Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (93)

Search Parameters:
Keywords = microwave desorption

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4751 KB  
Article
Electrocatalytic Oxidation for Efficient Toluene Removal with a Catalytic Cu-MnOx/GF Electrode in a Solid-State Electrocatalytic Device
by Haozhen Liu, Mingxin Liu, Xiqiang Zhao, Ping Zhou, Zhanlong Song, Wenlong Wang, Jing Sun and Yanpeng Mao
Catalysts 2025, 15(8), 749; https://doi.org/10.3390/catal15080749 - 5 Aug 2025
Viewed by 583
Abstract
A series of Cu-MnOx/GF catalytic electrodes, with graphite felt (GF) pretreated via microwave modification as the catalyst carrier, were prepared under various hydrothermal conditions and characterized using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), X-ray photoelectron spectroscopy (XPS), N2 adsorption–desorption, [...] Read more.
A series of Cu-MnOx/GF catalytic electrodes, with graphite felt (GF) pretreated via microwave modification as the catalyst carrier, were prepared under various hydrothermal conditions and characterized using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), X-ray photoelectron spectroscopy (XPS), N2 adsorption–desorption, and Raman spectroscopy. The catalytic oxidation activity of catalytic Cu-MnOx/GF electrodes toward toluene was evaluated in an all-solid-state electrocatalytic device under mild operating conditions. The evaluation results demonstrated that the microwave-modified catalytic electrode exhibited high electrocatalytic activity toward toluene oxidation, with Cu-MnOx/700W-GF exhibiting significantly higher catalytic activity, indicating that an increase in catalyst loading capacity can promote the removal of toluene. Only CO2 and CO were detected, with no other intermediates observed in the reaction process. Moreover, the catalytic effect was significantly affected by the relative humidity. The catalytic oxidation of toluene can be fully realized under a certain humidity, indicating that the conversion of H2O to strongly oxidizing ·OH on the catalytic electrode is a key step in this reaction. Full article
(This article belongs to the Special Issue Catalytic Removal of Volatile Organic Compounds (VOCs))
Show Figures

Figure 1

33 pages, 1666 KB  
Review
Synthesis, Characterization, and Application of Magnetic Zeolite Nanocomposites: A Review of Current Research and Future Applications
by Sabina Vohl, Irena Ban, Janja Stergar and Mojca Slemnik
Nanomaterials 2025, 15(12), 921; https://doi.org/10.3390/nano15120921 - 13 Jun 2025
Viewed by 1898
Abstract
Magnetic zeolite nanocomposites (NCs) have emerged as a promising class of hybrid materials that combine the high surface area, porosity, and ion exchange capacity of zeolites with the magnetic properties of nanoparticles (NPs), particularly iron oxide-based nanomaterials. This review provides a comprehensive overview [...] Read more.
Magnetic zeolite nanocomposites (NCs) have emerged as a promising class of hybrid materials that combine the high surface area, porosity, and ion exchange capacity of zeolites with the magnetic properties of nanoparticles (NPs), particularly iron oxide-based nanomaterials. This review provides a comprehensive overview of the synthesis, characterization, and diverse applications of magnetic zeolite NCs. We begin by introducing the fundamental properties of zeolites and magnetic nanoparticles (MNPs), highlighting their synergistic integration into multifunctional composites. The structural features of various zeolite frameworks and their influence on composite performance are discussed, along with different interaction modes between MNPs and zeolite matrices. The evolution of research on magnetic zeolite NCs is traced chronologically from its early stages in the 1990s to current advancements. Synthesis methods such as co-precipitation, sol–gel, hydrothermal, microwave-assisted, and sonochemical approaches are systematically compared, emphasizing their advantages and limitations. Key characterization techniques—including X-Ray Powder Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning and Transmission Electron Microscopy (SEM, TEM), Thermogravimetric Analysis (TGA), Nitrogen Adsorption/Desorption (BET analysis), Vibrating Sample Magnetometry (VSM), Zeta potential analysis, Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), and X-Ray Photoelectron Spectroscopy (XPS)—are described, with attention to the specific insights they provide into the physicochemical, magnetic, and structural properties of the NCs. Finally, the review explores current and potential applications of these materials in environmental and biomedical fields, focusing on adsorption, catalysis, magnetic resonance imaging (MRI), drug delivery, ion exchange, and polymer modification. This article aims to provide a foundation for future research directions and inspire innovative applications of magnetic zeolite NCs. Full article
Show Figures

