Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (223)

Search Parameters:
Keywords = millimeter band (mm band)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3542 KiB  
Article
mm-Wave Substrate-Integrated Fabry–Perot/Leaky-Wave Antennas in E-Band
by Rana Muhammad Hasan Bilal, Stefano Moscato, Simone Genovesi, Giuliano Manara and Filippo Costa
Sensors 2025, 25(17), 5248; https://doi.org/10.3390/s25175248 (registering DOI) - 23 Aug 2025
Abstract
This article introduces a substrate-integrated, low-cost, and low-profile E-band high-gain Fabry–Perot (FP)/leaky-wave (LW) antenna. This design enables the full integration of a high-gain antenna within a single-layer substrate for millimeter-wave (mm-wave) applications. The antenna design layout comprises a partially reflective surface (PRS) mounted [...] Read more.
This article introduces a substrate-integrated, low-cost, and low-profile E-band high-gain Fabry–Perot (FP)/leaky-wave (LW) antenna. This design enables the full integration of a high-gain antenna within a single-layer substrate for millimeter-wave (mm-wave) applications. The antenna design layout comprises a partially reflective surface (PRS) mounted on a thin, metal-coated, low-cost I-Tera MT40 dielectric substrate. The proposed antenna differs from conventional air-cavity-based FP/LW antennas, as it is fabricated on a low-cost dielectric substrate, eliminating the need for an air cavity, which restricts integration with printed circuit boards (PCBs) and planar circuits. The antenna is excited using a rectangular WR12 waveguide located beneath the ground plane. Impedance matching is achieved by employing a rectangular iris. The formulation for analyzing leaky waves within a cavity is thoroughly discussed using the Transverse Resonance Method (TRM). The proposed FP antenna achieves a maximum realized gain of 14.6 dBi with good impedance matching (|S11| = –14 dB). Finally, the proposed antenna is fabricated, and its performance is validated through experimental measurements. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

15 pages, 1970 KiB  
Article
Transmission Control for Space–Air–Ground Integrated Multi-Hop Networks in Millimeter-Wave and Terahertz Communications
by Liang Zong, Yun Cheng, Zhangfeng Ma, Han Wang, Zhan Liu and Yinqing Tang
Electronics 2025, 14(16), 3330; https://doi.org/10.3390/electronics14163330 - 21 Aug 2025
Viewed by 2
Abstract
Millimeter-wave (mmWave) and terahertz (THz) communications are susceptible to frequent link disruptions and severe performance degradation due to high directionality, significant path loss, and sensitivity to blockages. These challenges are particularly acute in highly dynamic and densely populated user environments. The issues present [...] Read more.
Millimeter-wave (mmWave) and terahertz (THz) communications are susceptible to frequent link disruptions and severe performance degradation due to high directionality, significant path loss, and sensitivity to blockages. These challenges are particularly acute in highly dynamic and densely populated user environments. The issues present significant obstacles to ensuring reliability and quality of service (QoS) in future space–air–ground integrated networks. To address these challenges, this paper proposes an adaptive transmission control scheme designed for space–air–ground integrated multi-hop networks operating in the mmWave/THz bands. By analyzing the intermittent connectivity inherent in such networks, the proposed scheme incorporates an incremental factor and a backlog indicator into its congestion control mechanism. This allows for the accurate differentiation between packet losses resulting from network congestion and those caused by channel blockages, such as human body occlusion or beam misalignment. Furthermore, the scheme optimizes the initial congestion window during the slow-start phase and dynamically adapts its transmission strategy during the congestion avoidance phase according to the identified cause of packet loss. Simulation results demonstrate that the proposed method effectively mitigates throughput degradation from link blockages, improves data transmission rates in highly dynamic environments, and sustains more stable end-to-end connectivity. Our proposed scheme achieves a 35% higher throughput than TCP Hybla, 40% lower latency than TCP Veno, and maintains 99.2% link utilization under high mobility. Full article
Show Figures

