Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,301)

Search Parameters:
Keywords = mild temperature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 678 KiB  
Review
Cryoproteins in Non-HCV-Related Autoimmune Disorders: A Serious Cold-Induced Problem
by Krizia Pocino, Annunziata Stefanile, Patrizia Natali, Cecilia Napodano, Valerio Basile, Gabriele Ciasca, Mariapaola Marino and Umberto Basile
Diagnostics 2025, 15(15), 1933; https://doi.org/10.3390/diagnostics15151933 - 31 Jul 2025
Abstract
The precipitation of cryoglobulins, serum immunoglobulins, below 37 °C defines the clinical cryoglobulinemic syndrome, a systemic vasculitis usually characterized by purpura, weakness, and arthralgia. In most cases, this condition is associated with chronic infection by the hepatitis C virus (HCV) and can evolve [...] Read more.
The precipitation of cryoglobulins, serum immunoglobulins, below 37 °C defines the clinical cryoglobulinemic syndrome, a systemic vasculitis usually characterized by purpura, weakness, and arthralgia. In most cases, this condition is associated with chronic infection by the hepatitis C virus (HCV) and can evolve into B-cell dysregulation and malignancies. The current literature on non-HCV-associated cryoglobulinemia is very limited, and little is known about the immunological and serological profile of affected patients. The cryoglobulinemic syndrome not associated with HCV infection is often found concomitantly with other infections, autoimmune diseases, and B-cell lymphoproliferative disorders. The cryoprecipitation of fibrinogen has been described as a rare disorder, perhaps underestimated and not fully understood, causing thrombotic occlusion and ischemia in different rheumatic disorders. Cold temperature plays a pathogenetic role in autoimmune hemolytic anemias, in which the presence of cold agglutinins produced by B cells at the lymphoplasmacytic cell stage may promote agglutination of red blood cells in the coldest parts of the circulation, even at mild room temperatures, undergoing hemolysis. Laboratory methods for the detection and quantification of cryoproteins are downright critical, and their concurrent detection is pivotal for the diagnosis. In this review, we summarize the clinical involvement of cryoglobulins, cryofibrinogen, and cold agglutinins in non-HCV autoimmune diseases, underlining the crucial steps of the most employed analytic methods. Full article
(This article belongs to the Special Issue Recent Advances in Clinical Laboratory Immunology)
16 pages, 4017 KiB  
Article
Recyclable Platinum Nanocatalyst for Nitroarene Hydrogenation: Gum Acacia Polymer-Stabilized Pt Nanoparticles with TiO2 Support
by Supriya Prakash, Selvakumar Ponnusamy, Jagadeeswari Rangaraman, Kundana Nakkala and Putrakumar Balla
ChemEngineering 2025, 9(4), 81; https://doi.org/10.3390/chemengineering9040081 - 30 Jul 2025
Viewed by 84
Abstract
Platinum has emerged as an optimal catalyst for the selective hydrogenation of nitroarenes owing to its high hydrogenation activity, selectivity, and stability. In this study, we report the fabrication of platinum nanoparticles stabilized on a composite support consisting of gum acacia polymer (GAP) [...] Read more.
Platinum has emerged as an optimal catalyst for the selective hydrogenation of nitroarenes owing to its high hydrogenation activity, selectivity, and stability. In this study, we report the fabrication of platinum nanoparticles stabilized on a composite support consisting of gum acacia polymer (GAP) and TiO2. It was engineered for the targeted reduction of nitroarenes to arylamines via selective hydrogenation in methanol at ambient temperature. The non-toxic and biocompatible properties of GAP enable it to act as a reducing and stabilizing agent during synthesis. The synthesized nanocatalyst was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Morphological and structural analyses revealed that the fabricated catalyst consisted of minuscule Pt nanoparticles integrated within the GAP framework, accompanied by the corresponding TiO2 nanoparticles. Inductively coupled plasma optical emission spectrometry (ICP-OES) was employed to ascertain the Pt content. The mild reaction conditions, decent yields, trouble-free workup, and facile separation of the catalyst make this method a clean and practical alternative to nitroreduction. Selective hydrogenation yielded an average arylamine production of 97.6% over five consecutive cycles, demonstrating the stability of the nanocatalyst without detectable leaching. Full article
Show Figures