Figure 1

20 pages, 6335 KB  
Article
Electroplating Composite Coatings of Nickel with Dispersed WO3 and MoO3 on Al Substrate to Increase Wear Resistance
by Petr Osipov, Roza Shayakhmetova, Danatbek Murzalinov, Azamat Sagyndykov, Ainur Kali, Anar Mukhametzhanova, Galymzhan Maldybayev and Konstantin Mit
Materials 2025, 18(12), 2781; https://doi.org/10.3390/ma18122781 - 13 Jun 2025
Viewed by 715
Abstract
Investigations of the synthesis of multicomponent coatings and their subsequent application to metal substrates to increase the wear resistance of materials is relevant for industry. Nickel compounds obtained from oxidized magnesia-iron nickel ores with a desorption rate of more than 94% were used [...] Read more.
Investigations of the synthesis of multicomponent coatings and their subsequent application to metal substrates to increase the wear resistance of materials is relevant for industry. Nickel compounds obtained from oxidized magnesia-iron nickel ores with a desorption rate of more than 94% were used to create Ni-MoO3-WO3 electroplating. Such composite samples formed from an aqueous alcohol solution reduced the content of sodium and ammonium chlorides. The annealing and dehydration of samples at a temperature of 725 °C in an air atmosphere made it possible to achieve the highest level of crystallinity. In this case, an isomorphic substitution of W atoms by Mo occurs, which is confirmed by electron paramagnetic resonance (EPR) spectroscopy studies. The invariance of the shape of the EPR spectrum with a sequential increase in microwave radiation power revealed the stability of the bonds between the particles. The surface morphology of Ni-MoO3-WO3 films deposited on an Al substrate is smooth and has low roughness. In this case, an increased degree of wear resistance has been achieved. Thus, a recipe for the formation of an electroplating with stable bonds between the components and increased wear resistance was obtained. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Graphical abstract

24 pages, 3339 KB  
Article
Mesostructured Silica–Zirconia–Tungstophosphoric Acid Composites as Catalyst in Calcium Channel Blocker Nifedipine Synthesis
by Edna X. Aguilera, Ángel G. Sathicq, Alexis Sosa, Marcelo C. Murguía, José J. Martínez, Luis R. Pizzio and Gustavo P. Romanelli
Catalysts 2025, 15(6), 537; https://doi.org/10.3390/catal15060537 - 28 May 2025
Viewed by 817
Abstract
This work studies the effect of mesostructured silica–zirconia–tungstophosphoric acid (SiO2-ZrO2-TPA) composites used as catalysts in the synthesis of nifedipine by the Hantzsch methodology. The selectivity for nifedipine is determined, along with that of secondary products that may form depending [...] Read more.
This work studies the effect of mesostructured silica–zirconia–tungstophosphoric acid (SiO2-ZrO2-TPA) composites used as catalysts in the synthesis of nifedipine by the Hantzsch methodology. The selectivity for nifedipine is determined, along with that of secondary products that may form depending on the reaction conditions. The materials were synthesized via the sol–gel method and characterized by N2 adsorption–desorption isotherms, infrared spectroscopy (FT-IR), 31P solid-state nuclear magnetic resonance (NMR-MAS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), X-ray photoelectron spectra (XPS), and potentiometric titration. The characterization results from the XPS spectra showed that as the Si/Zr ratio drops, the Si-O-Si signal size decreases, while the Zr-O signal size increases. Characterization by titration indicated that an increase in the total acidity of the material, resulting from support modification with tungstophosphoric acid (H3PW12O40, TPA), enhances the reaction yield. The catalytic activity in the solvent-free Hantzsch reaction was evaluated under thermal heating and microwave irradiation. The experiments conducted at 80 °C achieved a maximum yield of 57% after 4 h of reaction using the Si20Zr80TPA30 catalyst (50 mg), while by microwave heating, the yield significantly improved, reaching 77% in only 1 h of reaction. This catalyst exhibited stability and reusability without significant loss of activity up to the third cycle. Depending on the type of material and the reaction conditions, it is possible to modify the selectivity of the reaction, obtaining a 1,2-dihydropyridine isomeric to nifedipine. Reaction intermediates and other minor secondary products that may be formed in the process were also evaluated. Full article
Show Figures

