Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (109)

Search Parameters:
Keywords = minimal wave speed

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4610 KiB  
Article
A Directional Wave Spectrum Inversion Algorithm with HF Surface Wave Radar Network
by Fuqi Mo, Xiongbin Wu, Xiaoyan Li, Liang Yu and Heng Zhou
Remote Sens. 2025, 17(15), 2573; https://doi.org/10.3390/rs17152573 - 24 Jul 2025
Viewed by 144
Abstract
In high-frequency surface wave radar (HFSWR) systems, the retrieval of the directional wave spectrum has remained challenging, especially in the case of echoes from long ranges with a low signal-to-noise ratio (SNR). Therefore, a quadratic programming algorithm based on the regularization technique is [...] Read more.
In high-frequency surface wave radar (HFSWR) systems, the retrieval of the directional wave spectrum has remained challenging, especially in the case of echoes from long ranges with a low signal-to-noise ratio (SNR). Therefore, a quadratic programming algorithm based on the regularization technique is proposed with an empirical criterion for estimating the optimal regularization parameter, which minimizes the effect of noise to obtain more accurate inversion results. The reliability of the inversion method is preliminarily verified using simulated Doppler spectra under different wind speeds, wind directions, and SNRs. The directional wave spectra inverted from a radar network with two multiple-input multiple-output (MIMO) systems are basically consistent with those from the ERA5 data, while there is a limitation for the very concentrated directional distribution due to the truncated second order in the Fourier series. Further, in the field experiment during a storm that lasted three days, the wave parameters are calculated from the inverted directional spectra and compared with the ERA5 data. The results are shown to be in reasonable agreement at four typical locations in the core detection area. In addition, reasonable performance is also obtained under the condition of low SNRs, which further verifies the effectiveness of the proposed inversion algorithm. Full article
(This article belongs to the Special Issue Innovative Applications of HF Radar (Second Edition))
Show Figures

Figure 1

14 pages, 2087 KiB  
Article
A 28-nm CMOS Low-Power/Low-Voltage 60-GHz LNA for High-Speed Communication
by Minoo Eghtesadi, Andrea Ballo, Gianluca Giustolisi, Salvatore Pennisi and Egidio Ragonese
Electronics 2025, 14(14), 2819; https://doi.org/10.3390/electronics14142819 - 13 Jul 2025
Viewed by 463
Abstract
This paper presents a wideband low-power/low-voltage 60-GHz low-noise amplifier (LNA) in a 28-nm bulk CMOS technology. The LNA has been designed for high-speed millimeter-wave (mm-wave) communications. It consists of two pseudo-differential amplifying stages and a buffer stage included for 50-Ohm on-wafer measurements. Two [...] Read more.
This paper presents a wideband low-power/low-voltage 60-GHz low-noise amplifier (LNA) in a 28-nm bulk CMOS technology. The LNA has been designed for high-speed millimeter-wave (mm-wave) communications. It consists of two pseudo-differential amplifying stages and a buffer stage included for 50-Ohm on-wafer measurements. Two integrated input/output baluns guarantee both simultaneous 50-ohm input–noise/output matching at input/output radio frequency (RF) pads. A power-efficient design strategy is adopted to make the LNA suitable for low-power applications, while minimizing the noise figure (NF). Thanks to the adopted design strategy, the post-layout simulation results show an excellent trade-off between power gain and 3-dB bandwidth (BW3dB) with 13.5 dB and 7 GHz centered at 60 GHz, respectively. The proposed LNA consumes only 11.6 mA from a 0.9-V supply voltage with an NF of 8.4 dB at 60 GHz, including the input transformer loss. The input 1 dB compression point (IP1dB) of −15 dBm at 60 GHz confirms the first-rate linearity of the proposed amplifier. Human body model (HBM) electrostatic discharge (ESD) protection is guaranteed up to 2 kV at the RF input/output pads thanks to the input/output integrated transformers. Full article
(This article belongs to the Special Issue 5G Mobile Telecommunication Systems and Recent Advances, 2nd Edition)
Show Figures

