multi-dimensional modification on the polymer membrane to prepare self-assembled MOF-based mixed matrix membranes (MMMs), aiming at the problem of weak adhesion or bonding force between the separation layer and the porous carrier. When defective UiO-66 is applied to PVDF membrane as a functional layer, the CO2 separation performance of the PVDF membrane is significantly improved. TUT-UiO-3-TTN@PVDF has a CO2 permeation flux of 14,294 GPU and a selectivity of 27 for CO2/N2 and 18 for CO2/CH4, respectively. The CO2 permeability and selectivity of the membrane exhibited change after 40 h of continuous operation, significantly improving the gas separation performance and showing exceptional stability for large-scale applications. Full article
(This article belongs to the Special Issue Advances in Polymer Nanofilms)
Show Figures

Graphical abstract

28 pages, 8575 KiB  
Article
Binary and Ternary Nanocomposite Membranes for Gas Separation Incorporating Finely Dispersed Carbon Nanotubes in a Polyether Block Amide Matrix
by Danilo Vuono, Gabriele Clarizia, Daniela Clotilde Zampino and Paola Bernardo
Polymers 2025, 17(3), 314; https://doi.org/10.3390/polym17030314 - 24 Jan 2025
Viewed by 865
Abstract
This work addressed the fine dispersion of Multiwalled Carbon Nanotubes (MWCNTs) in a polymer matrix to obtain Mixed Matrix Membranes (MMMs) suited for gas separation. Not-purified MWCNTs were effectively loaded within a polyether block amide (Pebax®2533) matrix, up to 24 wt%, [...] Read more.
This work addressed the fine dispersion of Multiwalled Carbon Nanotubes (MWCNTs) in a polymer matrix to obtain Mixed Matrix Membranes (MMMs) suited for gas separation. Not-purified MWCNTs were effectively loaded within a polyether block amide (Pebax®2533) matrix, up to 24 wt%, using ultrasonication as well as a third component (polysorbate) in the dope solution. The obtained flexible thin films were investigated in terms of morphology, thermal properties, characterized by SEM, FT-IR, DSC, TGA, and gas permeation tests. The response to temperature variations of gas permeation through these nanocomposite specimens was also investigated in the temperature range of 25–55 °C. Defect-free samples were successfully obtained even at a significantly high loading of CNTs (up to 18 wt%), without a pre-treatment of the fillers. A remarkable enhancement of gas permeability upon the nanocarbons loading was reached, with a threshold value at a loading of ca. 7 wt%. The addition of polysorbates in the ternary MMMs further improves the dispersion of the filler, enhancing also the permselectivity of the membrane. Full article
Show Figures

Graphical abstract

18 pages, 3112 KiB  
Article
Microencapsulation of Deer Oil in Soy Protein Isolate–Chitosan Complex Coacervate—Preparation, Characterization, and Simulated Digestion
by Hongyan Li, Ying Zong, Weijia Chen, Yan Zhao, Jianan Geng, Zhongmei He and Rui Du
Foods 2025, 14(2), 181; https://doi.org/10.3390/foods14020181 - 9 Jan 2025
Cited by 1 | Viewed by 1597
Abstract
Deer oil (DO) is a potentially beneficial functional oil; however, its sensitivity to environmental factors (e.g., oxygen and heat), difficulty in transport, and unfavorable taste hinder practical use. In this study, DO was encapsulated through the cohesive action of soy protein isolate (SPI) [...] Read more.
Deer oil (DO) is a potentially beneficial functional oil; however, its sensitivity to environmental factors (e.g., oxygen and heat), difficulty in transport, and unfavorable taste hinder practical use. In this study, DO was encapsulated through the cohesive action of soy protein isolate (SPI) and chitosan (CS). The optimal preparation conditions yielded microcapsules with DO’s highest encapsulation efficiency (EE) (85.28 ± 1.308%) at an SPI/CS mixing ratio of 6:1 and a core-to-wall ratio of 1:2 at pH 6. Fluorescence and scanning electron microscopy were utilized to examine the microcapsules’ structure, showing intact surfaces and effective encapsulation of oil droplets through SPI/CS composite coalescence. Through Fourier transform infrared spectroscopy (FTIR), the electrostatic interplay between SPI and CS was verified during the merging process. At room temperature, the microcapsules resisted core oxidation by reducing gas permeation. In vitro simulated digestion results indicated the microcapsules achieved a slow and sustained release of DO in the intestinal tract. This study further expands the application scope of deer oil and promotes the development of deer oil preparations and functional foods. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Graphical abstract

