Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (445)

Search Parameters:
Keywords = mixed crystal phase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 971 KiB  
Article
Mechanism of Topotactic Reduction-Oxidation Between Mg-Doped SrMoO3 Perovskites and SrMoO4 Scheelites, Utilized as Anode Materials for Solid Oxide Fuel Cells
by Vanessa Cascos, M. T. Fernández-Díaz and José Antonio Alonso
Materials 2025, 18(15), 3424; https://doi.org/10.3390/ma18153424 - 22 Jul 2025
Viewed by 204
Abstract
Recently, we have described SrMo1-xMgxO3-δ perovskites (x = 0.1, 0.2) as excellent anode materials for solid oxide fuel cells (SOFCs), with mixed ionic and electronic conduction (MIEC) properties. After depositing on the solid electrolyte, they were annealed for [...] Read more.
Recently, we have described SrMo1-xMgxO3-δ perovskites (x = 0.1, 0.2) as excellent anode materials for solid oxide fuel cells (SOFCs), with mixed ionic and electronic conduction (MIEC) properties. After depositing on the solid electrolyte, they were annealed for sintering at high temperatures (typically 1000 °C), giving rise to oxidized scheelite-type phases, with SrMo1-xMgxO4-δ (x = 0.1, 0.2) stoichiometry. To obtain the active perovskite phases, they were reduced again in the working anode conditions, under H2 atmosphere. Therefore, there must be an excellent reversibility between the oxidized Sr(Mo, Mg)O4-δ scheelite and the reduced Sr(Mo, Mg)O3-δ perovskite phases. This work describes the topotactical oxidation, by annealing at 400 °C in air, of the SrMo0.9Mg0.1O3-δ perovskite oxide. The characterization by X-ray diffraction (XRD) and neutron powder diffraction (NPD) was carried out in order to determine the crystal structure features. The scheelite oxides are tetragonal, space group I41/a (No. 88), whereas the perovskites are cubic, s.g. Pm-3m (No. 221). The Rietveld refinement of the scheelite phase from NPD data after annealing the perovskite at 400 °C and cooling it down slowly to RT evidences the absence of intermediate phases between perovskite and scheelite oxides, as well as the presence of oxygen vacancies in both oxidized and reduced phases, essential for their performance as MIEC oxides. The topotactical relationship between both crystal structures is discussed. Full article
Show Figures

Figure 1

18 pages, 9768 KiB  
Article
Impact of Mixed-In Polyacrylic- and Phosphonate-Based Additives on Lime Mortar Microstructure
by Dulce Elizabeth Valdez Madrid, Encarnación Ruiz-Agudo, Sarah Bonilla-Correa, Nele De Belie and Veerle Cnudde
Materials 2025, 18(14), 3322; https://doi.org/10.3390/ma18143322 - 15 Jul 2025
Viewed by 311
Abstract
Aminotris(methylene phosphonic acid) (ATMP) and poly(acrylic acid) sodium salt (PAA) have shown favorable results in the treatment of porous building materials against weathering damage, showing promising potential as mixed-in additives during the production of lime-based mortars. This study investigates the impact of these [...] Read more.
Aminotris(methylene phosphonic acid) (ATMP) and poly(acrylic acid) sodium salt (PAA) have shown favorable results in the treatment of porous building materials against weathering damage, showing promising potential as mixed-in additives during the production of lime-based mortars. This study investigates the impact of these additives on microstructure and mechanical properties. Additives were introduced in various concentrations to assess their influence on CaCO3 crystallization, porosity, strength, and carbonation behavior. Results revealed significant modifications in the morphology of CaCO3 precipitates, showing evidence of nanostructured CaCO3 aggregates and vaterite stabilization, thus indicating a non-classical crystallization pathway through the formation of amorphous CaCO3 phase(s), facilitated by organic occlusions. These nanostructural changes, resembling biomimetic calcitic precipitates enhanced mechanical performance by enabling plastic deformation and intergranular bridging. Increased porosity and pore connectivity facilitated CO2 diffusion towards the mortar matrix, contributing to strength development over time. However, high additive concentrations resulted in poor mechanical performance due to the excessive air entrainment capabilities of short-length polymers. Overall, this study demonstrates that the optimized dosages of ATMP and PAA can significantly enhance the durability and mechanical performance of lime-based mortars and suggests a promising alternative for the tailored manufacturing of highly compatible and durable materials for both the restoration of cultural heritage and modern sustainable construction. Full article
Show Figures