Figure 1

26 pages, 7701 KiB  
Article
YOLO-StarLS: A Ship Detection Algorithm Based on Wavelet Transform and Multi-Scale Feature Extraction for Complex Environments
by Yihan Wang, Shuang Zhang, Jianhao Xu, Zhenwen Cheng and Gang Du
Symmetry 2025, 17(7), 1116; https://doi.org/10.3390/sym17071116 - 11 Jul 2025
Viewed by 295
Abstract
Ship detection in complex environments presents challenges such as sea surface reflections, wave interference, variations in illumination, and a range of target scales. The interaction between symmetric ship structures and wave patterns challenges conventional algorithms, particularly in maritime wireless networks. This study presents [...] Read more.
Ship detection in complex environments presents challenges such as sea surface reflections, wave interference, variations in illumination, and a range of target scales. The interaction between symmetric ship structures and wave patterns challenges conventional algorithms, particularly in maritime wireless networks. This study presents YOLO-StarLS (You Only Look Once with Star-topology Lightweight Ship detection), a detection framework leveraging wavelet transforms and multi-scale feature extraction through three core modules. We developed a Wavelet Multi-scale Feature Extraction Network (WMFEN) utilizing adaptive Haar wavelet decomposition with star-topology extraction to preserve multi-frequency information while minimizing detail loss. We introduced a Cross-axis Spatial Attention Refinement module (CSAR), which integrates star structures with cross-axis attention mechanisms to enhance spatial perception. We constructed an Efficient Detail-Preserving Detection head (EDPD) combining differential and shared convolutions to enhance edge detection while reducing computational complexity. Evaluation on the SeaShips dataset demonstrated YOLO-StarLS achieved superior performance for both mAP50 and mAP50–95 metrics, improving by 2.21% and 2.42% over the baseline YOLO11. The approach achieved significant efficiency, with a 36% reduction in the number of parameters to 1.67 M, a 34% decrease in complexity to 4.3 GFLOPs, and an inference speed of 162.0 FPS. Comparative analysis against eight algorithms confirmed the superiority in symmetric target detection. This work enhances real-time ship detection and provides foundations for maritime wireless surveillance networks. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

27 pages, 4853 KiB  
Review
Robotic Systems for Cochlear Implant Surgeries: A Review of Robotic Design and Clinical Outcomes
by Oneeba Ahmed, Mingfeng Wang, Bin Zhang, Richard Irving, Philip Begg and Xinli Du
Electronics 2025, 14(13), 2685; https://doi.org/10.3390/electronics14132685 - 2 Jul 2025
Viewed by 587
Abstract
Sensorineural hearing loss occurs when cochlear hair cells fail to convert mechanical sound waves into electrical signals transmitted via the auditory nerve. Cochlear implants (CIs) restore hearing by directly stimulating the auditory nerve with electrical impulses, often while preserving residual hearing. Over the [...] Read more.
Sensorineural hearing loss occurs when cochlear hair cells fail to convert mechanical sound waves into electrical signals transmitted via the auditory nerve. Cochlear implants (CIs) restore hearing by directly stimulating the auditory nerve with electrical impulses, often while preserving residual hearing. Over the past two decades, robotic-assisted techniques in otologic surgery have gained prominence for improving precision and safety. Robotic systems support critical procedures such as mastoidectomy, cochleostomy drilling, and electrode array (EA) insertion. These technologies aim to minimize trauma and enhance hearing preservation. Despite the outpatient nature of most CI surgeries, surgeons still face challenges, including anatomical complexity, imaging demands, and rising costs. Robotic systems help address these issues by streamlining workflows, reducing variability, and improving electrode placement accuracy. This review evaluates robotic systems developed for cochlear implantation, focusing on their design, surgical integration, and clinical outcomes. This review concludes that robotic systems offer low insertion speed, which leads to reduced insertion forces and lower intracochlear pressure. However, their impact on trauma, long-term hearing preservation, and speech outcome remains uncertain. Further research is needed to assess clinical durability, cost-effectiveness, and patient-reported outcomes. Full article
(This article belongs to the Special Issue Emerging Biomedical Electronics)
Show Figures

