Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,587)

Search Parameters:
Keywords = mirror

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3805 KB  
Article
Primary Hepatic Angiosarcoma: Distinct Imaging Phenotypes Mirroring Histopathologic Growth Patterns in a Retrospective Human Study
by Byoung Je Kim, Jung Hee Hong and Hye Won Lee
Diagnostics 2026, 16(2), 291; https://doi.org/10.3390/diagnostics16020291 (registering DOI) - 16 Jan 2026
Abstract
Background/Objectives: To date, no studies have examined radiologic findings by histologic patterns of primary hepatic angiosarcoma; this study clarified radiologic findings of primary hepatic angiosarcoma according to distinct histologic patterns. Methods: From January 2010 to October 2024, 17 individuals (mean age, 69 years [...] Read more.
Background/Objectives: To date, no studies have examined radiologic findings by histologic patterns of primary hepatic angiosarcoma; this study clarified radiologic findings of primary hepatic angiosarcoma according to distinct histologic patterns. Methods: From January 2010 to October 2024, 17 individuals (mean age, 69 years ± 11; 11 men) with pathologically confirmed primary hepatic angiosarcoma underwent computed tomography (CT) with or without magnetic resonance imaging (MRI). Histologic patterns were classified as mass-forming, subdivided into vasoformative and non-vasoformative (epithelioid and spindled) patterns, or non-mass-forming, subdivided into sinusoidal and peliotic patterns. Two radiologists independently reviewed CT and MRI images, classifying lesions as non-mass-forming or mass-forming. Hypervascular portions and targetoid patterns were also assessed. Associations between histologic patterns and radiologic findings were evaluated using Fisher’s exact test. Results: Mass-forming tumors were observed in 13 individuals (76.5%), and non-mass-forming tumors in 4 individuals (23.5%). Significant correlation (p < 0.05) was found between radiologic classification (non-mass-forming or mass-forming) and corresponding pathologic patterns. Pathologic subdivision into vasoformative and non-vasoformative patterns did not correlate with hypervascular portions on imaging. Conclusions: Pathological classification into mass-forming and non-mass-forming patterns corresponds closely to radiologic classification of mass-forming and non-mass-forming lesions, indicative of strong pathologic features in imaging. Full article
(This article belongs to the Special Issue Innovations in Medical Imaging for Precision Diagnostics)
Show Figures

Figure 1

10 pages, 1170 KB  
Article
Determining the Anatomical Position of the Thoracic Vertebrae with 3D Geometric Morphometrics
by Myrsini Voulgari, Ioanna Anastopoulou and Konstantinos Moraitis
Forensic Sci. 2026, 6(1), 4; https://doi.org/10.3390/forensicsci6010004 - 16 Jan 2026
Abstract
Background/Objectives: A common challenge in both forensic and bioarchaeological research is commingling, the intermixing of skeletal material originating from multiple individuals or contexts. To tackle that problem past reassociation methods primarily relied on visual assessment or metric comparisons. However, recent advances in [...] Read more.
Background/Objectives: A common challenge in both forensic and bioarchaeological research is commingling, the intermixing of skeletal material originating from multiple individuals or contexts. To tackle that problem past reassociation methods primarily relied on visual assessment or metric comparisons. However, recent advances in geometric morphometrics show strong potential for improving the sorting of commingled remains. This study applies a three-dimensional (3D) geometric morphometric method to evaluate its effectiveness in reassociating adjoining thoracic vertebrae. Methods: Two vertebral pairs, T4–T5 and T5–T6, from 65 and 73 individuals, respectively, were analyzed. These pairs were chosen due to limited anatomical variability, while they were also the most consistently preserved pairs. All specimens were scanned using a structured-light 3D scanner, and the dataset was derived from three Greek skeletal collections representing different geo-chronological contexts. Fourteen anatomical landmarks were placed on the superior rim and articular facets of the lower vertebra and mirrored onto the lower rim and facets of the adjoining upper vertebra. To remove the size effects the landmark coordinates were converted to Procrustes coordinates, while examining morphological similarity was quantified using Euclidean distances. For each pair, the vertebrae with the smallest Euclidean distances were considered the most probable true anatomical matches. Results: The correct T4–T5 match fell within the three smallest distances in 66.2% of cases, while for the T5–T6 pair, correct matches were found between the first three possible matches in a percentage of 43.8%. These findings indicate that the method can eliminate roughly 50–70% of incorrect matches and therefore narrow the plausible pairings. Conclusions: Future research incorporating more pairs and an expanded landmark dataset may result in greater accuracy for reassociation with 3D geometric morphometrics. Full article
Show Figures

