Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (79)

Search Parameters:
Keywords = mid-latitude E region

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 4260 KiB  
Article
Analysis of Spatiotemporal Characteristics of Global TCWV and AI Hybrid Model Prediction
by Longhao Xu, Kebiao Mao, Zhonghua Guo, Jiancheng Shi, Sayed M. Bateni and Zijin Yuan
Hydrology 2025, 12(8), 206; https://doi.org/10.3390/hydrology12080206 - 6 Aug 2025
Abstract
Extreme precipitation events severely impact agriculture, reducing yields and land use efficiency. The spatiotemporal distribution of Total Column Water Vapor (TCWV), the primary gaseous form of water, directly influences sustainable agricultural management. This study, through multi-source data fusion, employs methods including the Mann–Kendall [...] Read more.
Extreme precipitation events severely impact agriculture, reducing yields and land use efficiency. The spatiotemporal distribution of Total Column Water Vapor (TCWV), the primary gaseous form of water, directly influences sustainable agricultural management. This study, through multi-source data fusion, employs methods including the Mann–Kendall test, sliding change-point detection, wavelet transform, pixel-scale trend estimation, and linear regression to analyze the spatiotemporal dynamics of global TCWV from 1959 to 2023 and its impacts on agricultural systems, surpassing the limitations of single-method approaches. Results reveal a global TCWV increase of 0.0168 kg/m2/year from 1959–2023, with a pivotal shift in 2002 amplifying changes, notably in tropical regions (e.g., Amazon, Congo Basins, Southeast Asia) where cumulative increases exceeded 2 kg/m2 since 2000, while mid-to-high latitudes remained stable and polar regions showed minimal content. These dynamics escalate weather risks, impacting sustainable agricultural management with irrigation and crop adaptation. To enhance prediction accuracy, we propose a novel hybrid model combining wavelet transform with LSTM, TCN, and GRU deep learning models, substantially improving multidimensional feature extraction and nonstationary trend capture. Comparative analysis shows that WT-TCN performs the best (MAE = 0.170, R2 = 0.953), demonstrating its potential for addressing climate change uncertainties. These findings provide valuable applications for precision agriculture, sustainable water resource management, and disaster early warning. Full article
24 pages, 7997 KiB  
Article
Comparative Analysis of Habitat Expansion Mechanisms for Four Invasive Amaranthaceae Plants Under Current and Future Climates Using MaxEnt
by Mao Lin, Xingzhuang Ye, Zixin Zhao, Shipin Chen and Bao Liu
Plants 2025, 14(15), 2363; https://doi.org/10.3390/plants14152363 - 1 Aug 2025
Viewed by 258
Abstract
As China’s first systematic assessment of high-risk Amaranthaceae invaders, this study addresses a critical knowledge gap identified in the National Invasive Species Inventory, in which four invasive Amaranthaceae species (Dysphania ambrosioides, Celosia argentea, Amaranthus palmeri, and Amaranthus spinosus) [...] Read more.
As China’s first systematic assessment of high-risk Amaranthaceae invaders, this study addresses a critical knowledge gap identified in the National Invasive Species Inventory, in which four invasive Amaranthaceae species (Dysphania ambrosioides, Celosia argentea, Amaranthus palmeri, and Amaranthus spinosus) are prioritized due to CNY 2.6 billion annual ecosystem damages in China. By coupling multi-species comparative analysis with a parameter-optimized Maximum Entropy (MaxEnt) model integrating climate, soil, and topographical variables in China under Shared Socioeconomic Pathways (SSP) 126/245/585 scenarios, we reveal divergent expansion mechanisms (e.g., 247 km faster northward shift in A. palmeri than D. ambrosioides) that redefine invasion corridors in the North China Plain. Under current conditions, the suitable habitats of these species span from 92° E to 129° E and 18° N to 49° N, with high-risk zones concentrated in central and southern China, including the Yunnan–Guizhou–Sichuan region and the North China Plain. Temperature variables (Bio: Bioclimatic Variables; Bio6, Bio11) were the primary contributors based on permutation importance (e.g., Bio11 explained 56.4% for C. argentea), while altitude (e.g., 27.3% for A. palmeri) and UV-B (e.g., 16.2% for A. palmeri) exerted lower influence. Model validation confirmed high accuracy (mean area under the curve (AUC) > 0.86 and true skill statistic (TSS) > 0.6). By the 2090s, all species showed net habitat expansion overall, although D. ambrosioides exhibited net total contractions during mid-century under the SSP126/245 scenarios, C. argentea experienced reduced total suitability during the 2050s–2070s despite high-suitability growth, and A. palmeri and A. spinosus expanded significantly in both total and highly suitable habitat. All species shifted their distribution centroids northward, aligning with warming trends. Overall, these findings highlight the critical role of temperature in driving range dynamics and underscore the need for latitude-specific monitoring strategies to mitigate invasion risks, providing a scientific basis for adaptive management under global climate change. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