17 pages, 13526 KiB  
Article
Hydrogen-Rich Syngas Production in a Ce0.9Zr0.05Y0.05O2−δ/Ag and Molten Carbonates Membrane Reactor
by José A. Raya-Colín, José A. Romero-Serrano, Cristian Carrera-Figueiras, José A. Fabián-Anguiano, Heberto Balmori-Ramírez, Oscar Ovalle-Encinia and José Ortiz-Landeros
ChemEngineering 2024, 8(5), 106; https://doi.org/10.3390/chemengineering8050106 - 15 Oct 2024
Cited by 1 | Viewed by 1493
Abstract
This study proposes a new dense membrane for selectively separating CO2 and O2 at high temperatures and simultaneously producing syngas. The membrane consists of a cermet-type material infiltrated with a ternary carbonate phase. Initially, the co-doped ceria of composition Ce0.9 [...] Read more.
This study proposes a new dense membrane for selectively separating CO2 and O2 at high temperatures and simultaneously producing syngas. The membrane consists of a cermet-type material infiltrated with a ternary carbonate phase. Initially, the co-doped ceria of composition Ce0.9Zr0.05Y0.05O2−δ (CZY) was synthesized by using the conventional solid-state reaction method. Then, the ceramic was mixed with commercial silver powders using a ball milling process and subsequently uniaxially pressed and sintered to form the disk-shaped cermet. The dense membrane was finally formed via the infiltration of molten salts into the porous cermet supports. At high temperatures (700–850 °C), the membranes exhibit CO2/N2 and O2/N2 permselectivity and a high permeation flux under different CO2 concentrations in the feed and sweeping gas flow rates. The observed permeation properties make its use viable for CO2 valorization via the oxy-CO2 reforming of methane, wherein both CO2 and O2 permeated gases were effectively utilized to produce hydrogen-rich syngas (H2 + CO) through a catalytic membrane reactor arrangement at different temperatures ranging from 700 to 850 °C. The effect of the ceramic filler in the cermet is discussed, and continuous permeation testing, up to 115 h, demonstrated the membrane’s superior chemical and thermal stability by confirming the absence of any chemical interaction between the material and the carbonates as well as the absence of significant sintering concerns with the pure silver. Full article
Show Figures

Graphical abstract

16 pages, 3787 KiB  
Article
Mixed-Matrix Organo–Silica–Hydrotalcite Membrane for CO2 Separation Part 2: Permeation and Selectivity Study
by Lucas Bünger, Tim Kurtz, Krassimir Garbev, Peter Stemmermann and Dieter Stapf
Membranes 2024, 14(7), 156; https://doi.org/10.3390/membranes14070156 - 12 Jul 2024
Cited by 2 | Viewed by 1749
Abstract
This study introduces an innovative approach to designing membranes capable of separating CO2 from industrial gas streams at higher temperatures. The novel membrane design seeks to leverage a well-researched, high-temperature CO2 adsorbent, hydrotalcite, by transforming it into a membrane. This was [...] Read more.
This study introduces an innovative approach to designing membranes capable of separating CO2 from industrial gas streams at higher temperatures. The novel membrane design seeks to leverage a well-researched, high-temperature CO2 adsorbent, hydrotalcite, by transforming it into a membrane. This was achieved by combining it with an amorphous organo-silica-based matrix, extending the polymer-based mixed-matrix membrane concept to inorganic compounds. Following the membrane material preparation and investigation of the individual membrane in Part 1 of this study, we examine its permeation and selectivity here. The pure 200 nm thick hydrotalcite membrane exhibits Knudsen behavior due to large intercrystalline pores. In contrast, the organo-silica membrane demonstrates an ideal selectivity of 13.5 and permeance for CO2 of 1.3 × 10−7 mol m−2 s−1 Pa−1 at 25 °C, and at 150 °C, the selectivity is reduced to 4.3. Combining both components results in a hybrid microstructure, featuring selective surface diffusion in the microporous regions and unselective Knudsen diffusion in the mesoporous regions. Further attempts to bridge both components to form a purely microporous microstructure are outlined. Full article
(This article belongs to the Special Issue Advanced Membrane Materials for CO2 Capture and Separation)
Show Figures