Figure 1

19 pages, 4343 KB  
Article
Evaluation of Photometric and Electrical Parameters of LED Public Lighting for Energy Efficiency Compliance
by Carolina Chasi, Carlos Velásquez, Byron Silva, Francisco Espín and Javier Martínez-Gómez
Energies 2026, 19(2), 440; https://doi.org/10.3390/en19020440 (registering DOI) - 16 Jan 2026
Abstract
This study aims to assess the energy efficiency of LED luminaires used in public road lighting by comparing manufacturer-declared photometric and electrical parameters with laboratory simulation results. The research also evaluates the performance of these luminaires across various road types and installation configurations [...] Read more.
This study aims to assess the energy efficiency of LED luminaires used in public road lighting by comparing manufacturer-declared photometric and electrical parameters with laboratory simulation results. The research also evaluates the performance of these luminaires across various road types and installation configurations to determine compliance with national and international standards. Eleven LED luminaires were tested using a rotating mirror goniophotometer in an ISO/IEC 17025-accredited laboratory. Simulations were conducted using Dialux Evo software across six road types (M1–M6) and three installation configurations (unilateral, bilateral, and staggered). Key parameters analyzed included brog (Lm), overall uniformity (U0), longitudinal uniformity (Ul), luminous efficacy (lm/W), power factor, and total harmonic distortion (THD) in voltage and current. Discrepancies were found between manufacturer-declared and simulation results, especially in higher-class roads (M1–M3), where up to 28.57% of luminaires failed to meet the minimum luminance requirements when tested. The study highlights the importance of validating manufacturer specifications through accredited laboratory testing. Overall, LED technology improves energy efficiency in public lighting, and inconsistencies in the power factor and luminance performance suggest the need for stricter regulatory oversight and more rigorous quality control. Simulation tools like Dialux Evo prove essential for optimizing lighting designs tailored to specific road types and traffic conditions. Full article
Show Figures

Figure 1

31 pages, 1726 KB  
Article
Entrepreneurship and Conway’s Game of Life: A Theoretical Approach from a Systemic Perspective
by Félix Oscar Socorro Márquez, Giovanni Efrain Reyes Ortiz and Harold Torrez Meruvia
Adm. Sci. 2026, 16(1), 45; https://doi.org/10.3390/admsci16010045 - 16 Jan 2026
Abstract
This study establishes a comprehensive structural isomorphism between Conway’s Game of Life and the entrepreneurial process, analysing the latter as a complex adaptive system governed by non-linear dynamics rather than linear predictability. Through a rigorous qualitative approach based on a systematic literature review [...] Read more.
This study establishes a comprehensive structural isomorphism between Conway’s Game of Life and the entrepreneurial process, analysing the latter as a complex adaptive system governed by non-linear dynamics rather than linear predictability. Through a rigorous qualitative approach based on a systematic literature review and abductive inference, the research identifies and correlates four fundamental dimensions: uncertainty, adaptability, growth, and sustainability. Transcending traditional metaphorical comparisons, this paper introduces a novel mathematical model that modifies Conway’s deterministic logic by incorporating an «Agency» variable (A). This critical addition quantifies how an entrepreneur’s internal capabilities can counterbalance environmental pressures (neighbourhood density) to determine survival thresholds, effectively transforming the simulation into a «Game of Life with Agency» where participants actively influence their viability potential (Ψ). The analysis explicitly correlates specific algorithmic configurations with real-world business phenomena: high-entropy initial states («The Soup») mirror early-stage market uncertainty where outcomes are probabilistic; «gliders» represent the necessity of strategic pivoting and continuous displacement for survival; and «oscillators» symbolise dynamic sustainability through rhythmic equilibrium rather than static permanence. Furthermore, the study validates the «Gosper Glider Gun» pattern as a model for scalable, generative growth. By bridging abstract systems theory with managerial practice, the research positions these simulations as «mental laboratories» for decision-making. The findings theoretically validate iterative methodologies like the Lean Startup and conclude that successful entrepreneurship operates on the «Edge of Chaos», providing a rigorous framework for navigating high stochastic uncertainty. Full article
(This article belongs to the Section International Entrepreneurship)
Show Figures