Figure 1

22 pages, 3083 KiB  
Article
Evaluating the Effect of Thermal Treatment on Phenolic Compounds in Functional Flours Using Vis–NIR–SWIR Spectroscopy: A Machine Learning Approach
by Achilleas Panagiotis Zalidis, Nikolaos Tsakiridis, George Zalidis, Ioannis Mourtzinos and Konstantinos Gkatzionis
Foods 2025, 14(15), 2663; https://doi.org/10.3390/foods14152663 - 29 Jul 2025
Viewed by 238
Abstract
Functional flours, high in bioactive compounds, have garnered increasing attention, driven by consumer demand for alternative ingredients and the nutritional limitations of wheat flour. This study explores the thermal stability of phenolic compounds in various functional flours using visible, near and shortwave-infrared (Vis–NIR–SWIR) [...] Read more.
Functional flours, high in bioactive compounds, have garnered increasing attention, driven by consumer demand for alternative ingredients and the nutritional limitations of wheat flour. This study explores the thermal stability of phenolic compounds in various functional flours using visible, near and shortwave-infrared (Vis–NIR–SWIR) spectroscopy (350–2500 nm), integrated with machine learning (ML) algorithms. Random Forest models were employed to classify samples based on flour type, baking temperature, and phenolic concentration. The full spectral range yielded high classification accuracy (0.98, 0.98, and 0.99, respectively), and an explainability framework revealed the wavelengths most relevant for each class. To address concerns regarding color as a confounding factor, a targeted spectral refinement was implemented by sequentially excluding the visible region. Models trained on the 1000–2500 nm and 1400–2500 nm ranges showed minor reductions in accuracy, suggesting that classification is not solely driven by visible characteristics. Results indicated that legume and wheat flours retain higher total phenolic content (TPC) under mild thermal conditions, whereas grape seed flour (GSF) and olive stone flour (OSF) exhibited notable thermal stability of TPC even at elevated temperatures. These first findings suggest that the proposed non-destructive spectroscopic approach enables rapid classification and quality assessment of functional flours, supporting future applications in precision food formulation and quality control. Full article
Show Figures

Figure 1

30 pages, 4377 KiB  
Article
Feeding Chicory–Plantain Silage and/or Se Yeast Does Not Improve Streptococcus uberis-Induced Subclinical Mastitis in Lactating Sheep
by Hunter R. Ford, Joseph Klopfenstein, Serkan Ates, Sebastiano Busato, Erminio Trevisi and Massimo Bionaz
Dairy 2025, 6(4), 40; https://doi.org/10.3390/dairy6040040 - 29 Jul 2025
Viewed by 181
Abstract
The objective of this study was to evaluate the effects of feeding a combination of chicory–plantain silage and supplementing Se yeast on the response of early-lactating ewes to induce subclinical mastitis. Polypay ewes (n = 32) were fed either chicory–plantain silage or [...] Read more.
The objective of this study was to evaluate the effects of feeding a combination of chicory–plantain silage and supplementing Se yeast on the response of early-lactating ewes to induce subclinical mastitis. Polypay ewes (n = 32) were fed either chicory–plantain silage or grass silage and supplemented with 3.6 mg Se yeast/ewe/day for approximately 2 months prior to the infusion of S. uberis into both mammary glands (i.e., intramammary infection or IMI). The ewes had a typical subclinical mastitis response with an 8-fold increase in milk somatic cell count within 24 h post-IMI, a decrease in milk yield, and changes in all milk components measured. The ewes experienced a mild systemic inflammation post-IMI as determined by an increase in rectal temperature and decrease in feed and water intake and, in blood, by an increase in the concentration of ceruloplasmin, haptoglobin, and myeloperoxidase and a decrease in paraoxonase, Zn, advanced oxidation protein products, and hematocrit with no effect on pro-inflammatory cytokines. No effect of silage type, likely due to a low concentration of secondary compounds, or Se supplementation was detected in response to IMI. In summary, the subclinical mastitis model used was effective in mounting an inflammatory response, although this was mild; however, feeding chicory–plantain silage with a low concentration of secondary compounds and supplementing Se yeast had no significant effect on the response of ewes to mammary infection. Full article
(This article belongs to the Section Dairy Animal Nutrition and Welfare)
Show Figures