Figure 1

13 pages, 4732 KiB  
Article
A Compact and Wideband Active Asymmetric Transmit Array Unit Cell for Millimeter-Wave Applications
by Fahad Ahmed, Noureddine Melouki, Peyman PourMohammadi, Hassan Naseri and Tayeb A. Denidni
Sensors 2025, 25(16), 5168; https://doi.org/10.3390/s25165168 - 20 Aug 2025
Viewed by 179
Abstract
This study presents a compact reconfigurable asymmetric unit cell designed for millimeter-wave (mm-wave) transmit array (TA) antennas. Despite its compact size, the proposed unit cell achieves a broad bandwidth and low insertion loss. By breaking the symmetry of the unit cell and by [...] Read more.
This study presents a compact reconfigurable asymmetric unit cell designed for millimeter-wave (mm-wave) transmit array (TA) antennas. Despite its compact size, the proposed unit cell achieves a broad bandwidth and low insertion loss. By breaking the symmetry of the unit cell and by implementing two MA4AGP910 pin diodes in the proposed unit cell, a phase difference of 180 degrees (1-bit configuration) is obtained in a wide frequency band. The unit cell is fabricated using an LPKF laser machine and characterized using WR-34 waveguide. Measurement results closely match those obtained by simulations, confirming the design’s accuracy. With these functionalities, the proposed 1-bit unit cell emerges as a promising candidate for mm-wave transmit array antennas. Full article
(This article belongs to the Special Issue Recent Development of Millimeter-Wave Technologies)
Show Figures

Figure 1

19 pages, 3636 KiB  
Article
A High-Efficiency GaN-on-Si Power Amplifier Using a Rapid Dual-Objective Optimization Method for 5G FR2 Applications
by Lin Peng, Zuxin Ye, Yawen Zhang, Chenxuan Zhang, Yuda Fu, Jian Qin and Yuan Liang
Electronics 2025, 14(15), 2996; https://doi.org/10.3390/electronics14152996 - 27 Jul 2025
Viewed by 385
Abstract
A broadband, efficient monolithic microwave integrated circuit power amplifier (MMIC PA) in OMMIC’s 0.1 μm GaN-on-Si technology for 5G millimeter-wave communication is presented. This study concentrates on the output matching design, which has an important influence on the PA’s performance. A compact one-order [...] Read more.
A broadband, efficient monolithic microwave integrated circuit power amplifier (MMIC PA) in OMMIC’s 0.1 μm GaN-on-Si technology for 5G millimeter-wave communication is presented. This study concentrates on the output matching design, which has an important influence on the PA’s performance. A compact one-order synthesized transformer network (STN) is adopted to match the 50 Ω load to the extracted large-signal output model of the transistor. A dual-objective strategy is developed for parameter optimization, incorporating the impedance transformation trajectory inside the predefined optimal impedance domain (OID) that satisfies the required specifications, with approximation to selected optimal load impedances. By introducing a custom adjustment factor β into the error function, coupled with an automated iterative tuning process based on S-parameter simulations, desired broadband matching results can be rapidly achieved. The proposed two-stage PA occupies a small chip area of only 1.23 mm2 and demonstrates good frequency consistency over the 24–31 GHz band. Continuous-wave characterization shows a flat small-signal gain of 19.7 ± 0.5 dB; both the output power (Pout) and the power-added efficiency (PAE) at the 4 dB compression point remain smooth, ranging from 32.3 to 32.7 dBm and 35.5% to 37.8%, respectively. The peak PAE reaches up to nearly 40% at the center frequency. Full article
(This article belongs to the Special Issue Advanced RF/Microwave Circuits and System for New Applications)
Show Figures