Figure 1

34 pages, 483 KB  
Review
The Complexity of Communication in Mammals: From Social and Emotional Mechanisms to Human Influence and Multimodal Applications
by Krzysztof Górski, Stanisław Kondracki and Katarzyna Kępka-Borkowska
Animals 2026, 16(2), 265; https://doi.org/10.3390/ani16020265 - 15 Jan 2026
Abstract
Communication in mammals constitutes a complex, multimodal system that integrates visual, acoustic, tactile, and chemical signals whose functions extend beyond simple information transfer to include the regulation of social relationships, coordination of behaviour, and expression of emotional states. This article examines the fundamental [...] Read more.
Communication in mammals constitutes a complex, multimodal system that integrates visual, acoustic, tactile, and chemical signals whose functions extend beyond simple information transfer to include the regulation of social relationships, coordination of behaviour, and expression of emotional states. This article examines the fundamental mechanisms of communication from biological, neuroethological, and behavioural perspectives, with particular emphasis on domesticated and farmed species. Analysis of sensory signals demonstrates that their perception and interpretation are closely linked to the physiology of sensory organs as well as to social experience and environmental context. In companion animals such as dogs and cats, domestication has significantly modified communicative repertoires ranging from the development of specialised facial musculature in dogs to adaptive diversification of vocalisations in cats. The neurobiological foundations of communication, including the activity of the amygdala, limbic structures, and mirror-neuron systems, provide evidence for homologous mechanisms of emotion recognition across species. The article also highlights the role of communication in shaping social structures and the influence of husbandry conditions on the behaviour of farm animals. In intensive production environments, acoustic, visual, and chemical signals are often shaped or distorted by crowding, noise, and chronic stress, with direct consequences for welfare. Furthermore, the growing importance of multimodal technologies such as Precision Livestock Farming (PLF) and Animal–Computer Interaction (ACI) is discussed, particularly their role in enabling objective monitoring of emotional states and behaviour and supporting individualised care. Overall, the analysis underscores that communication forms the foundation of social functioning in mammals, and that understanding this complexity is essential for ethology, animal welfare, training practices, and the design of modern technologies facilitating human–animal interaction. Full article
(This article belongs to the Section Human-Animal Interactions, Animal Behaviour and Emotion)
9 pages, 288 KB  
Article
Lung Carcinoids—Time to Change Practices
by Ana Rodrigues, Nuno Coimbra, Inês Lucena Sampaio, Isabel Azevedo, Marta Soares, Carmen Jerónimo and Rui Henrique
Curr. Oncol. 2026, 33(1), 50; https://doi.org/10.3390/curroncol33010050 - 15 Jan 2026
Abstract
Background: Lung carcinoids—typical and atypical—are rare neuroendocrine tumors (NETs) representing 1–2% of lung cancers. Despite clinicopathological differences, their clinical management often mirrors lung cancer protocols rather than NET-specific recommendations. Objectives: Portray a 12-year real-world experience with lung carcinoids at a Comprehensive [...] Read more.
Background: Lung carcinoids—typical and atypical—are rare neuroendocrine tumors (NETs) representing 1–2% of lung cancers. Despite clinicopathological differences, their clinical management often mirrors lung cancer protocols rather than NET-specific recommendations. Objectives: Portray a 12-year real-world experience with lung carcinoids at a Comprehensive Cancer Center, identifying gaps in diagnostic work-up, treatment decision-making, and follow-up. Methods: Retrospective observational cohort study of adult patients with histologically confirmed lung carcinoids diagnosed at IPO Porto between January 2013 and December 2024. Demographic, clinical, imaging, and treatment data were collected from electronic patient records. Analyses were descriptive. Results: Among 179 identified cases, 129 met eligibility criteria. Median age was 62 years (range 18–84); 53.6% were women and 53.5% were non-smokers; 84.5% had ECOG-PS 0–1. The most frequent presentation was respiratory symptoms (34.1%), followed by incidental findings (43.4%, of which ~20% were during staging or surveillance of other cancers). Typical carcinoids accounted for 49.6% and atypical for 43.4%. FDG-PET/CT was requested in 70.9% of cases, including many with typical carcinoid, and SSTR-PET/CT in 64.6% (dual PET in 38.8%). Most patients (65.1%) presented with stage I disease; 17.1% were stage IV. Mean time-to-first treatment was 83 days (range 1–259). Surgery was the first treatment option for 78.3% of patients. Conclusions: This real-world series highlights heterogeneity in diagnostic pathways, excessive FDG-PET use in typical carcinoids, and non-standardized follow-up. Dedicated multidisciplinary lung-NET boards and national reference centers are needed to homogenize and streamline patient management. Full article
(This article belongs to the Section Thoracic Oncology)
Show Figures