Figure 1

28 pages, 14491 KiB  
Article
Catalytically Active Oxidized PtOx Species on SnO2 Supports Synthesized via Anion Exchange Reaction for 4-Nitrophenol Reduction
by Izabela Ðurasović, Robert Peter, Goran Dražić, Fabio Faraguna, Rafael Anelić, Marijan Marciuš, Tanja Jurkin, Vlasta Mohaček Grošev, Maria Gracheva, Zoltán Klencsár, Mile Ivanda, Goran Štefanić and Marijan Gotić
Nanomaterials 2025, 15(15), 1159; https://doi.org/10.3390/nano15151159 - 28 Jul 2025
Viewed by 252
Abstract
An anion exchange-assisted technique was used for the synthesis of platinum-decorated SnO2 supports, providing nanocatalysts with enhanced activity for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). In this study, a series of SnO2 supports, namely SnA (synthesized almost at room [...] Read more.
An anion exchange-assisted technique was used for the synthesis of platinum-decorated SnO2 supports, providing nanocatalysts with enhanced activity for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). In this study, a series of SnO2 supports, namely SnA (synthesized almost at room temperature), SnB (hydrothermally treated at 180 °C), and SnC (annealed at 600 °C), are systematically investigated, all loaded with 1 mol% Pt from H2PtCl6 under identical mild conditions. The chloride ions from the SnCl4 precursors were efficiently removed via a strong-base anion exchange reaction, resulting in highly dispersed, crystalline ~5 nm cassiterite SnO2 particles. All Pt/SnO2 composites displayed mesoporous structures with type IVa isotherms and H2-type hysteresis, with SP1a (Pt on SnA) exhibiting the largest surface area (122.6 m2/g) and the smallest pores (~3.5 nm). STEM-HAADF imaging revealed well-dispersed PtOx domains (~0.85 nm), while XPS confirmed the dominant Pt4+ and Pt2+ species, with ~25% Pt0 likely resulting from photoreduction and/or interactions with Sn–OH surface groups. Raman spectroscopy revealed three new bands (260–360 cm−1) that were clearly visible in the sample with 10 mol% Pt and were due to the vibrational modes of the PtOx species and Pt-Cl bonds introduced due the addition and hydrolysis of H2PtCl6 precursor. TGA/DSC analysis revealed the highest mass loss for SP1a (~7.3%), confirming the strong hydration of the PtOx domains. Despite the predominance of oxidized PtOx species, SP1a exhibited the highest catalytic activity (kapp = 1.27 × 10−2 s−1) and retained 84.5% activity for the reduction of 4-NP to 4-AP after 10 cycles. This chloride-free low-temperature synthesis route offers a promising and generalizable strategy for the preparation of noble metal-based nanocatalysts on oxide supports with high catalytic activity and reusability. Full article
Show Figures

Figure 1

35 pages, 638 KiB  
Review
The Influence of Circadian Rhythms on Transcranial Direct Current Stimulation (tDCS) Effects: Theoretical and Practical Considerations
by James Chmiel and Agnieszka Malinowska
Cells 2025, 14(15), 1152; https://doi.org/10.3390/cells14151152 - 25 Jul 2025
Viewed by 467
Abstract
Transcranial direct current stimulation (tDCS) can modulate cortical excitability in a polarity-specific manner, yet identical protocols often produce inconsistent outcomes across sessions or individuals. This narrative review proposes that much of this variability arises from the brain’s intrinsic temporal landscape. Integrating evidence from [...] Read more.
Transcranial direct current stimulation (tDCS) can modulate cortical excitability in a polarity-specific manner, yet identical protocols often produce inconsistent outcomes across sessions or individuals. This narrative review proposes that much of this variability arises from the brain’s intrinsic temporal landscape. Integrating evidence from chronobiology, sleep research, and non-invasive brain stimulation, we argue that tDCS produces reliable, polarity-specific after-effects only within a circadian–homeostatic “window of efficacy”. On the circadian (Process C) axis, intrinsic alertness, membrane depolarisation, and glutamatergic gain rise in the late biological morning and early evening, whereas pre-dawn phases are marked by reduced excitability and heightened inhibition. On the homeostatic (Process S) axis, consolidated sleep renormalises synaptic weights, widening the capacity for further potentiation, whereas prolonged wakefulness saturates plasticity and can even reverse the usual anodal/cathodal polarity rules. Human stimulation studies mirror this two-process fingerprint: sleep deprivation abolishes anodal long-term-potentiation-like effects and converts cathodal inhibition into facilitation, while stimulating at each participant’s chronotype-aligned (phase-aligned) peak time amplifies and prolongs after-effects even under equal sleep pressure. From these observations we derive practical recommendations: (i) schedule excitatory tDCS after restorative sleep and near the individual wake-maintenance zone; (ii) avoid sessions at high sleep pressure or circadian troughs; (iii) log melatonin phase, chronotype, recent sleep and, where feasible, core temperature; and (iv) consider mild pre-heating or time-restricted feeding as physiological primers. By viewing Borbély’s two-process model and allied metabolic clocks as adjustable knobs for plasticity engineering, this review provides a conceptual scaffold for personalised, time-sensitive tDCS protocols that could improve reproducibility in research and therapeutic gain in the clinic. Full article
Show Figures