24 pages, 3832 KiB  
Article
Temperature and Precipitation Extremes Under SSP Emission Scenarios with GISS-E2.1 Model
by Larissa S. Nazarenko, Nickolai L. Tausnev and Maxwell T. Elling
Atmosphere 2025, 16(8), 920; https://doi.org/10.3390/atmos16080920 - 30 Jul 2025
Viewed by 267
Abstract
Atmospheric warming results in increase in temperatures for the mean, the coldest, and the hottest day of the year, season, or month. Global warming leads to a large increase in the atmospheric water vapor content and to changes in the hydrological cycle, which [...] Read more.
Atmospheric warming results in increase in temperatures for the mean, the coldest, and the hottest day of the year, season, or month. Global warming leads to a large increase in the atmospheric water vapor content and to changes in the hydrological cycle, which include an intensification of precipitation extremes. Using the GISS-E2.1 climate model, we present the future changes in the coldest and hottest daily temperatures as well as in extreme precipitation indices (under four main Shared Socioeconomic Pathways (SSPs)). The increase in the wet-day precipitation ranges between 6% and 15% per 1 °C global surface temperature warming. Scaling of the 95th percentile versus the total precipitation showed that the sensitivity for the extreme precipitation to the warming is about 10 times stronger than that for the mean total precipitation. For six precipitation extreme indices (Total Precipitation, R95p, RX5day, R10mm, SDII, and CDD), the histograms of probability density functions become flatter, with reduced peaks and increased spread for the global mean compared to the historical period of 1850–2014. The mean values shift to the right end (toward larger precipitation and intensity). The higher the GHG emission of the SSP scenario, the more significant the increase in the index change. We found an intensification of precipitation over the globe but large uncertainties remained regionally and at different scales, especially for extremes. Over land, there is a strong increase in precipitation for the wettest day in all seasons over the mid and high latitudes of the Northern Hemisphere. There is an enlargement of the drying patterns in the subtropics including over large regions around Mediterranean, southern Africa, and western Eurasia. For the continental averages, the reduction in total precipitation was found for South America, Europe, Africa, and Australia, and there is an increase in total precipitation over North America, Asia, and the continental Russian Arctic. Over the continental Russian Arctic, there is an increase in all precipitation extremes and a consistent decrease in CDD for all SSP scenarios, with the maximum increase of more than 90% for R95p and R10 mm observed under SSP5–8.5. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

20 pages, 10346 KiB  
Article
Investigating Source Mechanisms for Nonlinear Displacement of GNSS Using Environmental Loads
by Jian Wang, Wenlan Fan, Weiping Jiang, Zhao Li, Tianjun Liu and Qusen Chen
Remote Sens. 2025, 17(6), 989; https://doi.org/10.3390/rs17060989 - 12 Mar 2025
Cited by 1 | Viewed by 540
Abstract
Global surface pressure, terrestrial water storage models, and seabed pressure grids provide valuable support for studying the mechanisms of the nonlinear motion behind GNSS stations. These data allow for the precise identification and analysis of displacement effects caused by environmental loads. This study [...] Read more.
Global surface pressure, terrestrial water storage models, and seabed pressure grids provide valuable support for studying the mechanisms of the nonlinear motion behind GNSS stations. These data allow for the precise identification and analysis of displacement effects caused by environmental loads. This study analyzes GNSS coordinate time series data from 186 ITRF reference stations worldwide over a 10-year period, thoroughly examining the magnitude, spatial distribution, and impact of hydrological, atmospheric, and non-tidal oceanic loading on nonlinear motion. The results indicate that the atmospheric loading effects had a magnitude of approximately ±5 mm in the up (U) direction and ±1 mm in the east (E) and north (N) directions. Moreover, the impact of atmospheric loading on station displacements was more pronounced in high-latitude regions compared with mid- and low-latitude regions. Secondly, the hydrological loading showed a magnitude of approximately ±5 mm in the U direction and ±0.8 mm in the E and N directions, with inland areas causing larger displacements than coastal regions. Furthermore, the non-tidal oceanic loading induced displacements with magnitudes of approximately ±0.5 mm in the E and N directions and ±2 mm in the U direction, significantly affecting stations in the nearshore areas more than inland stations. Subsequently, this study analyzes the corrective effects of environmental loads on the coordinate time series. The average correlation coefficients between the E, N, and U directions and the coordinate time series were 0.35, 0.31, and 0.52, respectively. After removing the displacements caused by environmental loads, the root mean square (RMS) values of the coordinate time series decreased by 85.5% in the E direction, 77.4% in the N direction, and 89.8% in the U direction, with average reductions of 6.2%, 4.4%, and 16.7%, respectively. Lastly, it also comprehensively assesses the consistency between environmental loads and coordinate time series from the perspectives of the optimal noise model, velocity and uncertainty, and amplitude and phase. This study demonstrates that the geographic location of a station is closely related to the impact of environmental loads, with a significantly greater effect in the vertical direction than that in the horizontal direction. By correcting for environmental loads, the accuracy of the coordinate time series can be significantly enhanced. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