Figure 1

19 pages, 8033 KB  
Article
Luteolin Enhances Endothelial Barrier Function and Attenuates Myocardial Ischemia–Reperfusion Injury via FOXP1-NLRP3 Pathway
by Hanyan Xie, Xinyi Zhong, Nan Li, Mijia Zhou, Miao Zhang, Xiaomin Yang, Hui Wang, Yu Yan, Pengrong Gao, Tianhua Liu, Qiyan Wang and Dongqing Guo
Int. J. Mol. Sci. 2026, 27(2), 874; https://doi.org/10.3390/ijms27020874 - 15 Jan 2026
Abstract
As a natural flavonoid, the flavonoid luteolin is characterized by its powerful antioxidant and anti-inflammatory effects. While its precise mechanisms require further elucidation, existing evidence confirms its efficacy in ameliorating myocardial ischemia–reperfusion injury (MIRI). This research was designed to investigate the mechanism through [...] Read more.
As a natural flavonoid, the flavonoid luteolin is characterized by its powerful antioxidant and anti-inflammatory effects. While its precise mechanisms require further elucidation, existing evidence confirms its efficacy in ameliorating myocardial ischemia–reperfusion injury (MIRI). This research was designed to investigate the mechanism through which luteolin protects against MIRI. We established MIRI rat models through the ligation of left anterior descending coronary artery (LAD). To evaluate the cardioprotective effects of luteolin, echocardiographic analysis was performed, Hematoxylin and Eosin (HE) staining, and serum cardiac injury markers creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH). Cardiac vascular permeability was determined using Evans blue staining. To mimic ischemia–reperfusion injury, endothelial cells (ECs) were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) in vitro. Endothelial cell barrier function was evaluated through F-actin phalloidin staining and FITC-Dextran fluorescence leakage experiments. To elucidate the molecular mechanism, FOXP1 small interfering RNA (siRNA) and NLRP3 inhibitor MCC950 were administered. In MIRI rats, luteolin significantly improved cardiac function and preserved endothelial barrier integrity. These effects were associated with upregulation of FOXP1 and suppression of NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome. In OGD/R-treated endothelial cells, luteolin restored barrier function and cell viability. The protective effects of luteolin were abolished after FOXP1 silencing. Pharmacological NLRP3 inhibition (MCC950) mirrored luteolin’s protection. Our study indicates that luteolin enhances endothelial barrier function and attenuates MIRI via the FOXP1-NLRP3 pathway. The current study provides a potential drug for MIRI treatment. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