Graphical abstract

26 pages, 5266 KB  
Article
Development and Characterization of Pyrolyzed Sodium Alginate–Montmorillonite Composite for Efficient Adsorption of Emerging Pharmaceuticals: Experimental and Theoretical Insights
by Ibrahim Allaoui, Rachid Et-Tanteny, Imane Barhdadi, Mohammad Elmourabit, Brahim Arfoy, Youssef Draoui, Mohamed Hadri and Khalid Draoui
Ceramics 2025, 8(2), 60; https://doi.org/10.3390/ceramics8020060 - 21 May 2025
Viewed by 1506
Abstract
The present study aims to prepare a composite via pyrolysis, based on sodium alginate (SA) and a natural clay collected from the eastern region of Morocco, specifically the OUJDA area (C.O.R), for use in the disposal process of emerging pharmaceuticals. The strategy of [...] Read more.
The present study aims to prepare a composite via pyrolysis, based on sodium alginate (SA) and a natural clay collected from the eastern region of Morocco, specifically the OUJDA area (C.O.R), for use in the disposal process of emerging pharmaceuticals. The strategy of rapid microwave heating followed by nitrogen calcination at 500 °C was successfully applied to produce the pyrolyzed carbonaceous materials. The removal of paracetamol (PCT) by adsorption on the carbonaceous clay (ca-C.O.R) composite was investigated to determine the effect of operating parameters (initial contaminant concentration, contact time, pH, and temperature) on the efficiency of PCT removal. The nanocomposite was analyzed using various techniques, including the nitrogen gas adsorption–desorption isothermal curve, X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. Three models were used to describe the kinetic adsorption, and it was found that the experimental kinetic data fit well with a pseudo-second-order kinetic model with a coefficient of determination R2 close to one, a nonlinear chi-square value close to zero, and a reduced root mean square error RMSE (R2 → 1, X2 → 0 and lower RMSE). The adsorption was best described by the Sips isotherm. The ca-C.O.R composite achieved a PCT removal efficiency of 91% and a maximum adsorption capacity of 122 mg·g−1 improving on the performance of previous work. Furthermore, the variation in enthalpy (∆H°), Gibbs free energy (∆G°), and entropy (∆S°) indicated that the adsorption is exothermic in nature. The composite has shown promising efficiency for the adsorption of PCT as a model of emergent pollutant from aqueous solutions, making it a viable option for industrial wastewater treatment. Using Density Functional Theory (DFT) along with the 6-31G (d) basis set, the geometric structure of the molecule was determined, and the properties were estimated by analyzing its boundary molecular orbitals. The adsorption energy of PCT on MMT and ca-C.O.R studied using the Monte Carlo (MC) simulation method was −120.3 and −292.5 (kcal·mol−1), respectively, which shows the potential of the two adsorbents for the emerging product. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Graphical abstract