Figure 1

19 pages, 10374 KiB  
Article
Nanoscale Nickel Oxide: Synthesis, Characterization, and Impact on Antibacterial Activity Against Representative Microorganisms
by Daniela Istrate, Mihai Oproescu, Ecaterina Magdalena Modan, Sorin Georgian Moga, Denis Aurelian Negrea and Adriana-Gabriela Schiopu
ChemEngineering 2025, 9(4), 77; https://doi.org/10.3390/chemengineering9040077 - 25 Jul 2025
Viewed by 207
Abstract
Among the various available synthesis approaches, hydrolytic precipitation offers a simple, cost-effective, and scalable route for producing phase-pure NiO with a controlled morphology and crystallite size. However, the influence of calcination temperature on its crystalline phase, particle size, and antimicrobial activity remains an [...] Read more.
Among the various available synthesis approaches, hydrolytic precipitation offers a simple, cost-effective, and scalable route for producing phase-pure NiO with a controlled morphology and crystallite size. However, the influence of calcination temperature on its crystalline phase, particle size, and antimicrobial activity remains an active field of research. This study aims to investigate the structural, morphological, and antibacterial properties of NiO nanoparticles synthesized via hydrolytic methods and thermally treated at different temperatures. XRD data indicate the presence of the hexagonal crystallographic phase of NiO (space group 166: R-3m), a structural variant less commonly reported in the literature, stabilized under mild hydrolytic synthesis conditions. The average crystallite size increases significantly from 4.97 nm at 300 °C to values of ~17.8 nm at 500–700 °C, confirming the development of the crystal lattice. The ATR-FTIR analysis confirms the presence of the characteristic Ni–O band for all samples, positioned between 367 and 383 cm−1, with a reference value of 355 cm−1 for commercial NiO. The displacements and variations in intensity reflect a thermal evolution of the crystalline structure, but also an important influence of the size of the crystallites and the agglomeration state. The results reveal a systematic evolution in particle morphology from porous, flake-like nanostructures at 300 °C to dense, well-faceted polyhedral crystals at 900 °C. With an increasing temperature, particle size increases. EDS spectra confirm the high purity of the NiO phase across all samples. Additionally, the NiO nanoparticles exhibit calcination-temperature-dependent antibacterial activity, with the complete inhibition of Escherichia coli and Enterococcus faecalis observed after 24 h for the sample calcined at 300 °C and over 90% CFU reduction within 4 h. A significant reduction in E. faecalis viability across all samples indicates time- and strain-specific bactericidal effects. Due to its remarkable multifunctionality, NiO has emerged as a strategic nanomaterial in fields ranging from energy storage and catalysis to antimicrobial technologies, where precise control over its structural phase and particle size is essential for optimizing performance. Full article
Show Figures