Figure 1

18 pages, 2148 KiB  
Article
Structural and Dielectric Impedance Studies of Mixed Ionic–Electronic Conduction in SrLaFe1−xMnxTiO6 (x = 0, 0.33, 0.67, and 1.0) Double Perovskites
by Abdelrahman A. Elbadawi, Elsammani A. Shokralla, Mohamed A. Siddig, Obaidallah A. Algethami, Abdullah Ahmed Alghamdi and Hassan H. E. Idris
Ceramics 2025, 8(3), 87; https://doi.org/10.3390/ceramics8030087 - 7 Jul 2025
Viewed by 329
Abstract
The structural and electrical properties of double perovskite compounds SrLaFe1−xMnxTiO6−δ (x = 0, 0.33, 0.67, and 1.0) were studied using X-ray diffraction (XRD) and dielectric impedance measurements. The reparation of perovskite compounds was successfully achieved through the precursor [...] Read more.
The structural and electrical properties of double perovskite compounds SrLaFe1−xMnxTiO6−δ (x = 0, 0.33, 0.67, and 1.0) were studied using X-ray diffraction (XRD) and dielectric impedance measurements. The reparation of perovskite compounds was successfully achieved through the precursor solid-state reaction in air at 1250 °C. The purity phase and crystal structures of perovskite compounds were determined by means of the standard Rietveld refinement method using the FullProf suite. The best fitting results showed that SrLaFeTiO6−δ was orthorhombic with space group Pnma, and both SrLaFe0.67Mn0.33TiO6−δ and SrLaFe0.33Mn0.67TiO6−δ were cubic structures with space group Fm3m, while SrLaMnTiO6−δ was tetragonal with a I/4m space group. The charge density maps obtained for these structures indicated that the compounds show an ionic and mixed ionic–electronic conduction. The dielectric impedance measurements were carried out in the range of 20 Hz to 1 MHz, and the analysis showed that there is more than one relaxation mechanism of Debye type. Doping with Mn was found to reduce the dielectric impedance of the samples, and the major contribution to the dielectric impedance was established to change from a capacitive for SrLaFeTiO6−δ to a resistive for SrLaMnTiO6−δ. The fall in values of electrical resistance may be related to the possible occurrence of the double exchange (DEX) mechanism among the Mn ions, provided there is oxygen deficiency in the samples. DC-resistivity measurements revealed that SrLaFeTiO6−δ was an insulator while SrLaMnTiO6−δ was showing a semiconductor–metallic transition at ~250 K, which is in support of the DEX interaction. The dielectric impedance of SrLaFe0.67Mn0.33TiO6−δ was found to be similar to that of (La,Sr)(Co,Fe)O3-δ, the mixed ionic–electronic conductor (MIEC) model. The occurrence of a mixed ionic–electronic state in these compounds may qualify them to be used in free lead solar cells and energy storage technology. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics, 2nd Edition)
Show Figures

Figure 1

14 pages, 1125 KiB  
Article
Influence of Heat Treatment Temperature on Microstructure and Mechanical Properties of TiB2@Ti/AlCoCrFeNi2.1 Eutectic High-Entropy Alloy Matrix Composites
by Fuqiang Guo, Yajun Zhou, Qinggang Jiang, Panfeng Chen and Bo Ren
Metals 2025, 15(7), 757; https://doi.org/10.3390/met15070757 - 5 Jul 2025
Viewed by 304
Abstract
This study systematically investigates the effects of heat treatment at 800–1000 °C on the microstructure and mechanical properties of 10 wt.% TiB2@Ti/AlCoCrFeNi2.1 eutectic high-entropy alloy matrix composites (EHEAMCs) prepared by vacuum hot-pressing sintering. The results show that the materials consist [...] Read more.
This study systematically investigates the effects of heat treatment at 800–1000 °C on the microstructure and mechanical properties of 10 wt.% TiB2@Ti/AlCoCrFeNi2.1 eutectic high-entropy alloy matrix composites (EHEAMCs) prepared by vacuum hot-pressing sintering. The results show that the materials consist of FCC, BCC, TiB2, and Ti phases, with a preferred orientation of the (111) crystal plane of the FCC phase. As the temperature increases, the diffraction peak of the BCC phase separates from the main FCC peak and its intensity increases, while the diffraction peak positions of the FCC and BCC phases shift at small angles. This is attributed to the diffusion of TiB2@Ti from the grain boundaries into the matrix, where the Ti solid solution increases the lattice constant of the FCC phase. Microstructural observations reveal that the eutectic region transforms from lamellar to island-like structures, and the solid solution zone narrows. With increasing temperature, the Ti concentration in the solid solution zone increases, while the contents of elements such as Ni decrease. Element diffusion is influenced by binary mixing enthalpy, with Ti and B tending to solidify in the FCC and BCC phase regions, respectively. The mechanical properties improve with increasing temperature. At 1000 °C, the average hardness is 579.2 HV, the yield strength is 1294 MPa, the fracture strength is 2385 MPa, and the fracture strain is 19.4%, representing improvements of 35.5% and 24.9% compared to the as-sintered state, respectively, without loss of plasticity. The strengthening mechanisms include enhanced solid solution strengthening due to the diffusion of Ti and TiB2, improved grain boundary strength due to the diffusion of alloy elements to the grain boundaries, and synergistic optimization of strength and plasticity. Full article
(This article belongs to the Special Issue Feature Papers in Entropic Alloys and Meta-Metals)
Show Figures