26 pages, 7009 KB  
Article
Synergistic Removal of Diclofenac via Adsorption and Photocatalysis Using a Molecularly Imprinted Core–Shell Photocatalyst
by Ivana Gabelica, Floren Radovanović-Perić, Gordana Matijašić, Kristina Tolić Čop, Lidija Ćurković and Dragana Mutavdžić Pavlović
Materials 2025, 18(10), 2300; https://doi.org/10.3390/ma18102300 - 15 May 2025
Viewed by 812
Abstract
In this work, a newly developed magnetic molecularly imprinted Fe3O4/SiO2/TiO2/MIP photocatalyst with diclofenac (DIC) as the template was prepared by microwave-assisted synthesis. The molecularly imprinted TiO2 layer has specific cavities designed for the DIC [...] Read more.
In this work, a newly developed magnetic molecularly imprinted Fe3O4/SiO2/TiO2/MIP photocatalyst with diclofenac (DIC) as the template was prepared by microwave-assisted synthesis. The molecularly imprinted TiO2 layer has specific cavities designed for the DIC target molecule (imprint), resulting in a synergistic effect of extraction by adsorption and photocatalysis. For reference, non-imprinted magnetic nanoparticles (Fe3O4/SiO2/TiO2) were prepared using the same procedure. The obtained particles were characterized by X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR), SEM-EDX, vibrating-sample magnetometry (VSM) and diffuse reflectance spectroscopy (DRS). Specific surface area, pore volume and pore size distribution were evaluated using Brunauer–Emmett–Teller (BET) adsorption–desorption isotherms. The synergistic effect of adsorption and photocatalysis as well as the kinetics and mechanism of DIC degradation using Fe3O4/SiO2/TiO2/MIP and Fe3O4/SiO2/TiO2 were determined and analysed. The adsorption efficiency of Fe3O4/SiO2/TiO2/MIP for DIC (10 mg dm−3) was around 86% after 60 min. The DIC (10 mg dm−3) removal efficiency of Fe3O4/SiO2/TiO2/MIP was around 80% after 30 min adsorption and 120 min of reaction under both UV-A- and solar-simulated light irradiation. Full article
(This article belongs to the Special Issue Advances in Photocatalyst Materials and Green Chemistry)
Show Figures

Graphical abstract

15 pages, 22054 KB  
Article
A Selective and Fast Approach for Volatile Metalorganics Assaying in Wastewater
by Krzysztof Jankowski, Monika Truskolaska, Magdalena Borowska, Jacek Giersz and Edward Reszke
Molecules 2025, 30(5), 1111; https://doi.org/10.3390/molecules30051111 - 28 Feb 2025
Viewed by 539
Abstract
A fast and green approach for the non-chromatographic assaying of volatile metalorganic compounds (VMOCs) is presented, involving the use of thermal desorption microwave-induced plasma optical emission spectrometry for the multi-species simultaneous determination of VMOCs in wastewater plant samples after headspace solid-phase microextraction (HSSPME-TD-MIP-OES), [...] Read more.
A fast and green approach for the non-chromatographic assaying of volatile metalorganic compounds (VMOCs) is presented, involving the use of thermal desorption microwave-induced plasma optical emission spectrometry for the multi-species simultaneous determination of VMOCs in wastewater plant samples after headspace solid-phase microextraction (HSSPME-TD-MIP-OES), and optimized as a tool for the assessment of ambient exposure to hazardous VMOC pollutants. With the aim of VMOC monitoring, all species are separated and quantified within 10 s in comparison with about 10–20 min required by conventional GC-based procedures. Calibration against aqueous standards was carried out for several metalorganic species. The method was successfully applied for the quantitative extraction of As, Bi, Hg, Sb, Si and Sn compounds. Limits of detection ranging from 5 to 30 ng L−1 and relative standard deviations lower than 4% were obtained. The method is appropriate for high-sample-throughput measurements, and it proved to be suitable for the analysis of wastewater and sewage sludge samples. Full article
Show Figures