Figure 1

12 pages, 4556 KiB  
Article
Microporous Adsorbent-Based Mixed Matrix Membranes for CO2/N2 Separation
by Suboohi Shervani, Lara P. Tansug and F. Handan Tezel
Energies 2024, 17(8), 1927; https://doi.org/10.3390/en17081927 - 18 Apr 2024
Cited by 5 | Viewed by 1674
Abstract
As the atmospheric carbon dioxide (CO2) concentration rapidly rises, carbon capture, utilization, and storage (CCUS) is an emerging field for climate change mitigation. Various carbon capture technologies are in development with the help of adsorbents, membranes, solvent-based systems, etc. One of [...] Read more.
As the atmospheric carbon dioxide (CO2) concentration rapidly rises, carbon capture, utilization, and storage (CCUS) is an emerging field for climate change mitigation. Various carbon capture technologies are in development with the help of adsorbents, membranes, solvent-based systems, etc. One of the main challenges in this field is the removal of CO2 from nitrogen (N2) gas. This paper focuses on mixed matrix membrane technology, for which the CO2/N2 separation performance is based on differences in gas permeations. Membrane separation and purification technologies are widely studied for carbon capture. Microporous adsorbents such as zeolites and metal organic frameworks (MOFs) for carbon capture have been attracting researchers’ attention due to their highly porous structures, high selectivity values, and tunable porosities. Utilizing microporous adsorbents dispersed within a novel, blended polymer matrix, fourteen membranes were prepared with the commercial MOF ZIF-8, zeolite 13X, and kaolin, with methyl cellulose (MC) and polyvinyl alcohol (PVA), which were tested using a single gas permeation setup in this study. The addition of polyallylamine (PAH) as a chemisorbent was also investigated. These membranes were synthesized both with and without a polyacrylonitrile (PAN) support to compare their performances. MC was found to be an ideal polymeric matrix component to develop free-standing MMMs. At 24 °C and a relatively low feed pressure of 2.36 atm, a free-standing zeolite-13X-based membrane (MC/PAH/13X/PVA) exhibited the highest N2/CO2 selectivity of 2.8, with a very high N2 permeability of 6.9 × 107 Barrer. Upon the optimization of active layer thickness and filler weight percentages, this easily fabricated free-standing MMM made of readily available materials is a promising candidate for CO2 purification through nitrogen removal. Full article
(This article belongs to the Special Issue Green Technologies in Environment and Energy)
Show Figures