Figure 1

19 pages, 1307 KiB  
Article
Three-Dimensional Non-Stationary MIMO Channel Modeling for UAV-Based Terahertz Wireless Communication Systems
by Kai Zhang, Yongjun Li, Xiang Wang, Zhaohui Yang, Fenglei Zhang, Ke Wang, Zhe Zhao and Yun Wang
Entropy 2025, 27(8), 788; https://doi.org/10.3390/e27080788 - 25 Jul 2025
Viewed by 273
Abstract
Terahertz (THz) wireless communications can support ultra-high data rates and secure wireless links with miniaturized devices for unmanned aerial vehicle (UAV) communications. In this paper, a three-dimensional (3D) non-stationary geometry-based stochastic channel model (GSCM) is proposed for multiple-input multiple-output (MIMO) communication links between [...] Read more.
Terahertz (THz) wireless communications can support ultra-high data rates and secure wireless links with miniaturized devices for unmanned aerial vehicle (UAV) communications. In this paper, a three-dimensional (3D) non-stationary geometry-based stochastic channel model (GSCM) is proposed for multiple-input multiple-output (MIMO) communication links between the UAVs in the THz band. The proposed channel model considers not only the 3D scattering and reflection scenarios (i.e., reflection and scattering fading) but also the atmospheric molecule absorption attenuation, arbitrary 3D trajectory, and antenna arrays of both terminals. In addition, the statistical properties of the proposed GSCM (i.e., the time auto-correlation function (T-ACF), space cross-correlation function (S-CCF), and Doppler power spectrum density (DPSD)) are derived and analyzed under several important UAV-related parameters and different carrier frequencies, including millimeter wave (mmWave) and THz bands. Finally, the good agreement between the simulated results and corresponding theoretical ones demonstrates the correctness of the proposed GSCM, and some useful observations are provided for the system design and performance evaluation of UAV-based air-to-air (A2A) THz-MIMO wireless communications. Full article
Show Figures

Figure 1

24 pages, 4549 KiB  
Review
Research on Tbps and Kilometer-Range Transmission of Terahertz Signals
by Jianjun Yu and Jiali Chen
Micromachines 2025, 16(7), 828; https://doi.org/10.3390/mi16070828 - 20 Jul 2025
Viewed by 729
Abstract
THz communication stands as a pivotal technology for 6G networks, designed to address the critical challenge of data demands surpassing current microwave and millimeter-wave (mmWave) capabilities. However, realizing Tbps and kilometer-range transmission confronts the “dual attenuation dilemma” comprising severe free-space path loss (FSPL) [...] Read more.
THz communication stands as a pivotal technology for 6G networks, designed to address the critical challenge of data demands surpassing current microwave and millimeter-wave (mmWave) capabilities. However, realizing Tbps and kilometer-range transmission confronts the “dual attenuation dilemma” comprising severe free-space path loss (FSPL) (>120 dB/km) and atmospheric absorption. This review comprehensively summarizes our group′s advancements in overcoming fundamental challenges of long-distance THz communication. Through systematic photonic–electronic co-optimization, we report key enabling technologies including photonically assisted THz signal generation, polarization-multiplexed multiple-input multiple-output (MIMO) systems with maximal ratio combining (MRC), high-gain antenna–lens configurations, and InP amplifier systems for complex weather resilience. Critical experimental milestones encompass record-breaking 1.0488 Tbps throughput using probabilistically shaped 64QAM (PS-64QAM) in the 330–500 GHz band; 30.2 km D-band transmission (18 Gbps with 543.6 Gbps·km capacity–distance product); a 3 km fog-penetrating link at 312 GHz; and high-sensitivity SIMO-validated 100 Gbps satellite-terrestrial communication beyond 36,000 km. These findings demonstrate THz communication′s viability for 6G networks requiring extreme-capacity backhaul and ultra-long-haul connectivity. Full article
Show Figures