Figure 1

15 pages, 3759 KiB  
Article
Glass-Forming Ability and Crystallization Behavior of Mo-Added Fe82−xSi4B12Nb1MoxCu1 (x = 0–2) Nanocrystalline Alloy
by Hyun Ah Im, Subong An, Ki-bong Kim, Sangsun Yang, Jung woo Lee and Jae Won Jeong
Metals 2025, 15(7), 744; https://doi.org/10.3390/met15070744 - 1 Jul 2025
Viewed by 399
Abstract
This study investigates the effects of molybdenum (Mo) additions on the crystallization behavior and soft magnetic properties and of Fe82-xSi4B12Nb1MoxCu1 (x = 0–2) nanocrystalline alloys. Molybdenum enhances glass-forming ability (GFA) and magnetic [...] Read more.
This study investigates the effects of molybdenum (Mo) additions on the crystallization behavior and soft magnetic properties and of Fe82-xSi4B12Nb1MoxCu1 (x = 0–2) nanocrystalline alloys. Molybdenum enhances glass-forming ability (GFA) and magnetic properties by increasing negative mixing enthalpy (Hmix), mixing entropy (Smix), and atomic size mismatch (δ), which stabilize the amorphous phase. X-ray diffraction (XRD) analysis shows that Mo addition improves amorphous phase stability, further enhancing GFA. The simultaneous addition of Mo and Nb increases mixing entropy, promotes nucleation rates, and creates favorable conditions for optimizing nanocrystallization. Upon annealing, this optimized microstructure demonstrated low coercivity and high permeability. Notably, the Fe80Si4B12Nb1Mo2Cu1 ribbon, annealed at 470 °C for 10 min, exhibited exceptional soft magnetic properties, with a coercivity of 4.54 A/m, a maximum relative permeability of 48,410, and a saturation magnetization of 175.24 emu/g. High-resolution transmission electron microscopy (TEM) revealed an average crystal size of 18.16 nm. These findings suggest that Fe82-xSi4B12Nb1MoxCu1 (x = 0–2) nanocrystalline alloys are suitable for advanced electromagnetic applications pursuing miniaturization and high efficiency. Full article
Show Figures