Figure 1

18 pages, 8123 KiB  
Article
CO2/CH4 Separation in Amino Acid Ionic Liquids, Polymerized Ionic Liquids, and Mixed Matrix Membranes
by Gowri Selvaraj and Cecilia Devi Wilfred
Molecules 2024, 29(6), 1357; https://doi.org/10.3390/molecules29061357 - 19 Mar 2024
Cited by 5 | Viewed by 1705
Abstract
The ability to efficiently separate CO2 from other light gases using membrane technology has received a great deal of attention due to its importance in applications such as improving the efficiency of natural gas and reducing greenhouse gas emissions. A wide range [...] Read more.
The ability to efficiently separate CO2 from other light gases using membrane technology has received a great deal of attention due to its importance in applications such as improving the efficiency of natural gas and reducing greenhouse gas emissions. A wide range of materials has been employed for the fabrication of membranes. This paper highlights the work carried out to develop novel advanced membranes with improved separation performance. We integrated a polymerizable and amino acid ionic liquid (AAIL) with zeolite to fabricate mixed matrix membranes (MMMs). The MMMs were prepared with (vinylbenzyl)trimethylammonium chloride [VBTMA][Cl] and (vinylbenzyl)trimethylammonium glycine [VBTMA][Gly] as the polymeric support with 5 wt% zeolite particles, and varying concentrations of 1-butyl-3-methylimidazolium glycine, [BMIM][Gly] (5–20 wt%) blended together. The membranes were fabricated through photopolymerization. The extent of polymerization was confirmed using FTIR. FESEM confirmed the membranes formed are dense in structure. The thermal properties of the membranes were measured using TGA and DSC. CO2 and CH4 permeation was studied at room temperature and with a feed side pressure of 2 bar. [VBTMA][Gly]-based membranes recorded higher CO2 permeability and CO2/CH4 selectivity compared to [VBTMA][Cl]-based membranes due to the facilitated transport of CO2. The best performing membrane Gly-Gly-20 recorded permeance of 4.17 GPU and ideal selectivity of 5.49. Full article
Show Figures

Figure 1

20 pages, 8656 KiB  
Article
Numerical Study of the Influence of the Type of Gas on Drag Reduction by Microbubble Injection
by Hai An, Po Yang, Hanyu Zhang and Xinquan Liu
Inventions 2024, 9(1), 7; https://doi.org/10.3390/inventions9010007 - 2 Jan 2024
Cited by 1 | Viewed by 2216
Abstract
In this work, a novel numerical method for studying the influence of gas types on drag reduction by microbubble injection is presented. Aimed at the microbubble drag reduction (MBDR) process for different types of gases, the mass transfer velocity of different types of [...] Read more.
In this work, a novel numerical method for studying the influence of gas types on drag reduction by microbubble injection is presented. Aimed at the microbubble drag reduction (MBDR) process for different types of gases, the mass transfer velocity of different types of gases in the gas–liquid phase is defined by writing a user-defined function (UDF), which reflected the influence of gas solubility on the drag reduction rate. An Eulerian multiphase flow model and the Realizable kε turbulence model are used for numerical calculation. The population balance model is used to describe the coalescence and breakup phenomena of the microbubble groups. Henry’s theorem is used to calculate the equilibrium concentration of the microbubble mixed flow. The interphase mass transfer rate of the microbubble injection process for different types of gases is studied by using permeation theory. The local mass fraction of the mixed flow is solved by the component transport equation. It is found that the larger the solubility of the gas, the lower the efficiency of MBDR. When the volume flow rate of the same type of gas is the same but the injection speed is different, the larger the solubility of the gas is, the greater the difference in the drag reduction ratio. Full article
Show Figures