Figure 1

35 pages, 2010 KiB  
Article
Intelligent Transmission Control Scheme for 5G mmWave Networks Employing Hybrid Beamforming
by Hazem (Moh’d Said) Hatamleh, As’ad Mahmoud As’ad Alnaser, Roba Mahmoud Ali Aloglah, Tomader Jamil Bani Ata, Awad Mohamed Ramadan and Omar Radhi Aqeel Alzoubi
Future Internet 2025, 17(7), 277; https://doi.org/10.3390/fi17070277 - 24 Jun 2025
Viewed by 452
Abstract
Hybrid beamforming plays a critical role in evaluating wireless communication technology, particularly for millimeter-wave (mmWave) multiple-input multiple-out (MIMO) communication. Several hybrid beamforming systems are investigated for millimeter-wave multiple-input multiple-output (MIMO) communication. The deployment of huge grant-free transmission in the millimeter-wave (mmWave) band is [...] Read more.
Hybrid beamforming plays a critical role in evaluating wireless communication technology, particularly for millimeter-wave (mmWave) multiple-input multiple-out (MIMO) communication. Several hybrid beamforming systems are investigated for millimeter-wave multiple-input multiple-output (MIMO) communication. The deployment of huge grant-free transmission in the millimeter-wave (mmWave) band is required due to the growing demands for spectrum resources in upcoming enormous machine-type communication applications. Ultra-high data speed, reduced latency, and improved connection are all promised by the development of 5G mmWave networks. Yet, due to severe route loss and directional communication requirements, there are substantial obstacles to transmission reliability and energy efficiency. To address this limitation in this research we present an intelligent transmission control scheme tailored to 5G mmWave networks. Transport control protocol (TCP) performance over mmWave links can be enhanced for network protocols by utilizing the mmWave scalable (mmS)-TCP. To ensure that users have the stronger average power, we suggest a novel method called row compression two-stage learning-based accurate multi-path processing network with received signal strength indicator-based association strategy (RCTS-AMP-RSSI-AS) for an estimate of both the direct and indirect channels. To change user scenarios and maintain effective communication constantly, we utilize the innovative method known as multi-user scenario-based MATD3 (Mu-MATD3). To improve performance, we introduce the novel method of “digital and analog beam training with long-short term memory (DAH-BT-LSTM)”. Finally, as optimizing network performance requires bottleneck-aware congestion reduction, the low-latency congestion control schemes (LLCCS) are proposed. The overall proposed method improves the performance of 5G mmWave networks. Full article
(This article belongs to the Special Issue Advances in Wireless and Mobile Networking—2nd Edition)
Show Figures

Figure 1

15 pages, 5094 KiB  
Article
Design and Realization of a Multi-Band, High-Gain, and High-Isolation MIMO Antenna for 5G mmWave Communications
by Nabeel Alsaab and Mahmoud Shaban
Appl. Sci. 2025, 15(12), 6857; https://doi.org/10.3390/app15126857 - 18 Jun 2025
Viewed by 671
Abstract
This research introduces a novel, high-performance multiple-input–multiple-output (MIMO) antenna designed to operate in allocated millimeter-wave (mmWave) 5G wireless communications. Operating in the tri-band, 28, 35, and 38 GHz, the four-port MIMO antenna possesses a compact size—measuring just 50 × 50 × 0.787 mm [...] Read more.
This research introduces a novel, high-performance multiple-input–multiple-output (MIMO) antenna designed to operate in allocated millimeter-wave (mmWave) 5G wireless communications. Operating in the tri-band, 28, 35, and 38 GHz, the four-port MIMO antenna possesses a compact size—measuring just 50 × 50 × 0.787 mm3 (4.67λo × 4.67λo × 0.73λo). The antenna delivers a remarkable performance, achieving peak gains of 9.6, 7.8, and 13.7 dBi in the tri-band, respectively. The realized bandwidths are 1.1, 2.2, and 3.7 GHz, at the tri-band frequencies. The antenna’s performance was significantly improved by carefully spacing the elements and employing a decoupling technique using metamaterial cells. This minimized interference between the antenna elements, resulting in efficient MIMO operation with a low envelope correlation coefficient of 0.00015 and a high diversity gain approaching 10 dB, and high isolation of 34.5, 22, and 30 dB, in the tri-band. This proposed design is confirmed with experimental measurements and offers a promising candidate for multi-band use of mmWave communication systems. Full article
(This article belongs to the Special Issue Multi-Band/Broadband Antenna Design, Optimization and Measurement)
Show Figures

Figure 1

28 pages, 7907 KiB  
Article
Transformer-Based Air-to-Ground mmWave Channel Characteristics Prediction for 6G UAV Communications
by Borui Huang, Zhichao Xin, Fan Yang, Yuyang Zhang, Yu Liu, Jie Huang and Ji Bian
Sensors 2025, 25(12), 3731; https://doi.org/10.3390/s25123731 - 14 Jun 2025
Viewed by 580
Abstract
With the increasing development of 6th-generation (6G) air-to-ground (A2G) communications, the combination of millimeter-wave (mmWave) and multiple-input multiple-output (MIMO) technologies can offer unprecedented bandwidth and capacity for unmanned aerial vehicle (UAV) communications. The introduction of new technologies will also make the UAV channel [...] Read more.
With the increasing development of 6th-generation (6G) air-to-ground (A2G) communications, the combination of millimeter-wave (mmWave) and multiple-input multiple-output (MIMO) technologies can offer unprecedented bandwidth and capacity for unmanned aerial vehicle (UAV) communications. The introduction of new technologies will also make the UAV channel characteristics more complex and variable, posing higher requirements for UAV channel modeling. This paper presents a novel predictive channel modeling method based on Transformer architecture by integrating data-driven approaches with UAV air-to-ground channel modeling. By introducing the mmWave and MIMO into UAV communications, the channel data of UAVs at various flight altitudes is first collected. Based on the Transformer network, the typical UAV channel characteristics, such as received power, delay spread, and angular spread, are then predicted and analyzed. The results indicate that the proposed predictive method exhibits excellent performance in prediction accuracy and stability, effectively addressing the complexity and variability of channel characteristics caused by mmWave bands and MIMO technology. This method not only provides strong support for the design and optimization of future 6G UAV communication systems but also lays a solid communication foundation for the widespread application of UAVs in intelligent transportation, logistics, and other fields in the future. Full article
Show Figures