Figure 1

23 pages, 5986 KiB  
Article
Partially Disordered Crystal Phases and Glassy Smectic Phases in Liquid Crystal Mixtures
by Aleksandra Deptuch, Anna Drzewicz, Magdalena Urbańska and Ewa Juszyńska-Gałązka
Materials 2025, 18(13), 3085; https://doi.org/10.3390/ma18133085 - 29 Jun 2025
Viewed by 283
Abstract
Three liquid crystalline mixtures were investigated, consisting of compounds abbreviated as MHPOBC and 3F5FPhF6 with molar ratios 0.9:0.1 (MIX5FF6-1), 0.75:0.25 (MIX5FF6-2), and 0.5:0.5 (MIX5FF6-3). The presence of the smectic A*, smectic C*, and smectic CA* phases was observed in all mixtures. [...] Read more.
Three liquid crystalline mixtures were investigated, consisting of compounds abbreviated as MHPOBC and 3F5FPhF6 with molar ratios 0.9:0.1 (MIX5FF6-1), 0.75:0.25 (MIX5FF6-2), and 0.5:0.5 (MIX5FF6-3). The presence of the smectic A*, smectic C*, and smectic CA* phases was observed in all mixtures. The hexatic smectic XA* phase, present in pure MHPOBC, disappeared quickly with an increasing admixture of 3F5FPhF6. Vitrification of smectic CA* was observed for the equimolar mixture, with the glass transition temperature and fragility index comparable to the pure glassforming 3F5FPhF6 component. Partial crystallization to conformationally or orientationally disordered crystal phases was observed on cooling in two mixtures with a smaller fraction of 3F5FPhF6. Broadband dielectric spectroscopy was applied to study the relaxation times in smectic and crystal phases. Vogel–Fulcher–Tammann, Mauro–Yue–Ellison–Gupta–Allan, and critical-like models were applied for analysis of the α-relaxation time in supercooled smectic XA* and smectic CA* phases. Full article
(This article belongs to the Special Issue Structural and Physical Properties of Liquid Crystals)
Show Figures

Graphical abstract

13 pages, 4081 KiB  
Article
Tailored Morphology and Phase Evolution of Magnesium Whitlockite Granules via a Dissolution–Precipitation Approach
by Ruta Raiseliene, Greta Linkaite, Akvile Ezerskyte and Inga Grigoraviciute
Appl. Sci. 2025, 15(13), 7221; https://doi.org/10.3390/app15137221 - 26 Jun 2025
Viewed by 275
Abstract
Magnesium whitlockite (Mg-WH) has emerged as a promising biomaterial for bone regeneration due to its compositional similarity to natural bone minerals. This study aimed to systematically modify a dissolution–precipitation synthesis method to produce Mg-WH granules with tailored morphologies and controlled phase compositions for [...] Read more.
Magnesium whitlockite (Mg-WH) has emerged as a promising biomaterial for bone regeneration due to its compositional similarity to natural bone minerals. This study aimed to systematically modify a dissolution–precipitation synthesis method to produce Mg-WH granules with tailored morphologies and controlled phase compositions for possible use in bone regeneration applications. Three distinct precursor granules were prepared by mixing varying amounts of ammonium dihydrogen phosphate and magnesium hydrogen phosphate with calcium sulfate. The precursors were then transformed into biphasic and single-phase Mg-WH granules by means of immersion in magnesium- and phosphate-containing solutions under controlled conditions. The X-ray diffraction results demonstrated that biphasic materials containing Mg-WH and either calcium-deficient hydroxyapatite (CDHA) or dicalcium phosphate anhydrous (DCPA) formed after 24 h of synthesis, depending on the synthesis conditions. Prolonging the reaction time to 48 h resulted in complete transformation into single-phase Mg-WH granules. Fourier-transform infrared spectroscopy confirmed the presence of functional groups characteristic of Mg-WH, CDHA, and DCPA in the intermediate products. The spectra also indicated the absence of precursor phases and the progressive elimination of secondary phases as the reaction time increased. Scanning electron microscopy analyses revealed notable morphological transformations from the raw granules to the product granules, with the latter exhibiting interlocked spherical and rod-like particles composed of fine Mg-WH rhombohedral crystals. N2 adsorption–desorption analyses exposed significant differences in the surface properties of the synthesized granules. By varying precursor, reaction solution compositions, and reaction times, the study elucidated the phase evolution mechanisms and demonstrated their impact on the structural, morphological, and surface properties of Mg-WH granules. Full article
(This article belongs to the Special Issue Novel Ceramic Materials: Processes, Properties and Applications)
Show Figures