Figure 1

24 pages, 9996 KB  
Article
Relationships Between Physicochemical and Structural Properties of Commercial Vermiculites
by Ayoub Lahchich, Pedro Álvarez-Lloret, Javier F. Reynes and Celia Marcos
Materials 2025, 18(4), 831; https://doi.org/10.3390/ma18040831 - 14 Feb 2025
Cited by 2 | Viewed by 957
Abstract
This study examines the effects of thermal (1000 °C), hydrothermal (100 °C), mechanochemical (ambient T), and microwave (~100 °C) treatments on three types of Chinese vermiculites, one with lower potassium content than the others. The goal was to obtain materials with enhanced properties [...] Read more.
This study examines the effects of thermal (1000 °C), hydrothermal (100 °C), mechanochemical (ambient T), and microwave (~100 °C) treatments on three types of Chinese vermiculites, one with lower potassium content than the others. The goal was to obtain materials with enhanced properties related to specific surface areas. The response of the vermiculites to treatments and their physicochemical properties were analyzed using X-ray diffraction (XRD), thermal analysis (TG and DTG), and textural characterization via the BET method. XRD analyses showed similar mineral composition in treated and untreated samples, but the treatments affected the intensity and width of phase reflections, altering crystallinity and structural order, as well as the proportions of vermiculite, hydrobiotite, and phlogopite. Thermogravimetric analysis revealed two mass loss stages: water desorption (from 25 °C to about 250 °C) and recrystallization or dehydroxylation (above 800 °C). The isotherms indicated mesoporous characteristics, with hydrothermally CO2-treated samples having the highest specific surface area and adsorption capacity. The samples with vermiculite, hydrobiotite, and phlogopite generally showed moderate to high specific surface area (SBET) values, and mechanochemical treatments significantly increase SBET and pore volume (Vp) in the vermiculite and hydrobiotite samples. Crystallinity affects SBET, average Vp, and average pore size, and its monitoring is crucial to achieve the desired material characteristics, as higher crystallinity can reduce SBET but improve mechanical strength and thermal stability. This study highlights the influence of different treatments on vermiculite properties, providing valuable insights into their potential applications in various fields (such as thermal insulation in vehicles and aircraft, and the selective adsorption of gases and liquids in industrial processes, improving the strength and durability of building materials like cement and bricks). Full article
(This article belongs to the Special Issue Application and Modification of Clay Minerals)
Show Figures

Graphical abstract

42 pages, 7520 KB  
Review
Applications of MOF-Based Nanocomposites in Heat Exchangers: Innovations, Challenges, and Future Directions
by Talha Bin Nadeem, Muhammad Imran and Emad Tandis
Nanomaterials 2025, 15(3), 205; https://doi.org/10.3390/nano15030205 - 27 Jan 2025
Cited by 6 | Viewed by 3093
Abstract
Metal–organic frameworks (MOFs) have garnered significant attention in recent years for their potential to revolutionize heat exchanger performance, thanks to their high surface area, tunable porosity, and exceptional adsorption capabilities. This review focuses on the integration of MOFs into heat exchangers to enhance [...] Read more.
Metal–organic frameworks (MOFs) have garnered significant attention in recent years for their potential to revolutionize heat exchanger performance, thanks to their high surface area, tunable porosity, and exceptional adsorption capabilities. This review focuses on the integration of MOFs into heat exchangers to enhance heat transfer efficiency, improve moisture management, and reduce energy consumption in Heating, Ventilation and Air Conditioning (HVAC) and related systems. Recent studies demonstrate that MOF-based coatings can outperform traditional materials like silica gel, achieving superior water adsorption and desorption rates, which is crucial for applications in air conditioning and dehumidification. Innovations in synthesis techniques, such as microwave-assisted and surface functionalization methods, have enabled more cost-effective and scalable production of MOFs, while also enhancing their thermal stability and mechanical strength. However, challenges related to the high costs of MOF synthesis, stability under industrial conditions, and large-scale integration remain significant barriers. Future developments in hybrid nanocomposites and collaborative efforts between academia and industry will be key to advancing the practical adoption of MOFs in heat exchanger technologies. This review aims to provide a comprehensive understanding of current advancements, challenges, and opportunities, with the goal of guiding future research toward more sustainable and efficient thermal management solutions. Full article
(This article belongs to the Special Issue Metal Organic Framework (MOF)-Based Micro/Nanoscale Materials)
Show Figures