16 pages, 961 KB  
Article
“What Kind of Physical Education Lesson Do I Envision?”: A Theoretically Grounded Analysis Based on Teacher and Student Perspectives
by Rahmi Yıldız and Oğuzhan Çalı
Sustainability 2026, 18(2), 887; https://doi.org/10.3390/su18020887 - 15 Jan 2026
Abstract
Physical Education (PE) is envisioned differently across generations, yet these perspectives can be aligned with contemporary curriculum reform. Guided by Strauss–Howe generational theory and Turkey’s 2025 Türkiye Century Education Model, this qualitative study examines lesson design preferences among teachers (Generations X and Y) [...] Read more.
Physical Education (PE) is envisioned differently across generations, yet these perspectives can be aligned with contemporary curriculum reform. Guided by Strauss–Howe generational theory and Turkey’s 2025 Türkiye Century Education Model, this qualitative study examines lesson design preferences among teachers (Generations X and Y) and students (Generation Z). Thirty-two purposively selected participants from provinces identified by Ministry success indicators completed semi-structured interviews. Data were analysed through directed content analysis alongside thematic analysis. Findings indicate convergence on gamified, technology-supported, and individualized PE with process-oriented, fair assessment. Teachers endorse this vision while foregrounding constraints associated with infrastructure, time, space, and class size. The emergent profile mirrors the 2025 curriculum’s virtue–value–action orientation and its literacy and socio-emotional competencies. Four priorities translate the framework into implementable design: (i) multi-evidence assessment that captures performance and growth, (ii) systematic differentiation via station-based and modular activity designs, (iii) short feedback cycles coupled with structured student-voice mechanisms, and (iv) strengthened school digital infrastructure with targeted professional learning to build digital pedagogical competence. Overall, the study articulates a generationally informed, feasible architecture for PE that bears implications for curriculum development, teacher education, and school improvement. Full article
Show Figures

Figure 1

16 pages, 2384 KB  
Article
Advanced Performance of Photoluminescent Organic Light-Emitting Diodes Enabled by Natural Dye Emitters Considering a Circular Economy Strategy
by Vasyl G. Kravets, Vasyl Petruk, Serhii Kvaterniuk and Roman Petruk
Optics 2026, 7(1), 8; https://doi.org/10.3390/opt7010008 - 15 Jan 2026
Abstract
Organic optoelectronic devices receive appreciable attention due to their low cost, ecology, mechanical flexibility, band-gap engineering, brightness, and solution process ability over a broad area. In this study, we designed and studied organic light-emitting diodes (OLEDs) consisting of an assembly of natural dyes, [...] Read more.
Organic optoelectronic devices receive appreciable attention due to their low cost, ecology, mechanical flexibility, band-gap engineering, brightness, and solution process ability over a broad area. In this study, we designed and studied organic light-emitting diodes (OLEDs) consisting of an assembly of natural dyes, extracted from noble fir leaves (evergreen) and blue hydrangea flowers mixed with poly-methyl methacrylate (PMMA) as light emitters. We experimentally demonstrate the effective conversion of blue light emitted by an inorganic laser/photodiode into longer-wavelength red and green tunable photoluminescence due to the excitation of natural dye–PMMA nanostructures. UV-visible absorption and photoluminescence spectroscopy, ellipsometry, and Fourier transform infrared methods, together with optical microscopy, were performed for confirming and characterizing the properties of light-emitting diodes based on natural dyes. We highlighted the optical and physical properties of two different natural dyes and demonstrated how such characteristics can be exploited to make efficient LED devices. A strong pure red emission with a narrow full-width at half maximum (FWHM) of 23 nm in the noble fir dye–PMMA layer and a green emission with a FWHM of 45 nm in blue hydrangea dye–PMMA layer were observed. It was revealed that adding monolayer MoS2 to the nanostructures can significantly enhance the photoluminescence of the natural dye due to a strong correlation between the emission bands of the inorganic–organic emitters and back mirror reflection of the excitation blue light from the monolayer. Based on the investigation of two natural dyes, we demonstrated viable pathways for scalable manufacturing of efficient hybrid OLEDs consisting of assembly of natural-dye polymers through low-cost, purely ecological, and convenient processes. Full article
(This article belongs to the Section Engineering Optics)
Show Figures