13 pages, 16029 KiB  
Article
Numerical Simulation of Perkins Instability in the Midlatitude F-Region Ionosphere: The Influence of Background Ionospheric Multi-Factors
by Yi Liu, Ting Lan, Yufeng Zhou, Yunzhou Zhu, Zhiqiang Fan, Yewen Wu, Yuqiang Zhang and Xiang Wang
Atmosphere 2025, 16(2), 221; https://doi.org/10.3390/atmos16020221 - 16 Feb 2025
Viewed by 631
Abstract
A numerical simulation of Perkins instability in the midlatitude F-region ionosphere is developed in this study. The growth of nighttime plasma density perturbation excited by Perkins instability was successfully reproduced. The simulated results show that the ionospheric perturbation structure elongated from northwest (NW) [...] Read more.
A numerical simulation of Perkins instability in the midlatitude F-region ionosphere is developed in this study. The growth of nighttime plasma density perturbation excited by Perkins instability was successfully reproduced. The simulated results show that the ionospheric perturbation structure elongated from northwest (NW) to southeast (SE) was generated from initial random seeding by applying a very large southeastward neutral wind (200 m/s). The domain wave vector direction agreed with the linear Perkins theory. Our simulated results were consistent with the previous observations and simulations. To investigate the influence of background ionospheric multi-factors on the generation of nighttime medium-scale traveling ionospheric disturbance (MSTID), we simulated the evolution process of ionospheric perturbations under initial background ionospheric conditions. The simulated results indicate the importance of neutral scale height on the development of nighttime MSTID and suggest that a smaller neutral scale height would amplify the amplitude of ionospheric perturbations. The influences of gravity wave (GW) activity and polarized electric field seeding from plasma instability in the E region are also discussed in this study. We conclude that the additional seeding processes play a major role in the accelerated Perkins instability and amplify ionospheric perturbations. The electrodynamic coupling process has a greatly significant effect on the growth rate of Perkins instability compared to GW activity. Full article
(This article belongs to the Section Planetary Atmospheres)
Show Figures

Figure 1

27 pages, 7003 KiB  
Article
Resonant Forcing by Solar Declination of Rossby Waves at the Tropopause and Implications in Extreme Precipitation Events and Heat Waves—Part 2: Case Studies, Projections in the Context of Climate Change
by Jean-Louis Pinault
Atmosphere 2024, 15(10), 1226; https://doi.org/10.3390/atmos15101226 - 14 Oct 2024
Cited by 1 | Viewed by 1138
Abstract
Based on the properties of Rossby waves at the tropopause resonantly forced by solar declination in harmonic modes, which was the subject of a first article, case studies of heatwaves and extreme precipitation events are presented. They clearly demonstrate that extreme events only [...] Read more.
Based on the properties of Rossby waves at the tropopause resonantly forced by solar declination in harmonic modes, which was the subject of a first article, case studies of heatwaves and extreme precipitation events are presented. They clearly demonstrate that extreme events only form under specific patterns of the amplitude of the speed of modulated airflows of Rossby waves at the tropopause, in particular period ranges. This remains true even if extreme events appear as compound events where chaos and timing are crucial. Extreme events are favored when modulated cold and warm airflows result in a dual cyclone-anticyclone system, i.e., the association of two joint vortices of opposite signs. They reverse over a period of the dominant harmonic mode in spatial and temporal coherence with the modulated airflow speed pattern. This key role could result from a transfer of humid/dry air between the two vortices during the inversion of the dual system. Finally, focusing on the two period ranges 17.1–34.2 and 8.56–17.1 days corresponding to 1/16- and 1/32-year period harmonic modes, projections of the amplitude of wind speed at 250 mb, geopotential height at 500 mb, ground air temperature, and precipitation rate are performed by extrapolating their amplitude observed from January 1979 to March 2024. Projected amplitudes are regionalized on a global scale for warmest and coldest half-years, referring to extratropical latitudes. Causal relationships are established between the projected amplitudes of modulated airflow speed and those of ground air temperature and precipitation rate, whether they increase or decrease. The increase in the amplitude of modulated airflow speed of polar vortices induces their latitudinal extension. This produces a tightening of Rossby waves embedded in the polar and subtropical jet streams. In the context of climate change, this has the effect of increasing the efficiency of the resonant forcing of Rossby waves from the solar declination, the optimum of which is located at mid-latitudes. Hence the increased or decreased vulnerability to heatwaves or extreme precipitation events of some regions. Europe and western Asia are particularly affected, which is due to increased activity of the Arctic polar vortex between longitudes 20° W and 40° E. This is likely a consequence of melting ice and changing albedo, which appears to amplify the amplitude of variation in the period range 17.1–34.2 days of poleward circulation at the tropopause of the Arctic polar cell. Full article
Show Figures