Figure 1

12 pages, 4646 KiB  
Article
Dielectric Properties and Defect Chemistry of Tb/Ho-Co-Doped BaTiO3 Ceramics
by Junwei Liu, Xin Wei, Qiaoli Liu, Yupei Ran, Guoqi Xu and Qi Liu
Materials 2025, 18(12), 2914; https://doi.org/10.3390/ma18122914 - 19 Jun 2025
Viewed by 366
Abstract
Co-doping at Ba and Ti sites with double rare-earth elements has proven an effective strategy for enhancing the dielectric properties of BaTiO3 ceramics. Among intermediate-sized rare-earth ions, Tb and Ho exhibit amphoteric behavior, occupying both Ba and Ti sites. Investigating the site [...] Read more.
Co-doping at Ba and Ti sites with double rare-earth elements has proven an effective strategy for enhancing the dielectric properties of BaTiO3 ceramics. Among intermediate-sized rare-earth ions, Tb and Ho exhibit amphoteric behavior, occupying both Ba and Ti sites. Investigating the site occupation, defect chemistry, and dielectric effects of Tb and Ho in BaTiO3 is therefore valuable. In this work, Tb/Ho-co-doped BaTiO3 ceramics with the composition (Ba1−xTbx)(Ti1−xHox)O3 (x = 0.01~0.10) were fabricated at 1400 °C via solid-state reaction, and their solid solubility and crystal structures are confirmed. Microstructure, dielectric properties, photoluminescence, and valence states of samples with a single phase were systematically studied. Both the lattice parameter a and unit cell volume increase with doping level. The ceramic with x = 0.02 meets the X5S dielectric specification. Ho and Tb ions both demonstrate amphoteric site occupancy: Ho exists solely as Ho3+ at both Ba and Ti sites, while Tb exhibits mixed valence states as Ba-site Tb3+ and Ti-site Tb4+. As the doping content increases, the concentration of Tb4+ at Ti sites decreases, and the quantity of Ba-site Ho3+ ions initially increases to a maximum before decreasing. Defect compensation mechanisms within the samples are also discussed. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

15 pages, 3412 KiB  
Article
From Waste to Function: Compatibilized r-PET/r-HDPE Blends for Pellet Extrusion 3D Printing
by Seyed Amir Ali Bozorgnia Tabary, Jean-Pierre Bresse and Haniyeh (Ramona) Fayazfar
Polymers 2025, 17(12), 1638; https://doi.org/10.3390/polym17121638 - 12 Jun 2025
Viewed by 900
Abstract
The increasing accumulation of plastic waste—especially from packaging and post-consumer sources—calls for the development of sustainable recycling strategies. Due to the challenges associated with sorting mixed waste, directly processing waste streams offers a practical approach. Polyethylene terephthalate (PET) and high-density polyethylene (HDPE) are [...] Read more.
The increasing accumulation of plastic waste—especially from packaging and post-consumer sources—calls for the development of sustainable recycling strategies. Due to the challenges associated with sorting mixed waste, directly processing waste streams offers a practical approach. Polyethylene terephthalate (PET) and high-density polyethylene (HDPE) are common consumer plastics, but they are difficult to recycle together due to immiscibility and degradation. In mixed waste, recycled HDPE (r-HDPE) often contaminates the recycled PET (r-PET) stream. Additive manufacturing (AM) offers a promising solution to upcycle these mixed polymers into functional products with minimal waste. This study investigates the processing and characterization of r-PET/r-HDPE blends for AM, focusing on the role of compatibilizers in enhancing their properties. Blends were melt-compounded using a twin-screw extruder to improve dispersion, followed by direct pellet-based 3D printing. A compatibilizer (0–7 php) was incorporated to improve miscibility. Rheological testing showed that the 5 php compatibilizer optimized viscosity and elasticity, ensuring smoother extrusion. Thermal analysis revealed a 30 °C increase in crystallization temperature and a shift in decomposition temperature from 370 °C to 400 °C, indicating improved thermal stability. Mechanical testing showed a tensile strength of 35 MPa and 17% elongation at break at optimal loading. Scanning electron microscopy (SEM) confirmed reduced phase separation and improved morphology. This work demonstrates that properly compatibilized r-PET/r-HDPE blends enable sustainable 3D printing without requiring polymer separation. The results highlight a viable path for the conversion of plastic waste into high-value, customizable components, contributing to landfill reduction and advancing circular economy practices in polymer manufacturing. Full article
Show Figures