Figure 1

15 pages, 675 KB  
Article
Dysregulation of MMP-2 and MMP-9 in Post-COVID-19 and IPF: Correlations with Systemic Inflammation and Endothelial Dysfunction
by Olga V. Balan, Irina E. Malysheva, Ella L. Tikhonovich and Liudmila A. Lysenko
J. Clin. Med. 2026, 15(2), 671; https://doi.org/10.3390/jcm15020671 - 14 Jan 2026
Viewed by 32
Abstract
Background/Objectives: Post-COVID-19 pulmonary fibrosis (PCPF) and idiopathic pulmonary fibrosis (IPF) exhibit significant clinical and pathophysiological overlap, suggesting convergent molecular pathways driving fibrosis. This prospective longitudinal study investigates the sustained dysregulation of matrix metalloproteinases (MMP)-2 and MMP-9 and its relationship with evolving systemic [...] Read more.
Background/Objectives: Post-COVID-19 pulmonary fibrosis (PCPF) and idiopathic pulmonary fibrosis (IPF) exhibit significant clinical and pathophysiological overlap, suggesting convergent molecular pathways driving fibrosis. This prospective longitudinal study investigates the sustained dysregulation of matrix metalloproteinases (MMP)-2 and MMP-9 and its relationship with evolving systemic inflammation and endothelial dysfunction in convalescent COVID-19 patients, with comparative analysis to IPF. Methods: We conducted a prospective observational study of 86 patients at 6 and 12 months post-SARS-CoV-2 infection, stratified by high-resolution CT evidence of PCPF (FB+ group, n = 32) or absence of fibrosis (FB− group, n = 54). Gene expression of MMP-2 and MMP-9 in peripheral blood leukocytes and circulating levels of MMP-2, MMP-9, pro-inflammatory cytokines (TNF-α, IL-6), and endothelial dysfunction markers (Endothelin-1 [ET-1], adhesion molecules) were quantified via qRT-PCR and ELISA. A pre-pandemic healthy control group (HD, n = 20) and an IPF patient group (n = 10) served as comparators. Results: A significant, sustained elevation of MMP-2 and MMP-9 was observed in all post-COVID-19 patients versus HDs, most pronounced in the FB+ group and qualitatively similar to IPF. A critical divergence emerged: FB− patients showed resolution of systemic inflammation (reduced TNF-α, IL-6), whereas FB+ patients exhibited persistent cytokine elevation. Critically, a delayed, severe endothelial dysfunction, characterized by a profound surge in ET-1 and elevated adhesion molecules, manifested exclusively in the FB+ cohort at 12 months. Positive correlations linked plasma MMP-2/9 levels with ET-1 (rs = 0.65, p = 0.004; rs = 0.49, p = 0.009) and ET-1 with sICAM-1 (rs = 0.68, p = 0.01). Conclusions: The development of PCPF is associated with a distinct pathogenic triad: sustained MMP dysregulation, failure to resolve inflammation, and severe late-phase endothelial dysfunction. The correlative links between these components suggest a self-reinforcing loop. This systemic signature mirrors patterns in IPF, underscoring shared final pathways in fibrotic lung disease and identifying the MMP–inflammation–endothelial axis as a promising target for biomarker development and therapeutic intervention. Full article
(This article belongs to the Special Issue Chronic Lung Conditions: Integrative Approaches to Long-Term Care)
Show Figures

Figure 1

28 pages, 10210 KB  
Article
Black-Winged Kite Algorithm Integrating Opposition-Based Learning and Quasi-Newton Strategy
by Ning Zhao, Tinghua Wang and Yating Zhu
Biomimetics 2026, 11(1), 68; https://doi.org/10.3390/biomimetics11010068 - 14 Jan 2026
Viewed by 37
Abstract
To address the deficiencies in global search capability and population diversity decline of the black-winged kite algorithm (BKA), this paper proposes an enhanced black-winged kite algorithm integrating opposition-based learning and quasi-Newton strategy (OQBKA). The algorithm introduces a mirror imaging strategy based on convex [...] Read more.
To address the deficiencies in global search capability and population diversity decline of the black-winged kite algorithm (BKA), this paper proposes an enhanced black-winged kite algorithm integrating opposition-based learning and quasi-Newton strategy (OQBKA). The algorithm introduces a mirror imaging strategy based on convex lens imaging (MOBL) during the migration phase to enhance the population’s spatial distribution and assist individuals in escaping local optima. In later iterations, it incorporates the quasi-Newton method to enhance local optimization precision and convergence performance. Ablation studies on the CEC2017 benchmark set confirm the strong complementarity between the two integrated strategies, with OQBKA achieving an average ranking of 1.34 across all 29 test functions. Comparative experiments on the CEC2022 benchmark suite further verify its superior exploration–exploitation balance and optimization accuracy: under 10- and 20-dimensional settings, OQBKA attains the best average rankings of 2.5 and 2.17 across all 12 test functions, outperforming ten state-of-the-art metaheuristic algorithms. Moreover, evaluations on three constrained engineering design problems, including step-cone pulley optimization, corrugated bulkhead design, and reactor network design, demonstrate the practicality and robustness of the proposed approach in generating feasible solutions under complex constraints. Full article
(This article belongs to the Section Biological Optimisation and Management)
Show Figures