Figure 1

13 pages, 3381 KiB  
Article
A 40 GHz High-Image-Rejection LNA with a Switchable Transformer-Based Notch Filter in 65 nm CMOS
by Yutong Guo and Jincai Wen
Micromachines 2025, 16(6), 676; https://doi.org/10.3390/mi16060676 - 31 May 2025
Viewed by 634
Abstract
This article presents a low-noise amplifier (LNA) with high image rejection ratio (IRR) operating in the 5G millimeter-wave band using a 65 nm CMOS process. The circuit adopts an inter-stage notch filtering structure composed of a transformer and a switched capacitor array to [...] Read more.
This article presents a low-noise amplifier (LNA) with high image rejection ratio (IRR) operating in the 5G millimeter-wave band using a 65 nm CMOS process. The circuit adopts an inter-stage notch filtering structure composed of a transformer and a switched capacitor array to achieve image suppression and impedance matching with no die area overhead. By adjusting the values of the switch capacitor array, the transmission zeros are positioned in the stopband while the poles are placed in the passband, thereby realizing image rejection. Furthermore, the number and distribution of poles under the both real and complex impedance conditions are analyzed. Moreover, the quality factor (Q) of the zero is derived to establish the relationship between Q and the image rejection ratio, guiding the optimization of both gain and IRR of the circuit design. Measurement results demonstrate that the LNA exhibits a gain of 18 dB and a noise figure (NF) of 4.4 dB at 40 GHz, with a corresponding IRR of 53.4 dB when the intermediate frequency (IF) is 6 GHz. The circuit demonstrates a 3 dB bandwidth from 36.3 to 40.7 GHz, with an IRR greater than 42 dB across this frequency range. The power consumption is 25.4 mW from a 1 V supply, and the pad-excluded core area of the entire chip is 0.13 mm². Full article
(This article belongs to the Special Issue RF and Power Electronic Devices and Applications)
Show Figures

Figure 1

22 pages, 1935 KiB  
Article
Blockage Prediction of an Urban Wireless Channel Characterization Using Classification Artificial Intelligence
by Saud Alhajaj Aldossari
Electronics 2025, 14(10), 2007; https://doi.org/10.3390/electronics14102007 - 15 May 2025
Viewed by 560
Abstract
The global deployment of 5G wireless networks has introduced significant advancements in data rates, latency, and energy efficiency. However, the rising demand for immersive applications (e.g., virtual and augmented reality) necessitates even higher data rates and lower latency, driving research toward sixth-generation (6G) [...] Read more.
The global deployment of 5G wireless networks has introduced significant advancements in data rates, latency, and energy efficiency. However, the rising demand for immersive applications (e.g., virtual and augmented reality) necessitates even higher data rates and lower latency, driving research toward sixth-generation (6G) wireless networks. This study addresses a major challenge in post-5G communication: mitigating signal blockage in high-frequency millimeter-wave (mmWave) bands. This paper proposes a novel framework for blockage prediction using AI-based classification techniques to enhance signal reliability and optimize connectivity. The proposed framework is evaluated comprehensively using performance metrics such as accuracy, precision, recall, and F1-score. Notably, the NN Model 4 achieves a classification accuracy of 99.8%. Comprehensive visualizations—such as learning curves, confusion matrices, ROC curves, and precision-recall plots—highlight the model’s performance. This study contributes to the development of AI-driven techniques that enhance reliability and efficiency in future wireless communication systems. Full article
(This article belongs to the Special Issue Wireless Communications Channel)
Show Figures