Figure 1

23 pages, 6044 KiB  
Article
Changes in Magnitude and Shifts in Timing of the Latvian River Annual Flood Peaks
by Elga Apsīte, Didzis Elferts, Jānis Lapinskis, Agrita Briede and Līga Klints
Atmosphere 2024, 15(9), 1139; https://doi.org/10.3390/atmos15091139 - 20 Sep 2024
Cited by 2 | Viewed by 1630
Abstract
Climate change is expected to significantly impact temperature and precipitation, as well as snow accumulations and melt in mid-latitudes, including in the Baltic region, ultimately affecting the quantity and seasonal distribution of streamflow. This study aims to investigate the changes in the magnitude [...] Read more.
Climate change is expected to significantly impact temperature and precipitation, as well as snow accumulations and melt in mid-latitudes, including in the Baltic region, ultimately affecting the quantity and seasonal distribution of streamflow. This study aims to investigate the changes in the magnitude and timing of annual maximum discharge for 30 hydrological monitoring stations across Latvia from 1950/51 to 2021/22. Circular statistics and linear mixed effects models were applied to identify the strength of seasonality and timing. Trend analysis of the magnitude and timing of flood peaks were performed by using the Theil–Sen method and Mann–Kendall test. We analyzed regional significance of trends across different hydrological regions and country using the Walker test. Results indicate strong seasonality in annual flood peaks in catchments, with a single peak occurring in spring in the study sub-period of 1950/51–1986/87. Flood seasonality has changed over recent decades (i.e., 1987/88–2021/22) and is seen as a decrease in spring maximum discharge and increase in winter flood peaks. Alterations in annual flood occurrence also point towards a shift in flow regime from snowmelt dominated to mixed snow–rainfall dominated, with consistent changes towards the earlier timing of the flood peak, with a more or less pronounced gradation from west to east. Analysis shows that a significant trend of decrease in the magnitude and timing of annual maximum discharge was detected. Full article
(This article belongs to the Special Issue The Hydrologic Cycle in a Changing Climate)
Show Figures

Figure 1

24 pages, 2008 KiB  
Review
A Review on the Arctic–Midlatitudes Connection: Interactive Impacts, Physical Mechanisms, and Nonstationary
by Shuoyi Ding, Xiaodan Chen, Xuanwen Zhang, Xiang Zhang and Peiqiang Xu
Atmosphere 2024, 15(9), 1115; https://doi.org/10.3390/atmos15091115 - 13 Sep 2024
Cited by 2 | Viewed by 2555
Abstract
In light of the rapid Arctic warming and continuous reduction in Arctic Sea ice, the complex two-way Arctic–midlatitudes connection has become a focal point in recent climate research. In this paper, we review the current understanding of the interactive influence between midlatitude atmospheric [...] Read more.
In light of the rapid Arctic warming and continuous reduction in Arctic Sea ice, the complex two-way Arctic–midlatitudes connection has become a focal point in recent climate research. In this paper, we review the current understanding of the interactive influence between midlatitude atmospheric variability and Arctic Sea ice or thermal conditions on interannual timescales. As sea ice diminishes, in contrast to the Arctic warming (cooling) in boreal winter (summer), Eurasia and North America have experienced anomalously cold (warm) conditions and record snowfall (rainfall), forming an opposite oscillation between the Arctic and midlatitudes. Both statistical analyses and modeling studies have demonstrated the significant impacts of autumn–winter Arctic variations on winter midlatitude cooling, cold surges, and snowfall, as well as the potential contributions of spring–summer Arctic variations to midlatitude warming, heatwaves and rainfall, particularly focusing on the role of distinct regional sea ice. The possible physical processes can be categorized into tropospheric and stratospheric pathways, with the former encompassing the swirling jet stream, horizontally propagated Rossby waves, and transient eddy–mean flow interaction, and the latter manifested as anomalous vertical propagation of quasi-stationary planetary waves and associated downward control of stratospheric anomalies. In turn, atmospheric prevailing patterns in the midlatitudes also contribute to Arctic Sea ice or thermal condition anomalies by meridional energy transport. The Arctic–midlatitudes connection fluctuates over time and is influenced by multiple factors (e.g., continuous melting of climatological sea ice, different locations and magnitudes of sea ice anomalies, internal variability, and other external forcings), undoubtedly increasing the difficulty of mechanism studies and the uncertainty surrounding predictions of midlatitude weather and climate. In conclusion, we provide a succinct summary and offer suggestions for future research. Full article
(This article belongs to the Special Issue Arctic Atmosphere–Sea Ice Interaction and Impacts)
Show Figures