Figure 1

19 pages, 3854 KB  
Article
One-Step Ball Milling Synthesis of Zr-Based Mixed Oxides for the Catalytic Study of Methyl Levulinate Conversion into γ-Valerolactone Under Microwave Irradiation
by Noelia Lázaro, Marina Ronda-Leal, Carolina Vargas, Weiyi Ouyang and Antonio Pineda
Catalysts 2025, 15(1), 35; https://doi.org/10.3390/catal15010035 - 3 Jan 2025
Viewed by 1468
Abstract
Several mixed oxides composed of Fe3O4, ZrO2, and Al2O3 with different molar ratios were synthesized through a direct and simple mechanochemical approach. Subsequently, their physicochemical properties were investigated using a wide range of techniques, [...] Read more.
Several mixed oxides composed of Fe3O4, ZrO2, and Al2O3 with different molar ratios were synthesized through a direct and simple mechanochemical approach. Subsequently, their physicochemical properties were investigated using a wide range of techniques, including TEM (transmission electron microscopy), XPS (X-ray photoelectron spectroscopy), XRD (X-ray diffraction), and N2 adsorption/desorption, among others. These materials showed high surface areas and increased acidity compared to their respective counterparts. The catalytic activity of the synthesized materials was evaluated in the conversion of methyl levulinate (MEL) to γ-valerolactone (GVL) under microwave irradiation conditions, employing different alcohols as H-donor solvents (ethanol, 2-propanol, and 2-butanol). Due to their improved physicochemical properties originating from the ball-milling method, the as-synthesized materials (ZrFeOx 1:1, AlZrFeOx (5), and AlZrFeOx (10)) exhibited conversion rates of up to 99%, with complete selectivity for GVL after a relatively short reaction time of 30 min. Full article
Show Figures

Graphical abstract

17 pages, 3930 KB  
Article
Impact of Soil Type and Moisture Content on Microwave-Assisted Remediation of Hydrocarbon-Contaminated Soil
by Jun Xu, Songtao Liu and Chuanmin Chen
Sustainability 2025, 17(1), 101; https://doi.org/10.3390/su17010101 - 27 Dec 2024
Cited by 1 | Viewed by 1247
Abstract
Volatile and semi-volatile compounds, such as petroleum hydrocarbons and equipment lubricating oils, often contaminate soil due to accidents, posing significant ecological and health risks. Traditional soil remediation methods, such as thermal desorption and bioremediation, are time-consuming and resource-intensive, prompting researchers to explore more [...] Read more.
Volatile and semi-volatile compounds, such as petroleum hydrocarbons and equipment lubricating oils, often contaminate soil due to accidents, posing significant ecological and health risks. Traditional soil remediation methods, such as thermal desorption and bioremediation, are time-consuming and resource-intensive, prompting researchers to explore more efficient alternatives. This study investigates the effectiveness of an in situ reactor for microwave-assisted soil remediation, specifically focusing on the impact of soil type and moisture content on pollutant removal efficiency. The reactor, designed to operate within a modified household microwave oven, provides direct microwave irradiation to the soil surface, enabling precise control of heating conditions. Experiments were conducted using soil samples of varying particle sizes and moisture levels under standardized conditions (1000 W microwave power, 2.45 GHz frequency). The results show that moisture content plays a critical role in pollutant removal efficiency, with an optimal moisture content of 10 wt % enhancing microwave absorption and energy transfer, thus improving pollutant recovery. In comparison with traditional resistive heating, microwave heating achieved a faster temperature rise and higher final temperatures, significantly improving pollutant removal efficiency in a shorter time frame. This study highlights the advantages of microwave heating, including its superior energy efficiency, faster pollutant volatilization, and the potential for optimized soil remediation in real-world applications. These findings provide valuable insights for the development of more sustainable and efficient soil remediation technologies. Full article
Show Figures