Figure 1

10 pages, 217 KiB  
Article
Systemic Effects of Enzymatic Necrosectomy in Minor Burn Wounds Using NexoBrid®
by David Breidung, Moritz Billner, Felix Ortner, Philipp von Imhoff, Simonas Lapinskas, Konrad Karcz, Sarina Delavari and Denis Ehrl
J. Pers. Med. 2025, 15(8), 330; https://doi.org/10.3390/jpm15080330 - 25 Jul 2025
Viewed by 213
Abstract
Background/Objectives: Enzymatic debridement with NexoBrid® is an effective alternative to surgical debridement in burn care, but its potential systemic effects remain unclear. In the context of personalized burn care, understanding individual patient responses to topical agents is essential to optimize outcomes and [...] Read more.
Background/Objectives: Enzymatic debridement with NexoBrid® is an effective alternative to surgical debridement in burn care, but its potential systemic effects remain unclear. In the context of personalized burn care, understanding individual patient responses to topical agents is essential to optimize outcomes and minimize risks. This study aimed to characterize laboratory and clinical parameter changes following NexoBrid® application in patients with small burn injuries (≤10% TBSA). Methods: We retrospectively analyzed 75 burn patients treated with NexoBrid® to evaluate changes in systemic inflammatory markers, coagulation parameters, and clinical parameters before and after enzymatic debridement. Results: Statistically significant increases in body temperature (p = 0.018), decreases in hemoglobin (p < 0.001), and increases in C-reactive protein (CRP) levels (p < 0.001) were observed, suggesting mild systemic inflammatory changes. However, leukocyte counts did not change significantly (p = 0.927), and body temperature remained within the normothermic range, indicating that these changes were not clinically significant. A significant decrease in the prothrombin time ratio (% of normal; p = 0.002) was also observed, suggesting potential impacts on coagulation. Importantly, while body temperature was slightly higher in patients with a higher degree of BSA exposure within the ≤10% TBSA cohort (p = 0.036), the extent of NexoBrid® application did not correlate with other inflammatory markers. Conclusions: These findings suggest that measurable systemic changes can occur following NexoBrid® application in small burns, particularly affecting inflammatory and coagulation parameters. These observations contribute to the understanding of treatment-related responses and may help inform clinical decision-making. Full article
(This article belongs to the Special Issue Plastic Surgery: New Perspectives and Innovative Techniques)
13 pages, 532 KiB  
Article
An Investigation into the Sensory Properties of Luffa (Luffa cylindrica (L.)) Fruit Powder
by Matthew Code and Matthew B. McSweeney
Foods 2025, 14(15), 2594; https://doi.org/10.3390/foods14152594 - 24 Jul 2025
Viewed by 186
Abstract
Luffa fruit is an underutilized and novel ingredient in North America. To increase the shelf life of luffa fruit, this study evaluated the creation of luffa fruit powder using three different drying temperatures (40 °C, 50 °C, and 60 °C). The objective of [...] Read more.
Luffa fruit is an underutilized and novel ingredient in North America. To increase the shelf life of luffa fruit, this study evaluated the creation of luffa fruit powder using three different drying temperatures (40 °C, 50 °C, and 60 °C). The objective of this study was to evaluate the sensory properties and acceptability of luffa fruit powder with unfamiliar consumers (those who do not regularly eat luffa fruit). Participants (n = 88) evaluated the luffa fruit powders mixed into couscous, as well as a control (couscous without luffa fruit powder) using check-all-that-apply and hedonic scales. Furthermore, the participants were asked how they felt about luffa fruit powder after evaluating the samples (comment question). The hedonic scores were not significantly affected by the addition of the luffa seed powders dried at different temperatures. However, the luffa seed powder was associated with a mild flavour, as well as being described as earthy and vegetal. The participants did indicate that the luffa seed powder added moistness to the couscous. As the drying temperature increased so did the intensity of the flavour. Furthermore, participants indicated they would be interested in luffa seed powder if it has nutritional benefits. Overall, this study investigated the sensory properties of a novel ingredient, luffa seed powder, and future studies should continue to explore its sensory properties and chemical components. Full article
Show Figures