Figure 1

16 pages, 20239 KiB  
Article
Geoclimatic Distribution of Satellite-Observed Salinity Bias Classified by Machine Learning Approach
by Yating Ouyang, Yuhong Zhang, Ming Feng, Fabio Boschetti and Yan Du
Remote Sens. 2024, 16(16), 3084; https://doi.org/10.3390/rs16163084 - 21 Aug 2024
Viewed by 1535
Abstract
Sea surface salinity (SSS) observed by satellite has been widely used since the successful launch of the first salinity satellite in 2009. However, compared with other oceanographic satellite products (e.g., sea surface temperature, SST) that became operational in the 1980s, the SSS product [...] Read more.
Sea surface salinity (SSS) observed by satellite has been widely used since the successful launch of the first salinity satellite in 2009. However, compared with other oceanographic satellite products (e.g., sea surface temperature, SST) that became operational in the 1980s, the SSS product is less mature and lacks effective validation from the user end. We employed an unsupervised machine learning approach to classify the Level 3 SSS bias from the Soil Moisture Active Passive (SMAP) satellite and its observing environment. The classification model divides the samples into fifteen classes based on four variables: satellite SSS bias, SST, rain rate, and wind speed. SST is one of the most significant factors influencing the classification. In regions with cold SST, satellite SSS has an accuracy of less than 0.2 PSU (Practical Salinity Unit), mainly due to the higher uncertainty in the cold environment. A small number of observations near the seawater freezing point show a significant fresh bias caused by sea ice. A systematic bias of the SMAP SSS product is found in the mid-latitudes: positive bias tends to occur north (south) of 45°N(S) and negative bias is more common in 25°N(S)–45°N(S) bands, likely associated with the SMAP calibration scheme. A significant bias also occurs in regions with strong ocean currents and eddy activities, likely due to spatial mismatch in the highly dynamic background. Notably, satellite SSS and in situ data correlations remain good in similar environments with weaker ocean dynamic activities, implying that satellite salinity data are reliable in dynamically active regions for capturing high-resolution details. The features of the SMAP SSS shown in this work call for careful consideration by the data user community when interpreting biased values. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