Figure 1

9 pages, 1553 KiB  
Communication
Orthogonally Polarized Pr:LLF Red Laser at 698 nm with Tunable Power Ratio
by Haotian Huang, Menghan Jia, Yuzhao Li, Jing Xia, Nguyentuan Anh and Yanfei Lü
Photonics 2025, 12(7), 666; https://doi.org/10.3390/photonics12070666 - 1 Jul 2025
Viewed by 168
Abstract
A continuous-wave (CW) orthogonally polarized single-wavelength red laser (OPSRL) at 698 nm with a tunable power ratio within a wide range between the two polarized components was demonstrated using two Pr3+:LiLuF4 (Pr:LLF) crystals for the first time. Through control of [...] Read more.
A continuous-wave (CW) orthogonally polarized single-wavelength red laser (OPSRL) at 698 nm with a tunable power ratio within a wide range between the two polarized components was demonstrated using two Pr3+:LiLuF4 (Pr:LLF) crystals for the first time. Through control of the waist location of the pump beam in the active media, the output power ratio of the two polarized components of the OPSRL could be adjusted. Under pumping by a 20 W, 444 nm InGaN laser diode (LD), a maximum total output power of 4.12 W was achieved with equal powers for both polarized components, corresponding to an optical conversion efficiency of 23.8% relative to the absorbed pump power. Moreover, by a type-II critical phase-matched (CPM) BBO crystal, a CW ultraviolet (UV) second-harmonic generation (SHG) at 349 nm was also obtained with a maximum output power of 723 mW. OPSRLs can penetrate deep tissues and demonstrate polarization-controlled interactions, and are used in bio-sensing and industrial cutting with minimal thermal distortion, etc. The dual-polarized capability of OPSRLs also supports multi-channel imaging and high-speed interferometry. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

24 pages, 2295 KiB  
Article
Multi-Objective Coordinated Control Model for Paths Considering Left-Turn Speed Guidance
by Jiao Yao, Xiaoxiao Zhu and Chengyi Yang
Systems 2025, 13(7), 516; https://doi.org/10.3390/systems13070516 - 26 Jun 2025
Viewed by 203
Abstract
Urban traffic signal coordination often prioritizes straight-through traffic, causing inefficiencies at intersections with high left-turn volumes. This study addresses left-turn traffic in path coordination control. First, using an enhanced FVD car-following model with acceleration decay and a minimum-jerk turning trajectory model, speed guidance [...] Read more.
Urban traffic signal coordination often prioritizes straight-through traffic, causing inefficiencies at intersections with high left-turn volumes. This study addresses left-turn traffic in path coordination control. First, using an enhanced FVD car-following model with acceleration decay and a minimum-jerk turning trajectory model, speed guidance is provided at intersections. For paths where left turns dominate, the traditional AM-BAND model is modified to maximize the green wave bandwidth for turning traffic and minimize carbon emissions, forming a multi-objective coordination control model with speed guidance. A case study was conducted on a typical path in Shanghai’s Jinqiao area. The results show that the left-turn-optimized model increases the green wave bandwidth by 16.67% over the traditional model, with an additional 9.52% improvement when speed guidance is included. For carbon emissions, the left-turn model reduces emissions by 12.99%, with a further 6.47% reduction under speed guidance. This approach effectively enhances efficiency and sustainability for left-turn-dominated paths, meeting urban commuter demands. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

18 pages, 3034 KiB  
Review
The Astroglia Syncytial Theory of Consciousness
by James M. Robertson
Int. J. Mol. Sci. 2025, 26(12), 5785; https://doi.org/10.3390/ijms26125785 - 17 Jun 2025
Viewed by 340
Abstract
The neurological basis of consciousness remains unknown despite innumerable theories proposed for over a century. The major obstacle is that empirical studies demonstrate that all sensory information is subdivided and parcellated as it is processed within the brain. A central region where such [...] Read more.
The neurological basis of consciousness remains unknown despite innumerable theories proposed for over a century. The major obstacle is that empirical studies demonstrate that all sensory information is subdivided and parcellated as it is processed within the brain. A central region where such diverse information combines to form conscious expression has not been identified. A novel hypothesis was introduced over two decades ago that proposed astrocytes, with their ability to interconnect to form a global syncytium within the neocortex, are the locus of consciousness based on their ability to integrate synaptic signals. However, it was criticized because intercellular calcium waves, which are initiated by synaptic activity, are too slow to contribute to consciousness but ideal for memory formation. Although astrocytes are known to exhibit rapid electrical responses in active sensory pathways (e.g., vision), it was technically impossible to determine electrical activity within the astroglia syncytium because of the challenge of separating syncytial electrical responses from simultaneous neuronal electrical activity. Therefore, research on astroglia syncytial electrical activity lagged for over sixty years, until recently, when an ingenuous technique was developed to eliminate neuronal electrical interference. These technical advances have demonstrated that the astroglia syncytium, although massive and occupying the entire neocortex, is isoelectric with minimal impedance. Most importantly, the speed of electrical conductance within the syncytium is as rapid as that of neural networks. Therefore, the astroglia syncytium is theoretically capable of transmitting integrated local synaptic signaling globally throughout the entire neocortex to bind all functional areas of the brain in a timeframe required for consciousness. Full article
(This article belongs to the Special Issue The Function of Glial Cells in the Nervous System: 2nd Edition)
Show Figures