Figure 1

22 pages, 2780 KB  
Review
Hippo Signaling in the Lung: A Tale of Two Effectors—Yap Drives Airway Fate and Taz Drives Alveolar Differentiation
by Rachel Warren and Stijn P. J. De Langhe
Cells 2026, 15(2), 143; https://doi.org/10.3390/cells15020143 - 13 Jan 2026
Viewed by 126
Abstract
The mammalian lung operates under a biological paradox, requiring architectural fragility for gas exchange while maintaining robust regenerative plasticity to withstand injury. The Hippo signaling pathway has emerged as a central “rheostat” in orchestrating these opposing needs, yet the distinct roles of its [...] Read more.
The mammalian lung operates under a biological paradox, requiring architectural fragility for gas exchange while maintaining robust regenerative plasticity to withstand injury. The Hippo signaling pathway has emerged as a central “rheostat” in orchestrating these opposing needs, yet the distinct roles of its downstream effectors remain underappreciated. This review synthesizes recent genetic and mechanobiological advances to propose a “Tale of Two Effectors” model, arguing for the functional non-redundancy of YAP and TAZ. We posit that YAP functions to drive airway progenitor expansion, mechanical force generation, and maladaptive remodeling. Conversely, TAZ—regulated uniquely via transcriptional mechanisms and mechanotransduction—acts as an obligate driver of alveolar differentiation and adaptive repair through an NKX2-1 feed-forward loop. Furthermore, we introduce the “See-Saw” model of tissue fitness, where mesenchymal niche collapse releases the mechanical brake on the epithelium, triggering the bronchiolization characteristic of pulmonary fibrosis. Finally, we extend this framework to malignancy, illustrating how Small Cell Lung Cancer (SCLC) subtypes mirror these developmental and regenerative states. This integrated framework offers new therapeutic distinct targets for modulating tissue fitness and resolving fibrosis. Full article
(This article belongs to the Special Issue Mechanisms of Lung Growth and Regeneration)
Show Figures

Figure 1

14 pages, 383 KB  
Article
From Mathematics to Art: A Petri Net Representation of the Fibonacci Sequence and Its Fractal Geometry
by David Mailland and Iwona Grobelna
Fractal Fract. 2026, 10(1), 53; https://doi.org/10.3390/fractalfract10010053 - 13 Jan 2026
Viewed by 152
Abstract
Mathematics, as Bertrand Russell noted, possesses both truth and beauty. In this work, we revisit the classical Fibonacci recurrence thanks to a minimal Petri net. Starting from a minimal layered construction that mirrors the second-order additive rule [...] Read more.
Mathematics, as Bertrand Russell noted, possesses both truth and beauty. In this work, we revisit the classical Fibonacci recurrence thanks to a minimal Petri net. Starting from a minimal layered construction that mirrors the second-order additive rule Fn=Fn1+Fn2, we show that the marking dynamics of the associated net generate a combinatorial triangle whose parity structure reveals a self-similar, Sierpiński-like pattern. To the best of our knowledge, this oblique fractal geometry has never been formally documented. We provide a formal definition of the underlying Petri net, analyse its computational properties, and explore the emergence of higher-order harmonics when token markings are considered modulo primes. The study highlights how a classical recurrence gives rise to previously unnoticed geometric regularities at the intersection of mathematics and art. Beyond its mathematical interest, the construction illustrates how minimal Petri net dynamics can be used as formal specification patterns for distributed, event-driven systems. Full article
Show Figures