Figure 1

19 pages, 3495 KiB  
Article
Experimental Investigation on Thermal Performance Optimization of Na2HPO4·12H2O-Based Gel Phase Change Materials for Solar Greenhouse
by Wenhe Liu, Gui Liu, Wenlu Shi, Xinyang Tang, Xuhui Wu, Jiayang Wu, Zhanyang Xu, Feng Zhang and Mengmeng Yang
Gels 2025, 11(6), 434; https://doi.org/10.3390/gels11060434 - 5 Jun 2025
Viewed by 1118
Abstract
The content of modified materials in multicomponent gel phase change materials directly affects their performance characteristics. To investigate the influence of different contents of modified materials on the performance features of Na2HPO4·12H2O-based multicomponent Gel Phase Change Materials, [...] Read more.
The content of modified materials in multicomponent gel phase change materials directly affects their performance characteristics. To investigate the influence of different contents of modified materials on the performance features of Na2HPO4·12H2O-based multicomponent Gel Phase Change Materials, four single factors (Na2SiO3·9H2O, C35H49O29, KCl, and nano-α-Fe2O3) and their interactions were selected as influencing factors. Using the Taguchi method with an L27(313) orthogonal array, multi-step melt–blending experiments were conducted to prepare a novel multi-component phase change material. The characteristics of the new multi-component phase change material, including supercooling degree (ΔT), phase change temperature (Tm), latent heat of phase change (ΔHm), and cooling time (CT), were obtained. In addition, characterization techniques such as DSC, SEM, FT-IR, and XRD were employed to analyze its thermal properties, microscopic morphology, chemical stability, and crystal structure. Based on the experimental results, the signal-to-noise ratio (S/N) was used to rank the influence of each factor on the quality characteristics, and the p-value from analysis of variance (ANOVA) was employed to evaluate the significance of each factor on the performance characteristics. Then, the effects of each significant factor on the characteristics of the multiple gel phase change materials were analyzed in detail, and the optimal mixing ratio of the new multiple gel phase change materials was selected. The results showed that Na2SiO3·9H2O, KCl, and α-Fe2O3 were the most critical process parameters. This research work enriches the selection of composite gel phase change materials for solar greenhouses and provides guidance for the selection of different modified material contents using Na2HPO4·12H2O as the starting material. Full article
(This article belongs to the Special Issue Gel-Related Materials: Challenges and Opportunities)
Show Figures

Figure 1

17 pages, 10015 KiB  
Article
Combined Frozen Crystallization and Stepwise Decompression Evaporation for Na2SO4/NaCl Separation from Mixed Salts
by Chuqi Wang, Xinyu Huang, Hao Wang, Rui Chen and Xiuxiu Ruan
Recycling 2025, 10(3), 106; https://doi.org/10.3390/recycling10030106 - 1 Jun 2025
Viewed by 775
Abstract
Rapid industrialization has led to a substantial increase in waste salts containing Na2SO4/NaCl mixtures, posing significant challenges for their phase separation and resource recovery. This study pioneers an integrated process combining frozen crystallization with stepwise decompression evaporation for Na [...] Read more.
Rapid industrialization has led to a substantial increase in waste salts containing Na2SO4/NaCl mixtures, posing significant challenges for their phase separation and resource recovery. This study pioneers an integrated process combining frozen crystallization with stepwise decompression evaporation for Na2SO4/NaCl separation. Through the systematic investigation of phase transition behaviors under varying ionic ratios, the optimal combined processes corresponding to mixed salts with different compositions were identified. The experimental results demonstrate that brines with NaCl > 80.0% should preferentially undergo vacuum evaporation, while those below this threshold are suitable for prioritizing frozen crystallization for Na2SO4 recovery. Utilizing the complementary advantages of both processes, the mixture was prepared with a mass ratio of NaCl to Na2SO4 of 3:1. The frozen crystallization of the brine yielded 90.0% pure Na2SO4 crystals while concentrating NaCl to 92.0% in the residual liquor. Subsequent stepwise evaporation yielded 98.5% pure NaCl crystals. Finally, the removal effect and lifecycle evaluation of the process for impurity ions provide new insights for the zero liquid discharge system in industrial waste salt management. Full article
Show Figures