Figure 1

19 pages, 8477 KiB  
Article
Wideband Dual-Polarized PRGW Antenna Array with High Isolation for Millimeter-Wave IoT Applications
by Zahra Mousavirazi, Mohamed Mamdouh M. Ali, Abdel R. Sebak and Tayeb A. Denidni
Sensors 2025, 25(11), 3387; https://doi.org/10.3390/s25113387 - 28 May 2025
Viewed by 641
Abstract
This work presents a novel dual-polarized antenna array tailored for Internet of Things (IoT) applications, specifically designed to operate in the millimeter-wave (mm-wave) spectrum within the frequency range of 30–60 GHz. Leveraging printed ridge gap waveguide (PRGW) technology, the antenna ensures robust performance [...] Read more.
This work presents a novel dual-polarized antenna array tailored for Internet of Things (IoT) applications, specifically designed to operate in the millimeter-wave (mm-wave) spectrum within the frequency range of 30–60 GHz. Leveraging printed ridge gap waveguide (PRGW) technology, the antenna ensures robust performance by eliminating parasitic radiation from the feed network, thus significantly enhancing the reliability and efficiency required by IoT communication systems, particularly for smart cities, autonomous vehicles, and high-speed sensor networks. The proposed antenna achieves superior radiation characteristics through a cross-shaped magneto-electric (ME) dipole backed by an artificial magnetic conductor (AMC) cavity and electromagnetic bandgap (EBG) structures. These features suppress surface waves, reduce edge diffraction, and minimize back-lobe emissions, enabling stable, high-quality IoT connectivity. The antenna demonstrates a wide impedance bandwidth of 24% centered at 30 GHz and exceptional isolation exceeding 40 dB, ensuring interference-free dual-polarized operation crucial for densely populated IoT environments. Fabrication and testing validate the design, consistently achieving a gain of approximately 13.88 dBi across the operational bandwidth. The antenna’s performance effectively addresses the critical requirements of emerging IoT systems, including ultra-high data throughput, reduced latency, and robust wireless connectivity, essential for real-time applications such as healthcare monitoring, vehicular communication, and smart infrastructure. Full article
(This article belongs to the Special Issue Design and Measurement of Millimeter-Wave Antennas)
Show Figures

Figure 1

16 pages, 3468 KiB  
Article
Three-Phase Power Factor Correction Front-End for Motor Drive Applications
by Abdulrahman Alduraibi and Abdulhakeem Alsaleem
Electronics 2025, 14(11), 2180; https://doi.org/10.3390/electronics14112180 - 27 May 2025
Viewed by 431
Abstract
Adjustable-speed drives (ASD) are extensively adopted in industrial power systems due to their ability to enhance overall efficiency by supplying optimal power to motors based on specific speed and torque requirements. While much existing research focuses on conventional diode rectifiers or voltage-source inverters [...] Read more.
Adjustable-speed drives (ASD) are extensively adopted in industrial power systems due to their ability to enhance overall efficiency by supplying optimal power to motors based on specific speed and torque requirements. While much existing research focuses on conventional diode rectifiers or voltage-source inverters as front-end solutions, this paper introduces a three-phase power factor correction (PFC) approach using a common DC-link voltage for motor drive applications. This innovative method significantly reduces input current harmonics and improves power factor with minimal active switching components and straightforward control strategies. Furthermore, the DC-link bus can be utilized for multiple motor drives as well. Both analytical and simulation studies validate the effectiveness of the proposed system, demonstrating that the input currents achieve a sine wave form with a unity power factor, while total harmonic distortion of the input current (THDi) is minimized to approximately 2% at the rated power level. Full article
Show Figures