Figure 1

16 pages, 1045 KiB  
Article
Effects of Pulsed Radiofrequency Current and Thermal Condition on the Expression of β-Endorphin in Human Monocytic Cells
by Akira Nishioka, Toshiharu Azma, Tsutomu Mieda and Yasushi Mio
NeuroSci 2025, 6(3), 67; https://doi.org/10.3390/neurosci6030067 - 21 Jul 2025
Viewed by 206
Abstract
Pulsed radiofrequency (PRF) current applied to peripheral nerves is a modality used in interventional pain medicine, but its underlying mechanisms remain unclear. This study aimed to investigate whether ex vivo exposure of human monocytic THP-1 cells to PRF current or to heat induces [...] Read more.
Pulsed radiofrequency (PRF) current applied to peripheral nerves is a modality used in interventional pain medicine, but its underlying mechanisms remain unclear. This study aimed to investigate whether ex vivo exposure of human monocytic THP-1 cells to PRF current or to heat induces β-endorphin production. Methods: THP-1 cells were exposed to PRF current for 15 min or incubated at elevated temperatures (42 °C to 50 °C) for 3 or 15 min. Flow cytometry was used to assess cell viability, and β-endorphin concentrations in culture supernatants were quantified by ELISA. In a separate experiment, cells were stimulated with lipopolysaccharide (LPS) to compare its effects on β-endorphin release. Results: A 3 min exposure to temperatures ≥ 46 °C reduced THP-1 cell viability, whereas a 15 min exposure to PRF current or to heat at 42 °C did not impair viability. Both PRF current and mild heat significantly enhanced β-endorphin release. β-Endorphin levels in the supernatant of LPS-stimulated cells were comparable to those of cells exposed to PRF current. Conclusions: Ex vivo application of PRF current or mild heat enhanced β-endorphin production from THP-1 cells without significant cytotoxicity. These preliminary findings warrant further investigation using primary human monocytes and in vivo models to assess therapeutic potential. Full article
Show Figures

Figure 1

27 pages, 15353 KiB  
Article
Drought Evolution in the Yangtze and Yellow River Basins and Its Dual Impact on Ecosystem Carbon Sequestration
by Yuanhe Yu, Huan Deng, Shupeng Gao and Jinliang Wang
Agriculture 2025, 15(14), 1552; https://doi.org/10.3390/agriculture15141552 - 19 Jul 2025
Viewed by 249
Abstract
As an extreme event driven by global climate change, drought poses a severe threat to terrestrial ecosystems. The Yangtze River Basin (YZRB) and Yellow River Basin (YRB) are key ecological barriers and economic zones in China, holding strategic importance for exploring the evolution [...] Read more.
As an extreme event driven by global climate change, drought poses a severe threat to terrestrial ecosystems. The Yangtze River Basin (YZRB) and Yellow River Basin (YRB) are key ecological barriers and economic zones in China, holding strategic importance for exploring the evolution of drought patterns and their ecological impacts. Using meteorological station data and Climatic Research Unit Gridded Time Series (CRU TS) data, this study analyzed the spatiotemporal characteristics of drought evolution in the YZRB and YRB from 1961 to 2021 using the standardized precipitation evapotranspiration index (SPEI) and run theory. Additionally, this study examined drought effects on ecosystem carbon sequestration (CS) at the city, county, and pixel scales. The results revealed the following: (1) the CRU data effectively captured precipitation (annual r = 0.94) and temperature (annual r = 0.95) trends in both basins, despite significantly underestimating winter temperatures, with the optimal SPEI calculation accuracy found at the monthly scale; (2) both basins experienced frequent autumn–winter droughts, with the YRB facing stronger droughts, including nine events which exceeded 10 months (the longest lasting 25 months), while the mild droughts increased in frequency and extreme intensity; and (3) the drought impacts on CS demonstrated a significant threshold effect, where the intensified drought unexpectedly enhanced CS in western regions, such as the Garzê Autonomous Prefecture in Sichuan Province and Changdu City in the Xizang Autonomous Region, but suppressed CS in the midstream and downstream plains. The CS responded positively under weak drought conditions but declined once the drought intensity surpassed the threshold. This study revealed a nonlinear relationship between drought and CS across climatic zones, thereby providing a scientific foundation for enhancing ecological resilience. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