Figure 1

14 pages, 20644 KiB  
Article
A High-Gain Circularly Polarized Magnetoelectric Dipole Antenna Array for Millimeter-Wave Applications
by Jun Xiao, Jing Wu, Zihang Ye, Tongyu Ding, Chongzhi Han and Qiubo Ye
Sensors 2025, 25(10), 3046; https://doi.org/10.3390/s25103046 - 12 May 2025
Viewed by 571
Abstract
A high-gain circularly polarized (CP) magnetoelectric dipole (ME-dipole) radiating element is demonstrated at a millimeter-wave (MMW) 5G band of 37–43.5 GHz. Each ME-dipole radiating element, consisting of two pairs of ring-shaped and L-shaped metal posts is excited by a cross-shaped substrate-integrated waveguide (SIW) [...] Read more.
A high-gain circularly polarized (CP) magnetoelectric dipole (ME-dipole) radiating element is demonstrated at a millimeter-wave (MMW) 5G band of 37–43.5 GHz. Each ME-dipole radiating element, consisting of two pairs of ring-shaped and L-shaped metal posts is excited by a cross-shaped substrate-integrated waveguide (SIW) coupling slot to achieve CP radiation. Through the use of all-metal radiating structures with a height of 3.4 mm, high-gain and high-efficiency radiation performances are achieved. For proof of concept, a 4 × 4 antenna array with a SIW feeding network is designed, fabricated, and measured. The measured impedance bandwidth of the proposed 4 × 4 CP antenna array is 19.2% from 33.9 to 41.1 GHz for |S11| ≤ −10 dB. The measured 3 db AR bandwidth is 10.3% from 37 to 41 GHz. The measured peak gain is 20.3 dBic at 41 GHz. The measured and simulated results are in good agreement. Full article
(This article belongs to the Special Issue Design and Measurement of Millimeter-Wave Antennas)
Show Figures

Figure 1

17 pages, 127269 KiB  
Article
A Novel 28-GHz Meta-Window for Millimeter-Wave Indoor Coverage
by Chun Yang, Chuanchuan Yang, Cheng Zhang and Hongbin Li
Electronics 2025, 14(9), 1893; https://doi.org/10.3390/electronics14091893 - 7 May 2025
Viewed by 791
Abstract
Millimeter-wave signals experience substantial path loss when penetrating common building materials, hindering seamless indoor coverage from outdoor networks. To address this limitation, we present the 28-GHz “Meta-Window”, a mass-producible, visible transparent device designed to enhance millimeter-wave signal focusing. Fabricated via metal sputtering and [...] Read more.
Millimeter-wave signals experience substantial path loss when penetrating common building materials, hindering seamless indoor coverage from outdoor networks. To address this limitation, we present the 28-GHz “Meta-Window”, a mass-producible, visible transparent device designed to enhance millimeter-wave signal focusing. Fabricated via metal sputtering and etching on a standard soda-lime glass substrate, the meta-window incorporates subwavelength metallic structures arranged in a rotating pattern based on the Pancharatnam–Berry phase principle, enabling 0–360° phase control within the 25–32 GHz frequency band. A 210 mm × 210 mm prototype operating at 28 GHz was constructed using a 69 × 69 array of metasurface unit cells, leveraging planar electromagnetic lens principles. Experimental results demonstrate that the meta-window achieves greater than 20 dB signal focusing gain between 26 and 30 GHz, consistent with full-wave electromagnetic simulations, while maintaining up to 74.93% visible transmittance. This dual transparency—for both visible light and millimeter-wave frequencies—was further validated by a communication prototype system exhibiting a greater than 20 dB signal-to-noise ratio improvement and successful demodulation of a 64-QAM single-carrier signal (1 GHz bandwidth, 28 GHz) with an error vector magnitude of 4.11%. Moreover, cascading the meta-window with a reconfigurable reflecting metasurface antenna array facilitates large-angle beam steering; stable demodulation (error vector magnitude within 6.32%) was achieved within a ±40° range using the same signal parameters. Compared to conventional transmissive metasurfaces, this approach leverages established glass manufacturing techniques and offers potential for direct building integration, providing a promising solution for improving millimeter-wave indoor penetration and coverage. Full article
Show Figures