Figure 1

17 pages, 4894 KiB  
Article
Investigation of Mechanochromic and Solvatochromic Luminescence of Cyclometalated Heteroleptic Platinum(II) Complexes with Benzoylthiourea Derivatives
by Monica Iliş, Marilena Ferbinteanu, Cristina Tablet and Viorel Cîrcu
Molecules 2025, 30(11), 2415; https://doi.org/10.3390/molecules30112415 - 31 May 2025
Viewed by 541
Abstract
Two novel cyclometalated platinum(II) complexes based on 2-phenylpyridine (ppy) and 2,4-difluorophenylpyridine (dfppy) ligands in combination with a benzoylthiourea (4-(decyloxy)-N-((4-(decyloxy)phenyl)carbamothioyl)benzamide, BTU) functionalized with decyloxy alkyl chains as auxiliary ligands were synthesized and characterized for their mechanochromic and photophysical properties. Structural characterization was achieved through [...] Read more.
Two novel cyclometalated platinum(II) complexes based on 2-phenylpyridine (ppy) and 2,4-difluorophenylpyridine (dfppy) ligands in combination with a benzoylthiourea (4-(decyloxy)-N-((4-(decyloxy)phenyl)carbamothioyl)benzamide, BTU) functionalized with decyloxy alkyl chains as auxiliary ligands were synthesized and characterized for their mechanochromic and photophysical properties. Structural characterization was achieved through IR and NMR spectroscopy, single-crystal X-ray diffraction, and TD-DFT calculations. Both complexes exhibit significant photoluminescence with quantum yields up to 28.3% in a 1% PMMA film. The transitions in solution-phase spectra were assigned to mixed metal-to-ligand (MLCT) and intraligand (ILCT) charge–transfer characteristics. Temperature-dependent studies and thermal analyses confirm reversible phase transitions without mesomorphic behavior despite the presence of the two long alkyl chains. Both complexes displayed reversible mechanochromic and solvatochromic luminescence, with a change in emission color from green to red-orange emissions upon grinding and solvent treatment or heating at 80 °C. Full article
(This article belongs to the Special Issue Chemiluminescence and Photoluminescence of Advanced Compounds)
Show Figures

Figure 1

44 pages, 10740 KiB  
Article
Fluid Evolution in the Bundelkhand Granite, North Central India: Implications for Hydrothermal Activities in the Bundelkhand Craton
by Duttanjali Rout, Jayanta K. Pati, Terrence P. Mernagh and Mruganka K. Panigrahi
Minerals 2025, 15(6), 579; https://doi.org/10.3390/min15060579 - 29 May 2025
Viewed by 402
Abstract
The Bundelkhand granite (BG) constitutes the bulk of the granitoid complex in the Bundelkhand Craton and preserves imprints of its evolution from the magmatic to a protracted hydrothermal stage as deduced from the petrography. In order to reconstruct such a path of evolution [...] Read more.
The Bundelkhand granite (BG) constitutes the bulk of the granitoid complex in the Bundelkhand Craton and preserves imprints of its evolution from the magmatic to a protracted hydrothermal stage as deduced from the petrography. In order to reconstruct such a path of evolution in this study, thermobarometric calculations were attempted on the mineral chemistry of the major (hornblende, plagioclase, biotite) and minor (epidote, apatite) magmatic phases. They yielded magmatic temperatures and pressures (in excess of 700 °C and ~5 kbar), although not consistently, and indicate mid-crustal conditions at the onset of crystallization. Temperatures in the hydrothermal regime within the BG are better constrained by the chemistry of the chlorite and epidote minerals (340 to 160 °C) that conform with the ranges of homogenization temperatures of aqueous–biphase inclusions in matrix quartz in the BG and subordinate quartz veins. These reconstructions indicate that fluid within the BG evolved down to lower temperatures and towards the deposition of quartz and, more importantly, bears a striking similarity to the temperature–salinity characteristics of fluid in the giant quartz reef system. Scanty mixed aqueous–carbonic inclusions in the BG are indicative of the CO2-poor nature of the BG magma and the exsolution of CO2 at lower pressure (~2.6 kbar). The dominant mechanism of fluid evolution in the BG appears to be the incursion of meteoric fluid, which caused fluid dilution. Laser Raman microspectrometry reveals many types of solid phases in aqueous–carbonic inclusions in the BG domain. The occurrence of unusual, effervescent-type inclusions, though infrequent, bears a striking similarity to that reported in the giant quartz reef domain. Thus, the highlight of the present work is the convincing fluid inclusion evidence that genetically links the BG with the giant quartz reef system, although many cited discrepancies arise from the radiometric dates. We visualize the episodic release of silica-transporting fluid to the major fracture system (now occupied by the giant reef) from the BG, thus making the fluid in the two domains virtually indistinguishable. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