1 pages, 125 KiB  
Abstract
Structural Regulation of Infrared Radiation in Butterfly Wing Scales
by Chufei Tang
Proceedings 2024, 107(1), 44; https://doi.org/10.3390/proceedings2024107044 - 15 May 2024
Viewed by 422
Abstract
The diversification of the periodic ultrastructure of wing scales plays a crucial role in regulating the functional properties of butterfly wings, contributing to their ecological adaptation. This study addresses the structural regulation of mid-infrared radiation (MIR) in wing scales, a property associated with [...] Read more.
The diversification of the periodic ultrastructure of wing scales plays a crucial role in regulating the functional properties of butterfly wings, contributing to their ecological adaptation. This study addresses the structural regulation of mid-infrared radiation (MIR) in wing scales, a property associated with cooling in thermoregulation and pheromone release during courtship. Using Danainae (Papilionoidea: Nymphalidae) as the model group, the study confirms the high morphological diversity of butterfly wing scales in a single individual with quantitative observations under scanning and transmission electron microscopy. It was found that this diversity shapes the heterogeneity of the wing emissivity through heating experiments, virtual simulations, and correlation tests. Summarizing the effects of each component on emissivity, it was demonstrated that the increase in scale emissivity is due to the increase in its internal surface area and thickness. Additionally, it was demonstrated that, as the structural parameter positively correlates with emissivity increases, the area of scent patches, a high emissivity region where males emit pheromones, decreases significantly, whereas the size of scales on the scent patch increases significantly. A further study of 99 butterfly species from several families shows that as the range of butterfly species moves from low to high latitudes, which generally corresponds to a decrease in habitat temperature, the efficiency of infrared radiation in the wing scales decreases, i.e., the wing radiates less efficiently for cooling and less heat is dissipated. This phenomenon is also shaped by variations in the overall structure of the scales. The study provides a reference for understanding functional adaptation in butterflies. Full article
(This article belongs to the Proceedings of The 1st International Online Conference on Biomimetics)
16 pages, 3452 KiB  
Article
Impact of Preseason Climate Factors on Vegetation Photosynthetic Phenology in Mid–High Latitudes of the Northern Hemisphere
by Kunlun Xiang, Qian Guo, Beibei Zhang, Jiaming Wang, Ning Jin, Zicheng Wang, Jiahui Liu, Chenggong Wang, Ziqiang Du, Liang Wang and Jie Zhao
Plants 2024, 13(9), 1254; https://doi.org/10.3390/plants13091254 - 30 Apr 2024
Cited by 5 | Viewed by 1992
Abstract
During the period preceding the vegetation growing season (GS), temperature emerges as the pivotal factor determining phenology in northern terrestrial ecosystems. Despite extensive research on the impact of daily mean temperature (Tmean) during the preseason period, the influence of diurnal temperature [...] Read more.
During the period preceding the vegetation growing season (GS), temperature emerges as the pivotal factor determining phenology in northern terrestrial ecosystems. Despite extensive research on the impact of daily mean temperature (Tmean) during the preseason period, the influence of diurnal temperature range (DTR) on vegetation photosynthetic phenology (i.e., the impact of the plant photosynthetic cycle on seasonal time scale) has largely been neglected. Using a long-term vegetation photosynthetic phenology dataset and historical climate data, we examine vegetation photosynthetic phenology dynamics and responses to climate change across the mid–high latitudes of the Northern Hemisphere from 2001 to 2020. Our data reveal an advancing trend in the start of the GS (SOS) by −0.15 days per year (days yr−1), affecting 72.1% of the studied area. This is particularly pronounced in western Canada, Alaska, eastern Asia, and latitudes north of 60°N. Conversely, the end of the GS (EOS) displays a delaying trend of 0.17 days yr−1, impacting 62.4% of the studied area, especially northern North America and northern Eurasia. The collective influence of an earlier SOS and a delayed EOS has resulted in the notably prolonged length of the GS (LOS) by 0.32 days yr−1 in the last two decades, affecting 70.9% of the studied area, with Eurasia and western North America being particularly noteworthy. Partial correlation coefficients of the SOS with preseason Tmean, DTR, and accumulated precipitation exhibited negative values in 98.4%, 93.0%, and 39.2% of the study area, respectively. However, there were distinct regional variations in the influence of climate factors on the EOS. The partial correlation coefficients of the EOS with preseason Tmean, DTR, and precipitation were positive in 58.6%, 50.1%, and 36.3% of the region, respectively. Our findings unveil the intricate mechanisms influencing vegetation photosynthetic phenology, holding crucial significance in understanding the dynamics of carbon sequestration within terrestrial ecosystems amidst climate change. Full article
(This article belongs to the Special Issue Responses of Vegetation to Global Climate Change)
Show Figures

Figure 1

15 pages, 3819 KiB  
Technical Note
Statistical Characteristics of Spread F in the Northeastern Edge of the Qinghai-Tibet Plateau during 2017–2022
by Zhichao Liu, Chunhua Jiang, Tongxin Liu, Lehui Wei, Guobin Yang, Hua Shen, Wengeng Huang and Zhengyu Zhao
Remote Sens. 2024, 16(7), 1142; https://doi.org/10.3390/rs16071142 - 25 Mar 2024
Viewed by 1064
Abstract
Spread F (SF) in the ionosphere can be observed frequently in mid-latitude regions. It is suggested that atmospheric gravity waves play a significant role for the seeding of mid-latitude SF. Previous research suggested that the source of travelling ionospheric disturbances (TIDs) over China [...] Read more.
Spread F (SF) in the ionosphere can be observed frequently in mid-latitude regions. It is suggested that atmospheric gravity waves play a significant role for the seeding of mid-latitude SF. Previous research suggested that the source of travelling ionospheric disturbances (TIDs) over China is in the southeastern and northeastern edge of the Qinghai-Tibet Plateau, however, until now there have been no ground-based observations of the ionosphere in this region. Recently, an advanced digital ionosonde was installed at Zhangye station (39.2°N, 100.54°E, Dip Lat 29.6°N) in the northeastern edge of the Qinghai-Tibet Plateau. It is an opportunity to verify the effect of gravity waves on the formation of mid-latitude SF by comparing it with observations in other regions of the Chinese sector. In this study, statistical analysis of SF recorded at Zhangye station during 2017–2022 was carried out. Results show that diurnal, seasonal and solar cycle characteristics of the occurrence rate of SF are similar with previous studies. At Zhangye station, the maximum occurrence rate of SF is during the post-midnight period in summer and winter. The occurrence rate of SF events have a negative relationship with solar activity. There is no obvious relationship between the occurrence rate of SF and geomagnetic activity. Comparing observations of other stations in the mid-latitude region, we found that the occurrence rates of SF (the annual maximum rates are from 33.83% to 53.29%) are much higher at Zhangye station. Further studies show that ionospheric disturbances can be observed frequently at Zhangye station, especially in autumn and winter. Gravity waves/TIDs in the northeast of the Qinghai-Tibet Plateau are suggested to explain the abnormal higher occurrence rate of SF at Zhangye station. Full article
Show Figures