Figure 1

25 pages, 1711 KB  
Review
Bimetallic and Trimetallic Catalysts Advancements in the Conventional and MW-Assisted Propane Dehydrogenation Process
by Olga Muccioli, Concetta Ruocco and Vincenzo Palma
Catalysts 2024, 14(12), 950; https://doi.org/10.3390/catal14120950 - 22 Dec 2024
Cited by 5 | Viewed by 2328
Abstract
A huge variety of chemical commodities are built from propylene molecules, and its conventional production technologies (naphtha steam cracking and fluid catalytic cracking) are unable to satisfy C3H6’s increasing requirements. In this scenario, Direct Propane Dehydrogenation (PDH) provides a [...] Read more.
A huge variety of chemical commodities are built from propylene molecules, and its conventional production technologies (naphtha steam cracking and fluid catalytic cracking) are unable to satisfy C3H6’s increasing requirements. In this scenario, Direct Propane Dehydrogenation (PDH) provides a practical and reliable route for supplying this short demand due to the economic availability of the raw material (C3H8) and the high propylene selectivities. The main challenges of propane dehydrogenation technology are related to the design of very active catalysts with negligible byproduct formation. In particular, the issue of catalyst deactivation by coke deposition still requires further development. In addition, PDH is a considerable endothermic reaction, and the efficiency of this technology is strictly related to heat transfer management. Thus, this current review specifically discusses the recent advances in highly dispersed bimetallic and trimetallic catalysts proposed for the PDH reaction in both conventional-heated and microwave-heated reactors. From the point of view of catalyst development, the recent research is mainly addressed to obtain nanometric and single-atom catalysts and core–shell alloys: atomically dispersed metal atoms promote the desorption of surface-bonded propylene and inhibit its further dehydrogenation. The discussion is focused on the alternative formulations proposed in the last few years, employing active species and supports different from the classical Pt-Sn/Al2O3 catalyst. Concerning the conventional route of energy-supply to the catalytic bed, the advantage of using a membrane as well as fluidized bed reactors is highlighted. Recent developments in alternative microwave-assisted dehydrogenation (PDH) employing innovative catalytic systems based on silicon carbide (SiC) facilitate selective heating of the catalyst. This advancement leads to improved catalytic activity and propylene selectivity while effectively reducing coke formation. Additionally, it promotes environmental sustainability in the ongoing electrification of chemical processes. Full article
Show Figures

Figure 1

23 pages, 9728 KB  
Article
Investigation of the Photocatalytic Activity of Copper-Modified Commercial Titania (P25) in the Process of Carbon Dioxide Photoreduction
by Konrad Sebastian Sobczuk, Iwona Pełech, Daniel Sibera, Piotr Staciwa, Agnieszka Wanag, Ewa Ekiert, Joanna Kapica-Kozar, Katarzyna Ćmielewska, Ewelina Kusiak-Nejman, Antoni Waldemar Morawski and Urszula Narkiewicz
Materials 2024, 17(24), 6139; https://doi.org/10.3390/ma17246139 - 15 Dec 2024
Viewed by 1125
Abstract
The photocatalytic reduction of CO2 to useful products is an area of active research because it shows a potential to be an efficient tool for mitigating climate change. This work investigated the modification of titania with copper(II) nitrate and its impact on [...] Read more.
The photocatalytic reduction of CO2 to useful products is an area of active research because it shows a potential to be an efficient tool for mitigating climate change. This work investigated the modification of titania with copper(II) nitrate and its impact on improving the CO2 reduction efficiency in a gas-phase batch photoreactor under UV–Vis irradiation. The investigated photocatalysts were prepared by treating P25-copper(II) nitrate suspensions (with various Cu2+ concentrations), alkalized with ammonia water, in a microwave-assisted solvothermal reactor. The titania-based photocatalysts were characterized by SEM, EDS, ICP-OES, XRD and UV-Vis/DR methods. Textural properties were measured by the low-temperature nitrogen adsorption/desorption studies at 77 K. P25 photocatalysts modified with copper(II) nitrate used in the process of carbon dioxide reduction allowed for a higher efficiency both for the photocatalytic reduction of CO2 to CH4 and for the photocatalytic water decomposition to hydrogen as compared to a reference. Similarly, modified samples showed significantly higher selectivity towards methane in the CO2 conversion process than the unmodified sample (a change from 30% for a reference sample to 82% for the P25-R-Cu-0.1 sample after the 6 h process). It was found that smaller loadings of Cu are more beneficial for increasing the photocatalytic activity of a sample. Full article
(This article belongs to the Special Issue Advances in Photocatalyst Materials and Green Chemistry)
Show Figures