19 pages, 12002 KiB  
Article
Innovative Gluten-Free Fusilli Noodle Formulation: Leveraging Extruded Japanese Rice and Chickpea Flours
by Simone de Souza Fernandes, Jhony Willian Vargas-Solórzano, Carlos Wanderlei Piler Carvalho and José Luis Ramírez Ascheri
Foods 2025, 14(14), 2524; https://doi.org/10.3390/foods14142524 - 18 Jul 2025
Viewed by 343
Abstract
Background: The growing demand for nutritionally balanced, gluten-free products has encouraged the development of innovative formulations that deliver both sensory quality and functional benefits. Combining rice and legume flours offers promising alternatives to mimic gluten-like properties while improving nutritional value. This study aimed [...] Read more.
Background: The growing demand for nutritionally balanced, gluten-free products has encouraged the development of innovative formulations that deliver both sensory quality and functional benefits. Combining rice and legume flours offers promising alternatives to mimic gluten-like properties while improving nutritional value. This study aimed to develop a gluten-free fusilli noodle using extruded flours based on mixtures of Japanese rice (JR) and chickpea (CP) particles. Methods: A 23 factorial design with augmented central points was applied to evaluate the effects of flour ratio (X1, CP/JR, 20–40%), feed moisture (X2, 24–30%), and extrusion temperature (X3, 80–120 °C) on responses from process properties (PPs), extruded flours (EFs), and noodle properties (NPs). Results: Interaction effects of X3 with X1 or X2 were observed on responses. On PP, X1 at 120 °C reduced the mechanical energy input (181.0 to 136.2 kJ/kg) and increased moisture retention (12.0 to 19.8%). On EF, X1 increased water-soluble solids (2.3 to 4.2 g/100 g, db) and decreased water absorption (8.6 to 5.7 g/g insoluble solids). On NP, X1 also affected their cooking properties. The mass increase was greater at 80°C (140 to 174%), and the soluble-solids loss was greater at 120 °C (9.3 to 4.5%). The optimal formulation (X1X2X3: 40–30%–80 °C) yielded noodles with improved elasticity, augmented protein, and enhanced textural integrity. Conclusions: Extruded flours derived from 40% chickpea flour addition and processed under mild conditions proved to be an effective strategy for enhancing both the nutritional and technological properties of rice-based noodles and supporting clean-label alternative products for gluten-intolerant and health-conscious consumers. Full article
Show Figures

Figure 1

15 pages, 4059 KiB  
Article
Surface Fluorination for the Stabilization in Air of Garnet-Type Oxide Solid Electrolyte for Lithium Ion Battery
by Michael Herraiz, Saida Moumen, Kevin Lemoine, Laurent Jouffret, Katia Guérin, Elodie Petit, Nathalie Gaillard, Laure Bertry, Reka Toth, Thierry Le Mercier, Valérie Buissette and Marc Dubois
Batteries 2025, 11(7), 268; https://doi.org/10.3390/batteries11070268 - 16 Jul 2025
Viewed by 263
Abstract
After reviewing the state of the art of the fluorination of inorganic solid electrolytes, an application of gas/solid fluorination is given and how it can be processed. Garnet-type oxide has been chosen. These oxides with an ideal structure of chemical formula A3 [...] Read more.
After reviewing the state of the art of the fluorination of inorganic solid electrolytes, an application of gas/solid fluorination is given and how it can be processed. Garnet-type oxide has been chosen. These oxides with an ideal structure of chemical formula A3B2(XO4)3 are mainly known for their magnetic and dielectric properties. Certain garnets may have a high enough Li+ ionic conductivity to be used as solid electrolyte of lithium ion battery. The surface of LLZO may be changed in contact with the moisture and CO2 present in the atmosphere that results in a change of the conductivity at the interface of the solid. LiOH and/or lithium carbonate are formed at the surface of the garnet particles. In order to allow for handling and storage under normal conditions of this solid electrolyte, surface fluorination was performed using elemental fluorine. When controlled using mild conditions (temperature lower or equal to 200 °C, either in static or dynamic mode), the addition of fluorine atoms to LLZO with Li6,4Al0,2La3Zr2O12 composition is limited to the surface, forming a covering layer of lithium fluoride LiF. The effect of the fluorination was evidenced by IR, Raman, and NMR spectroscopies. If present in the pristine LLZO powder, then the carbonate groups disappear. More interestingly, contrary to the pristine LLZO, the contents of these groups are drastically reduced even after storage in air up to 45 days when the powder is covered with the LiF layer. Surface fluorination could be applied to other solid electrolytes that are air sensitive. Full article
Show Figures