Graphical abstract

18 pages, 4001 KiB  
Article
Time-Transgressive Onset of Holocene Climate Optimum in Arid Central Asia and Its Association with Cultural Exchanges
by Zhen Wang, Xiaokang Liu, Haichao Xie, Shengqian Chen, Jianhui Chen, Haipeng Wang, Meihong Ma and Fahu Chen
Land 2024, 13(3), 356; https://doi.org/10.3390/land13030356 - 11 Mar 2024
Cited by 4 | Viewed by 2267
Abstract
Arid central Asia (ACA) is dominated by mid-latitude westerlies and characterized by a climate optimum (a relatively humid climate that has supported the development of human culture) in clear contrast with the climate of monsoonal Asia during the Holocene. Significantly, whether the onset [...] Read more.
Arid central Asia (ACA) is dominated by mid-latitude westerlies and characterized by a climate optimum (a relatively humid climate that has supported the development of human culture) in clear contrast with the climate of monsoonal Asia during the Holocene. Significantly, whether the onset of the Holocene Climate Optimum (HCO) had an impact on cultural exchanges along the ancient Silk Road remains unknown. In this study, we compared the onset of the HCO in different parts of the vast ACA region by referring to a variety of previously established paleo-moisture/precipitation records. Intriguingly, we found significant differences in the onset of the HCO between the western and eastern parts of ACA. The onset of the HCO in the western part of ACA (i.e., to the west of the Tianshan Mountains) mainly occurred at ~8 ka BP (1 ka = 1000 cal yr BP). In contrast, the onset of the HCO occurred at ~6 ka in northern Xinjiang and even as late as ~5 ka in southern Xinjiang; this is a delay of 2–3 thousand years compared with the western part of ACA. These results likely indicate that the onset of the HCO occurred in a time-transgressive manner in ACA, namely, ‘early in the west but late in the east’. On the other hand, we found that the onset of the HCO in the western part of ACA may have resulted in the inception of wheat planting and the development of agricultural civilization and that the onset of the HCO in northern Xinjiang may have prompted the southward migration of Afanasievo culture after ~5 ka. Additionally, the initiation of the HCO in southern Xinjiang could provide an environmental basis for the spread and planting of wheat and millet in this area after ~4.5 ka. We speculate that the spatial differences in the onset of the HCO in ACA are mainly related to temporal changes in the intensity and position of the mid-latitude westerly jet. Although the increase in insolation and reduction in the global ice volume would have led to an increase in the water vapor feeding the western part of ACA around 8 ka, the climate in the eastern part of ACA (namely, the Xinjiang region) could have only become humid after 6 ka when the westerlies were intensified and became positioned in the south. Moreover, the delayed HCO in southern Xinjiang probably benefited from the stronger westerly winds that appeared around 5 ka, which could have overcome the influence of the tall topography of the Tianshan Mountains. Therefore, in addition to external forcing (i.e., insolation), the ocean–atmospheric teleconnection, the regional topography, and their connection to the climate system are important in determining the spatial differences in the time-transgressive onset of the HCO in ACA. Our findings contribute to understanding the spatio-temporal characteristics of the hydroclimate in regions with complex eco-environmental systems and a diverse history of human activity. Full article
Show Figures