Figure 1

27 pages, 5353 KiB  
Review
Membrane-Based Technologies for Post-Combustion CO2 Capture from Flue Gases: Recent Progress in Commonly Employed Membrane Materials
by Petros Gkotsis, Efrosini Peleka and Anastasios Zouboulis
Membranes 2023, 13(12), 898; https://doi.org/10.3390/membranes13120898 - 2 Dec 2023
Cited by 49 | Viewed by 19234
Abstract
Carbon dioxide (CO2), which results from fossil fuel combustion and industrial processes, accounts for a substantial part of the total anthropogenic greenhouse gases (GHGs). As a result, several carbon capture, utilization and storage (CCUS) technologies have been developed during the last [...] Read more.
Carbon dioxide (CO2), which results from fossil fuel combustion and industrial processes, accounts for a substantial part of the total anthropogenic greenhouse gases (GHGs). As a result, several carbon capture, utilization and storage (CCUS) technologies have been developed during the last decade. Chemical absorption, adsorption, cryogenic separation and membrane separation are the most widely used post-combustion CO2 capture technologies. This study reviews post-combustion CO2 capture technologies and the latest progress in membrane processes for CO2 separation. More specifically, the objective of the present work is to present the state of the art of membrane-based technologies for CO2 capture from flue gases and focuses mainly on recent advancements in commonly employed membrane materials. These materials are utilized for the fabrication and application of novel composite membranes or mixed-matrix membranes (MMMs), which present improved intrinsic and surface characteristics and, thus, can achieve high selectivity and permeability. Recent progress is described regarding the utilization of metal–organic frameworks (MOFs), carbon molecular sieves (CMSs), nanocomposite membranes, ionic liquid (IL)-based membranes and facilitated transport membranes (FTMs), which comprise MMMs. The most significant challenges and future prospects of implementing membrane technologies for CO2 capture are also presented. Full article
Show Figures

Figure 1

16 pages, 12220 KiB  
Article
The Functionalization of PES/SAPO-34 Mixed Matrix Membrane with [emim][Tf2N] Ionic Liquid to Improve CO2/N2 Separation Properties
by Jonathan S. Cardoso, Zhi Lin, Paulo Brito and Licínio M. Gando-Ferreira
Inorganics 2023, 11(11), 447; https://doi.org/10.3390/inorganics11110447 - 20 Nov 2023
Cited by 1 | Viewed by 2411
Abstract
The use of ionic liquid [emim][Tf2N] as an additive in polyethersulphone (PES) and nano-sized silico-aluminophosphate-34 (SAPO-34) mixed matrix membrane was studied through the incorporation of different amounts of [emim][Tf2N] in the membrane composition, as presented in this work, varying [...] Read more.
The use of ionic liquid [emim][Tf2N] as an additive in polyethersulphone (PES) and nano-sized silico-aluminophosphate-34 (SAPO-34) mixed matrix membrane was studied through the incorporation of different amounts of [emim][Tf2N] in the membrane composition, as presented in this work, varying from 10 to 40 wt%. Through gas permeation tests using CO2 and N2, the membrane composition containing 20 wt% [emim][Tf2N] led to the highest increase in CO2 permeability and CO2/N2 selectivity. The use of low concentrations of additive (10–20 wt%) promoted a state called antiplasticization; in this state, the permeability was even more regulated by the kinetic diameter of the species which, in this work, permitted achieving a higher CO2/N2 selectivity while increasing the CO2 permeability until an optimal condition. [emim][Tf2N] also promoted a better dispersion of SAPO-34 particles and an increase in the flexibility of the polymeric matrix when compared to a film with the same composition without [emim][Tf2N]. Moreover, the characterizations corroborated that the inclusion of [emim][Tf2N] increased the zeolite dispersion and improved the polymer/zeolite compatibility and membrane flexibility, characterized by a decrease in glass transition temperature, which helped in the fabrication process while presenting a similar thermal resistance and hydrophilicity as neat PES membrane, without affecting the membrane structure, as indicated by FTIR and a contact angle analysis. Full article
(This article belongs to the Special Issue Inorganic Composites for Gas Separation)
Show Figures