Figure 1

15 pages, 4898 KiB  
Article
Bio-Inspired Highest Lift-to-Drag-Ratio Fin Shape and Angle for Maximum Surfboard Stability: Flow Around Fish Fins
by Megan S. MacNeill and Brian D. Barkdoll
Biomimetics 2025, 10(4), 234; https://doi.org/10.3390/biomimetics10040234 - 9 Apr 2025
Viewed by 842
Abstract
Wave surfing is a multi-billion dollar industry involving both maneuverability and speed, yet little research has been performed regarding the highest lift-to-drag-ratio fin shape for these competing qualities. Numerical modeling and laboratory experiments were performed here to identify a bio-inspired fin shape that [...] Read more.
Wave surfing is a multi-billion dollar industry involving both maneuverability and speed, yet little research has been performed regarding the highest lift-to-drag-ratio fin shape for these competing qualities. Numerical modeling and laboratory experiments were performed here to identify a bio-inspired fin shape that maximized lateral stability and minimized drag forces, in order to increase surfing maneuverability. Nine fins based on dorsal fins of real fish were tested. Both the CFD and laboratory experiments confirmed that the fin of the same shape as that of the Short-Finned Pilot Whale at an angle of attack of 10° had the greatest lift-to-drag ratios. Flow patterns around fins at a low angle of attack were smooth with negligible flow separation, while at any angle of attack greater than 25°, flow-separation-induced drag forces became excessive. Full article
Show Figures

Figure 1

16 pages, 4512 KiB  
Article
Experimental Study on Blocky Cuttings Transport in Shale Gas Horizontal Wells
by Di Yao, Xiaofeng Sun, Huixian Zhang and Jingyu Qu
Water 2025, 17(7), 1016; https://doi.org/10.3390/w17071016 - 30 Mar 2025
Cited by 1 | Viewed by 523
Abstract
The widespread application of horizontal drilling technology has significantly enhanced the development efficiency of unconventional resources, particularly shale gas, by overcoming key technical challenges in reservoir exploitation. However, wellbore instability remains a critical challenge during shale gas horizontal drilling, as borehole wall collapse [...] Read more.
The widespread application of horizontal drilling technology has significantly enhanced the development efficiency of unconventional resources, particularly shale gas, by overcoming key technical challenges in reservoir exploitation. However, wellbore instability remains a critical challenge during shale gas horizontal drilling, as borehole wall collapse often results in the accumulation of large-sized cuttings (or blocky cuttings), increasing the risk of stuck pipe incidents. In this study, a large-scale circulating loop experimental system was developed to investigate the hydrodynamic behavior of blocky cuttings transport under the influence of multiple factors, including rate of penetration (ROP), well inclination, flow rate, drilling fluid rheology, and block size. The experimental results reveal that when ROP exceeds 15 m/h, the annular solid-phase concentration increases non-linearly. At a well inclination of 60°, the axial and radial components of gravitational force reach a dynamic equilibrium, resulting in the maximum cuttings bed height. To enhance cuttings transport efficiency and mitigate deposition, a minimum flow rate of 35 L/s and a drill pipe rotation speed of 90 rpm are required to maintain sufficient turbulence in the annulus. Drilling fluid plastic viscosity (PV) in the range of 65–75 mPa·s optimizes suspension efficiency while minimizing circulating pressure loss. Additionally, increasing fluid density enhances the transport efficiency of large blocky cuttings. A drill pipe rotation speed of 80 rpm is recommended to prevent the formation of sand-wave-like cuttings beds. These findings provide valuable hydrodynamic insights and practical guidelines for optimizing hole-cleaning strategies, ensuring safer and more efficient drilling operations in shale gas horizontal wells. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