Figure 1

14 pages, 9408 KiB  
Article
Aircraft Measurements of Tropospheric CO2 in the North China Plain in Autumn and Winter of 2018–2019
by Hui Zhang, Qiang Yang, Hongjie Yuan, Dongliang Ma, Zhilei Liu, Jianguang Jia, Guan Wang, Nana Zhang, Hailiang Su, Youyu Shi, Yongjing Ma, Lindong Dai, Baojiang Li and Xiao Huang
Atmosphere 2023, 14(12), 1835; https://doi.org/10.3390/atmos14121835 - 18 Dec 2023
Cited by 2 | Viewed by 1544
Abstract
Quantifying the level of CO2, the main greenhouse gas (GHG), is essential for research on regional and global climate change, especially in the densely populated North China Plain with its severe CO2 emissions. In this study, 12 airborne flights were [...] Read more.
Quantifying the level of CO2, the main greenhouse gas (GHG), is essential for research on regional and global climate change, especially in the densely populated North China Plain with its severe CO2 emissions. In this study, 12 airborne flights were managed and conducted during the autumn–winter period of 2018–2019 in downtown Shijiazhuang and its surrounding areas, which are representative of the typical urban conditions in the North China Plain, to explore the spatial and temporal distributions of CO2. The results showed that the measured columnar averages of CO2 ranged between 399.9 ± 1.5 and 443.8 ± 31.8 ppm; the average of the 12 flights was 412.1 ppm, slightly higher than the globally averaged 410.5 ± 0.20 ppm and the 2 background concentrations of 411.6 ± 2.1 ppm and 411.4 ± 0.2 ppm in low-latitude Mauna Loa and middle-latitude Waliguan in 2019, indicating the potential influences of anthropogenic activities. The typical stratification of the planetary boundary layer (PBLH), residual layer (RL), and elevated inversion layer (IL) was crucial in constraining the high CO2 concentrations. This illustrated that the warming effect of CO2 within the PBLH may also have some influences on regulating the thermal structure of the low troposphere. Based on a backward trajectory analysis, it was evidenced that there were three different categories of air masses for autumn and one category for winter. Both trajectories in the PBL, i.e., below 1000 m, from the local and southern areas with tremendous anthropogenic emissions (autumn) and from the western regions (winter) led to comparatively high levels of CO2, but the mid-tropospheric CO2 concentrations above 1000 m were commonly homogeneously distributed, with higher levels appearing in winter because the concentration in the free troposphere followed the global seasonal pattern, with a summer minimum and winter maximum as a result of the seasonality of the net CO2 exchange and the balance between photosynthesis and respiration. These results provide an in-depth understanding of the vertical concentrations of tropospheric CO2 in the North China Plain, which will offer scientific references for the evaluation of carbon accounting and carbon emissions. Full article
Show Figures

Figure 1

13 pages, 2259 KiB  
Article
Oscillations of GW Activities in the MLT Region over Mid-Low-Latitude Area, Kunming Station (25.6° N, 103.8° E)
by Na Li, Jinsong Chen, Jianyuan Wang, Lei Zhao, Zonghua Ding and Guojin He
Atmosphere 2023, 14(12), 1810; https://doi.org/10.3390/atmos14121810 - 11 Dec 2023
Cited by 1 | Viewed by 1443
Abstract
Gravity wave (GW) activities play a prominent role in the complex coupling process of wave–wave and wave–background circulation around mid-low-latitude and equatorial areas. The wavelengths are wide, from about 10 m to 100 km, with a period from minutes to hours. However, the [...] Read more.
Gravity wave (GW) activities play a prominent role in the complex coupling process of wave–wave and wave–background circulation around mid-low-latitude and equatorial areas. The wavelengths are wide, from about 10 m to 100 km, with a period from minutes to hours. However, the oscillations of GW activities are apparently different between the period bands of 0.1 to 1 h (HF) and 1 to 5 h (LF). To further understand the characteristics of GW activities, the neutral winds during 2008–2009 with a resolution of 3 min obtained from a medium-frequency (MF) radar in Kunming (25.6° N, 103.8° E) were analyzed. Using two numerical filters, the HF and LF GWs were estimated. Interestingly, the power spectral density grows larger as the frequency increases. It linearly falls with decreasing frequency when the period is less than 2 h. The seasonal variations in both HF and LF GWs are strongly demonstrated in August–September, November, and February–March with maximum meridional variances of 1100 m2 s−2 and 500 m2 s−2 and maximum zonal variances of 800 m2 s−2 and 350 m2 s−2 in, respectively. The turbulent velocity was also calculated and shows similar oscillations with GW activities. Furthermore, the GW propagation direction exhibits strong seasonal variations, which may be dependent on the location of the motivating source and background wind. Full article
Show Figures

Figure 1

Back to TopTop