Figure 1

13 pages, 3748 KiB  
Article
Compact, Broadband, and High-Gain Four-Port MIMO Antenna for Future Millimeter Wave Applications
by Esraa Mousa Ali, Shine Let Gunamony, Mohamad A. Alawad and Turki Essa Alharbi
Micromachines 2025, 16(5), 558; https://doi.org/10.3390/mi16050558 - 3 May 2025
Viewed by 640
Abstract
A wideband antenna with a relatively compact size along with a multiple input and multiple output (MIMO) configuration for millimeter wave applications is proposed in this work. The antenna offers a low profile and simple structure. First of all, an antenna is designed [...] Read more.
A wideband antenna with a relatively compact size along with a multiple input and multiple output (MIMO) configuration for millimeter wave applications is proposed in this work. The antenna offers a low profile and simple structure. First of all, an antenna is designed using Rogers RT/duroid 6002 (Rogers Corporation, Chandler, AZ, USA) with a thickness of 0.79 mm, offering wideband ranges from 21 to 35 GHz. Subsequently, the unit element is converted into a four-port MIMO antenna to improve the capacity of the system, resulting in a high data rate, which is critical for 5G as well as for devices operating in the mm wave spectrum. The proposed work exhibits total dimensions of 24 × 24 mm2 and offers a peak gain of 8.5 dBi, with an efficiency of more than 80%. The MIMO performance parameters are also studied, and the antenna offers exceptional performance in terms of mutual coupling (Sij) without inserting a decoupling structure, envelop correlation coefficient (ECC), and diversity parameters. The proposed MIMO antenna offers a minimum isolation of −25 dBi and an ECC of less than 0.018. All the other MIMO parameter values lie below the acceptable range. The High Frequency Structure Simulator (HFSS) EM software (v.19) tool is used to analyze the antenna and study its performance. The simulated outcomes are verified by fabricating a prototype, where the result offers a good comparison among both results. Moreover, the contrast in terms of different performance parameters is carried out amongst recent research articles, highlighting the key contribution of the presented design. A compact size antenna with a wideband, simplified structure, and stable performance throughout the working band is achieved; thus, it is a solid contender for mm wave applications and 5G devices. Full article
(This article belongs to the Special Issue Microwave Passive Components, 2nd Edition)
Show Figures

Figure 1

21 pages, 13056 KiB  
Article
Package Integration and System Performance Analysis of Glass-Based Passive Components for 5G New Radio Millimeter-Wave Modules
by Muhammad Ali, Atom Watanabe, Takenori Kakutani, Pulugurtha M. Raj, Rao. R. Tummala and Madhavan Swaminathan
Electronics 2025, 14(8), 1670; https://doi.org/10.3390/electronics14081670 - 20 Apr 2025
Viewed by 3031
Abstract
In this paper, package integration of glass–based passive components for 5G new radio (NR) millimeter–wave (mm wave) bands and an analysis of their system performance are presented. Passive components such as diplexers and couplers covering 5G NR mm wave bands n257, n258 and [...] Read more.
In this paper, package integration of glass–based passive components for 5G new radio (NR) millimeter–wave (mm wave) bands and an analysis of their system performance are presented. Passive components such as diplexers and couplers covering 5G NR mm wave bands n257, n258 and n260 are modeled, designed, fabricated and characterized individually along with their integrated versions. Non–contiguous diplexers are designed using three different types of filters, hairpin, interdigital and edge–coupled, and combined with a broadband coupler to emulate a power detection and control circuitry block in an RF transmitter chain. A panel–compatible semi–additive patterning (SAP) process is utilized to form high–precision redistribution layers (RDLs) on laminated glass substrate, onto which fine features with tight tolerance are added to fabricate these structures. The diplexers exhibit low insertion loss, low VSWR and high isolation, and have a small footprint. A system performance analysis using a co–simulation technique is presented for the first time to quantify the distortion in amplitude and phase produced by the fabricated passive component block in terms of error vector magnitude (EVM). Moreover, the scalability of this approach to compare similar passive components based on their specifications and signatures using a system–level performance metric such as EVM is discussed. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

Back to TopTop