Figure 1

31 pages, 7444 KiB  
Article
Meteorological Drivers and Agricultural Drought Diagnosis Based on Surface Information and Precipitation from Satellite Observations in Nusa Tenggara Islands, Indonesia
by Gede Dedy Krisnawan, Yi-Ling Chang, Fuan Tsai, Kuo-Hsin Tseng and Tang-Huang Lin
Remote Sens. 2025, 17(14), 2460; https://doi.org/10.3390/rs17142460 - 16 Jul 2025
Viewed by 350
Abstract
Agriculture accounts for 29% of the Gross Domestic Product of the Nusa Tenggara Islands (NTIs). However, recurring agricultural droughts pose a major threat to the sustainability of agriculture in this region. The interplay between precipitation, solar radiation, and surface temperature as meteorological factors [...] Read more.
Agriculture accounts for 29% of the Gross Domestic Product of the Nusa Tenggara Islands (NTIs). However, recurring agricultural droughts pose a major threat to the sustainability of agriculture in this region. The interplay between precipitation, solar radiation, and surface temperature as meteorological factors plays a key role in affecting vegetation (Soil-Adjusted Vegetation Index) and agricultural drought (Temperature Vegetation Dryness Index) in the NTIs. Based on the analyses of interplay with temporal lag, this study investigates the effect of each factor on agricultural drought and attempts to provide early warnings regarding drought in the NTIs. We collected surface information data from Moderate-Resolution Imaging Spectroradiometer (MODIS). Meanwhile, rainfall was estimated from Himawari-8 based on the INSAT Multi-Spectral Rainfall Algorithm (IMSRA). The results showed reliable performance for 8-day and monthly scales against gauges. The drought analysis results reveal that the NTIs suffer from mild-to-moderate droughts, where cropland is the most vulnerable, causing shifts in the rice cropping season. The driving factors could also explain >60% of the vegetation and surface-dryness conditions. Furthermore, our monthly and 8-day TVDI estimation models could capture spatial drought patterns consistent with MODIS, with coefficient of determination (R2) values of more than 0.64. The low error rates and the ability to capture the spatial distribution of droughts, especially in open-land vegetation, highlight the potential of these models to provide an estimation of agricultural drought. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Graphical abstract

16 pages, 8156 KiB  
Article
The Development of Ni-Al Aerogel-Based Catalysts via Supercritical CO2 Drying for Photocatalytic CO2 Methanation
by Daniel Estevez, Haritz Etxeberria and Victoria Laura Barrio
Catalysts 2025, 15(7), 686; https://doi.org/10.3390/catal15070686 - 16 Jul 2025
Viewed by 450
Abstract
The conversion of CO2 into CH4 through the Sabatier reaction is one of the key processes that can reduce CO2 emissions into the atmosphere. This work aims to develop Ni-Al aerogel-based thermo-photocatalysts with large specific surface areas prepared using a [...] Read more.
The conversion of CO2 into CH4 through the Sabatier reaction is one of the key processes that can reduce CO2 emissions into the atmosphere. This work aims to develop Ni-Al aerogel-based thermo-photocatalysts with large specific surface areas prepared using a sol–gel method and subsequent supercritical drying in CO2. Different Al/Ni molar ratios were selected for the development of the catalysts, characterized using ICP-OES, N2 adsorption–desorption isotherms, XRD, H2-TPR, TEM, UV-Vis DRS, and XPS techniques. Thermo-photocatalytic activity tests were performed in a photoreactor with two different light sources (λ = 365 nm, λ = 470 nm) at a temperature range from 300 °C to 450 °C and a pressure of 10 bar. The catalyst with the highest Ni loading (AG 1/3) produced the best catalytic results, reaching CO2 conversion and CH4 selectivity levels of 82% and 100%, respectively, under visible light at 450 °C. In contrast, the catalysts with the lowest nickel loading produced the lowest results, most likely due to their low amounts of active Ni. These results suggest that supercritical drying is an efficient method for developing active thermo-photocatalysts with high Ni dispersion, suitable for Sabatier reactions under mild reaction conditions. Full article
(This article belongs to the Special Issue Advancements in Photocatalysis for Environmental Applications)
Show Figures

Graphical abstract

Back to TopTop