Graphical abstract

15 pages, 3629 KiB  
Article
Deep Eutectic Solvent Coated Cerium Oxide Nanoparticles Based Polysulfone Membrane to Mitigate Environmental Toxicology
by Saif-ur-Rehman, Muhammad Shozab Mehdi, Muhammad Fakhar-e-Alam, Muhammad Asif, Javed Rehman, Razan A. Alshgari, Muddasar Jamal, Shafiq Uz Zaman, Muhammad Umar, Sikander Rafiq, Nawshad Muhammad, Junaid bin Fawad and Saiful Arifin Shafiee
Molecules 2023, 28(20), 7162; https://doi.org/10.3390/molecules28207162 - 19 Oct 2023
Cited by 3 | Viewed by 1825
Abstract
In this study, ceria nanoparticles (NPs) and deep eutectic solvent (DES) were synthesized, and the ceria-NP’s surfaces were modified by DES to form DES-ceria NP filler to develop mixed matrix membranes (MMMs). For the sake of interface engineering, MMMs of 2%, 4%, 6% [...] Read more.
In this study, ceria nanoparticles (NPs) and deep eutectic solvent (DES) were synthesized, and the ceria-NP’s surfaces were modified by DES to form DES-ceria NP filler to develop mixed matrix membranes (MMMs). For the sake of interface engineering, MMMs of 2%, 4%, 6% and 8% filler loadings were fabricated using solution casting technique. The characterizations of SEM, FTIR and TGA of synthesized membranes were performed. SEM represented the surface and cross-sectional morphology of membranes, which indicated that the filler is uniformly dispersed in the polysulfone. FTIR was used to analyze the interaction between the filler and support, which showed there was no reaction between the polymer and DES-ceria NPs as all the peaks were consistent, and TGA provided the variation in the membrane materials with respect to temperature, which categorized all of the membranes as very stable and showed that the trend of stability increases with respect to DES-ceria NPs filler loading. For the evaluation of efficiency of the MMMs, the gas permeation was tested. The permeability of CO2 was improved in comparison with the pristine Polysulfone (PSF) membrane and enhanced selectivities of 35.43 (αCO2/CH4) and 39.3 (αCO2/N2) were found. Hence, the DES-ceria NP-based MMMs proved useful in mitigating CO2 from a gaseous mixture. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

22 pages, 5129 KiB  
Article
Mixed Matrix Membranes Using Porous Organic Polymers (POPs)—Influence of Textural Properties on CO2/CH4 Separation
by Laura Matesanz-Niño, Jorge Moranchel-Pérez, Cristina Álvarez, Ángel E. Lozano and Clara Casado-Coterillo
Polymers 2023, 15(20), 4135; https://doi.org/10.3390/polym15204135 - 18 Oct 2023
Cited by 6 | Viewed by 2874
Abstract
Mixed matrix membranes (MMMs) provide the opportunity to test new porous materials in challenging applications. A series of low-cost porous organic polymer (POPs) networks, possessing tunable porosity and high CO2 uptake, has been obtained by aromatic electrophilic substitution reactions of biphenyl, 9,10-dihydro-9,10-dimethyl-9,10-ethanoanthracene [...] Read more.
Mixed matrix membranes (MMMs) provide the opportunity to test new porous materials in challenging applications. A series of low-cost porous organic polymer (POPs) networks, possessing tunable porosity and high CO2 uptake, has been obtained by aromatic electrophilic substitution reactions of biphenyl, 9,10-dihydro-9,10-dimethyl-9,10-ethanoanthracene (DMDHA), triptycene and 1,3,5-triphenylbenzene (135TPB) with dimethoxymethane (DMM). These materials have been characterized by FTIR, 13C NMR, WAXD, TGA, SEM, and CO2 uptake. Finally, different loadings of these POPs have been introduced into Matrimid, Pebax, and chitosan:polyvinyl alcohol blends as polymeric matrices to prepare MMMs. The CO2/CH4 separation performance of these MMMs has been evaluated by single and mixed gas permeation experiments at 4 bar and room temperature. The effect of the porosity of the porous fillers on the membrane separation behavior and the compatibility between them and the different polymer matrices on membrane design and fabrication has been studied by Maxwell model equations as a function of the gas permeability of the pure polymers, porosity, and loading of the fillers in the MMMs. Although the gas transport properties showed an increasing deviation from ideal Maxwell equation prediction with increasing porosity of the POP fillers and increasing hydrophilicity of the polymer matrices, the behavior of biopolymer-based CS:PVA MMMs approached that of Pebax-based MMMs, giving scope to not only new filler materials but also sustainable polymer choices to find a place in membrane technology. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

Back to TopTop