15 pages, 4371 KiB  
Article
Effect of CTAB on the Morphology of Sn-MOF and the Gas Sensing Performance of SnO2 with Different Crystal Phases for H2 Detection
by Manyi Liu, Liang Wang, Shan Ren, Bofeng Bai, Shouning Chai, Chi He, Chunli Zheng, Xinzhe Li, Xitao Yin and Chunbao Charles Xu
Chemosensors 2025, 13(5), 192; https://doi.org/10.3390/chemosensors13050192 - 21 May 2025
Viewed by 666
Abstract
Herein, a facile strategy was proposed to enhance the gas sensing performance of SnO2 for H2 by regulating its crystalline phase composition. Sn-based metal–organic framework (Sn-MOF) precursors with different morphologies were synthesized by introducing the surfactant cetyltrimethylammonium bromide (CTAB). Upon calcination, [...] Read more.
Herein, a facile strategy was proposed to enhance the gas sensing performance of SnO2 for H2 by regulating its crystalline phase composition. Sn-based metal–organic framework (Sn-MOF) precursors with different morphologies were synthesized by introducing the surfactant cetyltrimethylammonium bromide (CTAB). Upon calcination, these precursors yielded either mixed-phase (orthorhombic and tetragonal, SnO2-C) or single-phase (pure tetragonal, SnO2-NC) SnO2 nanoparticles. Structural characterization and gas sensing tests revealed that SnO2-C exhibited a high response of 7.73 to 100 ppm H2 at 280 °C, more than twice that of SnO2-NC (3.75). Moreover, SnO2-C demonstrated a faster response/recovery time (10/56 s), high selectivity, a ppb-level detection limit (~79 ppb), and excellent long-term stability. Notably, although the addition of CTAB reduced the specific surface area of SnO2, the resulting lower surface area minimized oxygen exposure during calcination, facilitating the formation of a mixed-phase heterostructure. In addition, the calcination atmosphere of SnO2-C (flowing air or Ar) was adjusted to further investigate the role of the crystal phase in gas sensing performance. The results clearly demonstrated that mixed-phase SnO2 exhibited superior sensing performance, achieving a higher sensitivity and a faster response to H2. These findings underscored the critical role of crystal phase engineering in the design of high-performance gas sensing materials. Full article
(This article belongs to the Special Issue Novel Materials for Gas Sensing)
Show Figures

Figure 1

33 pages, 5594 KiB  
Review
Research Progress of Ternary Cathode Materials: Failure Mechanism and Heat Treatment for Repair and Regeneration
by Tingting Wu, Chengxu Zhang and Jue Hu
Metals 2025, 15(5), 552; https://doi.org/10.3390/met15050552 - 16 May 2025
Viewed by 795
Abstract
With the large-scale application of lithium-ion batteries in the field of new energy, many retired lithium batteries not only cause environmental pollution problems but also lead to serious waste of resources. Repairing failed lithium batteries and regenerating new materials has become a crucial [...] Read more.
With the large-scale application of lithium-ion batteries in the field of new energy, many retired lithium batteries not only cause environmental pollution problems but also lead to serious waste of resources. Repairing failed lithium batteries and regenerating new materials has become a crucial path to break through this dilemma. Based on the research on the failure mechanism of ternary cathode materials, this paper systematically combs through the multiple factors leading to their failure, extensively summarizes the influence of heat treatment process parameters on the performance of recycled materials, and explores the synergistic effect between heat treatment technology and other processes. Studies have shown that the failure of ternary cathode materials is mainly attributed to factors such as cation mixing disorder, the generation of microcracks, phase structure transformation, and the accumulation of by-products. Among them, cation mixing disorder damages the crystal structure of the material, microcracks accelerate the pulverization of the active substance, phase structure transformation leads to lattice distortion, and the generation of by-products will hinder ion transport. The revelation of these failure mechanisms lays a theoretical foundation for the efficient recycling of waste materials. In terms of recycling technology, this paper focuses on the application of heat treatment technology. On the one hand, through synergy with element doping and surface coating technologies, heat treatment can effectively improve the crystal structure and surface properties of the material. On the other hand, when combined with processes such as the molten salt method, coprecipitation method, and hydrothermal method, heat treatment can further optimize the microstructure and electrochemical properties of the material. Specifically, heat treatment plays multiple key roles in the recycling process of ternary cathode materials: repairing crystal structure defects, enhancing the electrochemical performance of the material, removing impurities, and promoting the uniform distribution of elements. It is a core link to achieving the efficient reuse of waste ternary cathode materials. Full article
Show Figures

Figure 1

Back to TopTop