17 pages, 6781 KiB  
Article
A Transparent and Flexible Absorber for Electromagnetic Interference Suppression, Designed for 5G Communication and Sub-6G Applications
by Senfeng Lai, Huiyuan Fu, Junxian Tan, Jingyi Luo and Bingye Zhou
Electronics 2025, 14(7), 1350; https://doi.org/10.3390/electronics14071350 - 28 Mar 2025
Viewed by 800
Abstract
As 5G technology rapidly advances, the extension of spectrum into millimeter-wave bands enables higher data speeds and reduced latency. However, this frequency expansion introduces significant electromagnetic interference (EMI) issues, particularly in environments with dense equipment and base stations. To tackle these challenges, this [...] Read more.
As 5G technology rapidly advances, the extension of spectrum into millimeter-wave bands enables higher data speeds and reduced latency. However, this frequency expansion introduces significant electromagnetic interference (EMI) issues, particularly in environments with dense equipment and base stations. To tackle these challenges, this paper presents a multilayer transparent ultra-wideband microwave absorber (MA) using indium tin oxide (ITO) that operates between 4 and 26 GHz. This optimized MA design successfully achieves absorption from 4.07 to 25.07 GHz, encompassing both the 5G Sub-6 GHz and n258 bands, with a relative bandwidth of 144% and a minimal thickness of 0.129λL (where λL is the free-space wavelength at the lowest cutoff frequency). For TE and TM polarization with incidence angles ranging from 0° to 45°, the MA demonstrates exceptional performance, maintaining a relative bandwidth exceeding 120%. Notably, for TM polarization with incidence angles between 60° and 70°, the MA can sustain an absorption capacity with a relative bandwidth greater than 100%. By integrating the principles of impedance matching, surface current theory, and equivalent circuit simulation fitting, the absorption mechanism is further analyzed, thereby confirming the reliability of the design. This design offers exceptional wideband absorption, optical transparency, and wide-angle incidence characteristics, demonstrating great potential for applications in electromagnetic stealth, EMI suppression, and electromagnetic compatibility (EMC) in 5G communications. Full article
Show Figures

Figure 1

48 pages, 14298 KiB  
Article
A Multi-Level Speed Guidance Cooperative Approach Based on Bidirectional Periodic Green Wave Coordination Under Intelligent and Connected Environment
by Luxi Dong, Xiaolan Xie, Lieping Zhang, Shuiwang Li and Zhiqian Yang
Sensors 2025, 25(7), 2114; https://doi.org/10.3390/s25072114 - 27 Mar 2025
Viewed by 469
Abstract
To maximize arterial green wave bandwidth utilization, this study aims to minimize average travel delays at coordinated intersections and maximize vehicle throughput. In view of the aforementioned points, the present paper sets out a collaborative optimization method for the control of related intersection [...] Read more.
To maximize arterial green wave bandwidth utilization, this study aims to minimize average travel delays at coordinated intersections and maximize vehicle throughput. In view of the aforementioned points, the present paper sets out a collaborative optimization method for the control of related intersection groups. The method combines multi-level speed guidance with green wave coordinated control. In an intelligent and connected environment (ICE), the driving trajectory of the initial vehicle is determined in each optimization cycle following the receipt of active speed guidance. Subsequently, the driving trajectories of subsequent vehicles are calculated, with an assessment made as to whether they can leave the intersection before the end of the green light. The subsequent step involves the calculation of a characteristic index, comprising the average speed of the arterial coordination section and its corresponding phase offset. The phase offset is then optimized with the objective of maximizing the comprehensive bandwidth of green wave coordination within the control range. The maximum average speed and the bidirectional cycle comprehensive green wave bandwidth are employed as the control objectives. Finally, a model is constructed through the combination of multi-level vehicle speed guidance with bidirectional cycle green wave coordinated control. A bi-level combinatorial optimization method is constructed through a combinatorial deep Q learning method, named Deep Q Network-Genetic Algorithm (DQNGA), with the objective of obtaining the global optimal solution. Finally, the reliability of the method is validated using traffic flow data and map sensor data on several associated road sections in a city. The results demonstrate that the proposed method reduces the average delay and number of stops by 20.76% and 44.49%, respectively, outperforming conventional traffic control strategies. This suggests that the issue of inefficient utilization of green light time in arterial coordinated signal control has been effectively addressed. Consequently, the efficiency of intersections in the intelligent and connected environment has been enhanced. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