Figure 1

26 pages, 1203 KB  
Review
Synergy of SARS-CoV-2 and HIV-1 Infections in the Human Brain
by Rajnish S. Dave and Howard S. Fox
Pathogens 2026, 15(1), 89; https://doi.org/10.3390/pathogens15010089 - 13 Jan 2026
Viewed by 58
Abstract
This review explores the interplay between SARS-CoV-2 and HIV-1 infections within the human brain, highlighting the significant neurological implications of these viral infections. SARS-CoV-2 can infect the central nervous system (CNS), with evidence of the virus detected in various brain regions, including the [...] Read more.
This review explores the interplay between SARS-CoV-2 and HIV-1 infections within the human brain, highlighting the significant neurological implications of these viral infections. SARS-CoV-2 can infect the central nervous system (CNS), with evidence of the virus detected in various brain regions, including the hypothalamus, cerebellum, and olfactory bulb. This infection is linked to microglial activation and neuroinflammation, which can lead to severe neurological outcomes in affected individuals. Autopsy studies revealed microglial changes, including downregulation of the P2RY12 receptor, indicating a shift from homeostatic to inflammatory phenotype. Similar changes in microglia are found in the brains of people with HIV-1 (PWH). In SARS-CoV-2, the correlation between inflammatory cytokines, such as IL-1, IL-6, and MCP-1, found in cerebrospinal fluid and brain tissues, indicates significant neurovascular inflammation. Astrogliosis and microglial nodules were observed, further emphasizing the inflammatory response triggered by the viral infections, again in parallel to those found in the brains of PWH. Epidemiologic data indicate that although SARS-CoV-2 infection rates in PWH mirror those in People without HIV (PWoH) populations, Long-COVID prevalence is markedly higher among PWH. Evidence of overlapping cognitive impairment, mental health burden, and persistent neuroinflammation highlights diagnostic complexity and therapeutic gaps. Despite plausible mechanistic synergy, direct neuropathological confirmation remains scarce, warranting longitudinal, biomarker-driven studies. Understanding these interactions is critical for developing targeted interventions to mitigate CNS injury and improve outcomes. Full article
Show Figures

Figure 1

17 pages, 1432 KB  
Article
Screening for Peptides to Bind and Functionally Inhibit SARS-CoV-2 Fusion Peptide Using Mirrored Combinatorial Phage Display and Human Proteomic Phage Display
by Ajay Pal, Neeladri Sekhar Roy, Matthew Angeliadis, Priyanka Madhu, Sophie O’Reilly, Indrani Bera, Nathan Francois, Aisling Lynch, Virginie Gautier, Marc Devocelle, David J. O’Connell and Denis C. Shields
Molecules 2026, 31(2), 282; https://doi.org/10.3390/molecules31020282 - 13 Jan 2026
Viewed by 211
Abstract
To identify pancoronaviral inhibitors, we sought to identify peptides that bound the evolutionarily conserved SARS-CoV-2 spike fusion peptide (FP). We screened the NEB PhD-7-mer random combinatorial phage display library against FP, synthesised as a D-peptide, to identify peptides from the L-library to be [...] Read more.
To identify pancoronaviral inhibitors, we sought to identify peptides that bound the evolutionarily conserved SARS-CoV-2 spike fusion peptide (FP). We screened the NEB PhD-7-mer random combinatorial phage display library against FP, synthesised as a D-peptide, to identify peptides from the L-library to be synthesised as proteolytically resistant D peptides. We selected the top ten peptides that were not seen in another published screen with this library, as these were more likely to be specific. All ten D-peptides had no impact on the infection of Vero-E6/TMPRSS2 cells by SARS-CoV-2. Screening of a proteomic-derived phage display library from the disordered regions of human proteins identified two overlapping 14mer peptides from a region of OTUD1. While a synthetic peptide based on their sequences failed to markedly inhibit viral entry, molecular dynamics structural modelling highlighted a stable binding mode where positive residues on one side of the OTUD1 helix interacted with hydrophobic residues of the FP triple-helical wedge. Thus, while the two phage display strategies failed to yield peptide sequences that are themselves strong inhibitors of viral infection, they led to the development of a computational model that can underpin future designs of potential pancoronaviral FP disruptors. Full article
(This article belongs to the Special Issue Bioengineered Peptides and Proteins as Potential Therapeutic Agents)
Show Figures

Figure 1

Back to TopTop