Figure 1

12 pages, 3318 KB  
Article
Carbon Fiber Recycling from Waste CFRPs via Microwave Pyrolysis: Gas Emissions Monitoring and Mechanical Properties of Recovered Carbon Fiber
by Kai-Yen Chin, Angus Shiue, Jhu-Lin You, Yi-Jing Wu, Kai-Yi Cheng, Shu-Mei Chang, Yeou-Fong Li, Chao-Heng Tseng and Graham Leggett
Fibers 2024, 12(12), 106; https://doi.org/10.3390/fib12120106 - 5 Dec 2024
Cited by 1 | Viewed by 3277
Abstract
Disposing of carbon fiber-reinforced polymers (CFRPs) has become a pressing issue due to their increasing application across various industries. Previous work has focused on removing silane coupling agent residues on recovered carbon fibers via microwave pyrolysis, making them suitable for use in new [...] Read more.
Disposing of carbon fiber-reinforced polymers (CFRPs) has become a pressing issue due to their increasing application across various industries. Previous work has focused on removing silane coupling agent residues on recovered carbon fibers via microwave pyrolysis, making them suitable for use in new materials. However, the mechanical performance and structural characteristics of these fibers have not been fully reported. This study investigates the time–temperature curves of CFRPs treated through microwave pyrolysis and analyzes the mechanical and structural properties of silane-controllable recovered carbon fibers. Additionally, emissions—including carbon monoxide, carbon dioxide, and particulate aerosols—were measured using handheld monitors and thermal desorption–gas chromatography/mass spectrometry to determine the composition of fugitive gases around the microwave pyrolysis system. The pyrolysis process at 950 °C, with an additional 1 h holding time, reduced the crystallite size from 0.297 Å to 0.222 Å, significantly enhancing tensile strength (3804 ± 713 MPa) and tensile modulus (200 ± 13 GPa). This study contributes to more sustainable CFRP waste treatment and highlights the potential for reusing high-quality carbon fibers in new applications, enhancing both environmental and worker safety. Full article
Show Figures

Figure 1

13 pages, 13363 KB  
Article
Research on CO2 Desorption Using Microwave-Assisted Novel Blended Alkanolamine Formulations
by Rezeye Rehemituli, Ziheng Zhang, Xuemei Yang, Fan Yang, Yansheng Liu and Junwei Hou
Processes 2024, 12(11), 2547; https://doi.org/10.3390/pr12112547 - 14 Nov 2024
Cited by 1 | Viewed by 1271
Abstract
Traditional alkanolamine absorption methods for CO2 capture suffer from significant absorbent loss and high regeneration energy consumption. To address this issue, novel blended alkanolamine formulations based on monoethanolamine (MEA), methyldiethanolamine (MDEA) and 2–amino–2–methyl–1–propanol (AMP) were investigated. Based on the optimization of CO [...] Read more.
Traditional alkanolamine absorption methods for CO2 capture suffer from significant absorbent loss and high regeneration energy consumption. To address this issue, novel blended alkanolamine formulations based on monoethanolamine (MEA), methyldiethanolamine (MDEA) and 2–amino–2–methyl–1–propanol (AMP) were investigated. Based on the optimization of CO2 absorption conditions, a low–temperature and high–efficiency microwave heating desorption method for CO2 was proposed, and the microwave heating desorption process of a CO2 alkanolamine absorption solution was optimized. The results show that when the mass ratio of monoethanolamine (MEA), methyldiethanolamine (MDEA) and 2–amino–2-methyl–1–propanol (AMP) was 4:5:1, the composite alkanolamine solution with a concentration of 20% had the best absorption effect at an absorption temperature of 30 °C. The desorption efficiency of this group of formulations at 95 °C reached 89% in 4 min. Compared with the traditional heating desorption method, the CO2 desorption rate of the microwave heating method at 95 °C increased by 62%, the desorption time was significantly shortened, and the energy consumption was significantly reduced. This study provides a new research direction for the efficient and low-energy desorption of CO2 by blended alkanolamine. Full article
Show Figures

Figure 1

Back to TopTop