16 pages, 1096 KiB  
Article
Optimization of Voltage Requirements in Electro-Optic Polarization Controllers for High-Speed QKD Systems
by Hugo Filipe Costa, Armando Nolasco Pinto and Nelson Jesus Muga
Photonics 2025, 12(3), 267; https://doi.org/10.3390/photonics12030267 - 14 Mar 2025
Viewed by 619
Abstract
We present a framework to optimize the voltage range of electro-optic polarization controllers (EPC) in polarization-based quantum key distribution (QKD) subsystems. In this study, we consider an EPC capable of modifying both the phase difference between its fast and slow axes and the [...] Read more.
We present a framework to optimize the voltage range of electro-optic polarization controllers (EPC) in polarization-based quantum key distribution (QKD) subsystems. In this study, we consider an EPC capable of modifying both the phase difference between its fast and slow axes and the orientation of the fast axis. This capability allows it to transform any input state of polarization (SOP) into any desired output SOP on the Poincaré sphere using a single wave-plate. When multiple wave-plates are available, properly distributing the required polarization modulation across them effectively reduces the electronic demands, lowers the implementation costs, and enhances the polarization modulation speeds. This optimization is achieved through the application of multi-objective optimization (MOO) and wave-plate splitting techniques. Within a simulation model, using the calibration parameters from a commercially available six-wave-plate EPC, we determined the optimized voltage ranges required to achieve the six, four, and three SOPs typically used in polarization-based QKD protocols. Two voltage reference points are considered in our study: bias voltage points, which result in zero birefringence, and zero voltage points. For optimization procedures centered around the bias voltage points, we observe a significant reduction in the voltage range, from ±37 V, for a single wave-plate, to approximately ±6 V, for six wave-plates. Furthermore, using wave-plate splitting techniques, we conclude that only two independent wave-plates (four variables) need to be considered in our model to achieve optimized results, which contributes to the efficient design of polarization-based QKD subsystems by minimizing voltage transitions while ensuring precise SOP control, ultimately enabling cost-effective and high-speed polarization modulation. Full article
Show Figures

Figure 1

12 pages, 4462 KiB  
Article
Reliability of Shear Wave Elastography for Measuring the Elastic Properties of the Quadratus Lumborum Muscle
by Mónica López-Redondo, Juan Antonio Valera-Calero, Javier Álvarez-González, Alberto Roldán-Ruiz, Sandra Sánchez-Jorge, Jorge Buffet-García, Germán Monclús-Díez and Davinia Vicente-Campos
Diagnostics 2025, 15(6), 722; https://doi.org/10.3390/diagnostics15060722 - 13 Mar 2025
Viewed by 970
Abstract
Background/Objectives: The quadratus lumborum (QL) muscle is a key structure involved in patients with low back pain (LBP). Since the discriminative capability of morphological descriptors is uncertain and considering the high prevalence of myofascial trigger points and the poor reliability of manual [...] Read more.
Background/Objectives: The quadratus lumborum (QL) muscle is a key structure involved in patients with low back pain (LBP). Since the discriminative capability of morphological descriptors is uncertain and considering the high prevalence of myofascial trigger points and the poor reliability of manual palpation in this condition, developing a reliable procedure for assessing the QL’s tenderness is needed for facilitating the diagnosis and monitoring changes over time. We aimed to analyze the intra- and inter-examiner reliability of SWE for calculating the QL tenderness in patients with LBP. Methods: Using a convex transducer, longitudinal shear wave elastography (SWE) images of the QL muscle were acquired bilaterally twice in 52 volunteers with moderate LBP and disability by one experienced examiner and one novel examiner to measure shear wave speed and Young’s modulus as stiffness metrics. Results: Intra-examiner reliability estimates demonstrated high consistency independently of the examiner’s experience (intraclass correlation coefficients (ICCs) > 0.930) for both metrics. However, experienced examiners showed smaller minimal detectable changes. Additionally, inter-examiner reliability was lower, with ICCs ranging from 0.57 to 0.68, and significant differences in mean values between examiners (p < 0.01) were found. Conclusions: This procedure exhibited excellent intra-examiner reliability for assessing QL muscle stiffness in patients suffering LBP, indicating high repeatability of measurements when performed by the same examiner. In addition, experienced examiners demonstrated greater sensitivity in detecting real changes not attributed to measurement errors. However, inter-examiner reliability was moderate, highlighting the need for consistent examiner use to avoid measurement variability and averaging multiple measurements to enhance the accuracy. Full article
Show Figures

Figure 1

Back to TopTop