Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = micrometric details

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5686 KiB  
Article
How the Structure and Wettability Properties of Morpho peleides Butterfly Wings Can Be a Source of Inspiration
by Louise Burdin, Anne-Catherine Brulez, Radoslaw Mazurczyk, Jean-Louis Leclercq and Stéphane Benayoun
Biomimetics 2025, 10(2), 89; https://doi.org/10.3390/biomimetics10020089 - 3 Feb 2025
Viewed by 1429
Abstract
In this study, the wettability of Morpho peleides (M. peleides) wings is studied. Using a goniometer, the contact angles of ~136° were measured. Although few studies have provided a general overview of the static wettability properties of M. peleides and the particularly anisotropic [...] Read more.
In this study, the wettability of Morpho peleides (M. peleides) wings is studied. Using a goniometer, the contact angles of ~136° were measured. Although few studies have provided a general overview of the static wettability properties of M. peleides and the particularly anisotropic morphology of their wings, a detailed analysis of wettability properties is proposed. The results indicate anisotropic wettability, with a sliding angle of 7° when the wings were tilted away from the insect’s body and 29° when the wings were tilted toward the insect’s body. The Extrand model, coupled with a hierarchical approach, was also employed to describe the wettability behavior of M. peleides wings and its relationship with the dual roughness scale of the wings. Owing to these models, it has been demonstrated that the micrometric scale of the wing structure is primarily responsible for the static wettability properties of the M. peleides, while the nanometric scale influences the dynamic wettability of the wing. Moreover, compared to the topography, the wing’s chemistry has very little effect on the wettability properties of the M. peleides. Full article
Show Figures

Figure 1

16 pages, 10786 KiB  
Article
Moving beyond the Content: 3D Scanning and Post-Processing Analysis of the Cuneiform Tablets of the Turin Collection
by Filippo Diara, Francesco Giuseppe Barsacchi and Stefano de Martino
Appl. Sci. 2024, 14(11), 4492; https://doi.org/10.3390/app14114492 - 24 May 2024
Viewed by 1821
Abstract
This work and manuscript focus on how 3D scanning methodologies and post-processing analyses may help us to gain a deeper investigation of cuneiform tablets beyond the written content. The dataset proposed herein is a key part of the archaeological collection preserved in the [...] Read more.
This work and manuscript focus on how 3D scanning methodologies and post-processing analyses may help us to gain a deeper investigation of cuneiform tablets beyond the written content. The dataset proposed herein is a key part of the archaeological collection preserved in the Musei Reali of Turin in Italy; these archaeological artefacts enclose further important semantic information extractable through detailed 3D documentation and 3D model filtering. In fact, this scanning process is a fundamental tool for better reading of sealing impressions beneath the cuneiform text, as well as for understanding micrometric evidence of the fingerprints of scribes. Most of the seal impressions were made before the writing (like a watermark), and thus, they are not detectable to the naked eye due to cuneiform signs above them as well as the state of preservation. In this regard, 3D scanning and post-processing analysis could help in the analysis of these nearly invisible features impressed on tablets. For this reason, this work is also based on how 3D analyses may support the identification of the unperceived and almost invisible features concealed in clay tablets. Analysis of fingerprints and the depths of the signs can tell us about the worker’s strategies and the people beyond the artefacts. Three-dimensional models generated inside the Artec 3D ecosystem via Space Spider scanner and Artec Studio software were further investigated by applying specific filters and shaders. Digital light manipulation can reveal, through the dynamic displacement of light and shadows, particular details that can be deeply analysed with specific post-processing operations: for example, the MSII (multi-scale integral invariant) filter is a powerful tool exploited for revealing hidden and unperceived features such as fingerprints and sealing impressions (stratigraphically below cuneiform signs). Finally, the collected data will be handled twofold: in an open-access repository and through a common data environment (CDE) to aid in the data exchange process for project collaborators and common users. Full article
Show Figures

Figure 1

15 pages, 2015 KiB  
Article
BSA Binding and Aggregate Formation of a Synthetic Amino Acid with Potential for Promoting Fibroblast Proliferation: An In Silico, CD Spectroscopic, DLS, and Cellular Study
by Hayarpi Simonyan, Rosanna Palumbo, Satenik Petrosyan, Anna Mkrtchyan, Armen Galstyan, Ashot Saghyan, Pasqualina Liana Scognamiglio, Caterina Vicidomini, Marta Fik-Jaskólka and Giovanni N. Roviello
Biomolecules 2024, 14(5), 579; https://doi.org/10.3390/biom14050579 - 14 May 2024
Cited by 5 | Viewed by 2727
Abstract
This study presents the chemical synthesis, purification, and characterization of a novel non-natural synthetic amino acid. The compound was synthesized in solution, purified, and characterized using NMR spectroscopy, polarimetry, and melting point determination. Dynamic Light Scattering (DLS) analysis demonstrated its ability to form [...] Read more.
This study presents the chemical synthesis, purification, and characterization of a novel non-natural synthetic amino acid. The compound was synthesized in solution, purified, and characterized using NMR spectroscopy, polarimetry, and melting point determination. Dynamic Light Scattering (DLS) analysis demonstrated its ability to form aggregates with an average size of 391 nm, extending to the low micrometric size range. Furthermore, cellular biological assays revealed its ability to enhance fibroblast cell growth, highlighting its potential for tissue regenerative applications. Circular dichroism (CD) spectroscopy showed the ability of the synthetic amino acid to bind serum albumins (using bovine serum albumin (BSA) as a model), and CD deconvolution provided insights into the changes in the secondary structures of BSA upon interaction with the amino acid ligand. Additionally, molecular docking using HDOCK software elucidated the most likely binding mode of the ligand inside the BSA structure. We also performed in silico oligomerization of the synthetic compound in order to obtain a model of aggregate to investigate computationally. In more detail, the dimer formation achieved by molecular self-docking showed two distinct poses, corresponding to the lowest and comparable energies, with one pose exhibiting a quasi-coplanar arrangement characterized by a close alignment of two aromatic rings from the synthetic amino acids within the dimer, suggesting the presence of π-π stacking interactions. In contrast, the second pose displayed a non-coplanar configuration, with the aromatic rings oriented in a staggered arrangement, indicating distinct modes of interaction. Both poses were further utilized in the self-docking procedure. Notably, iterative molecular docking of amino acid structures resulted in the formation of higher-order aggregates, with a model of a 512-mer aggregate obtained through self-docking procedures. This model of aggregate presented a cavity capable of hosting therapeutic cargoes and biomolecules, rendering it a potential scaffold for cell adhesion and growth in tissue regenerative applications. Overall, our findings highlight the potential of this synthetic amino acid for tissue regenerative therapeutics and provide valuable insights into its molecular interactions and aggregation behavior. Full article
(This article belongs to the Special Issue Protein Structure Prediction in Drug Discovery: 2nd Edition)
Show Figures

Figure 1

16 pages, 11810 KiB  
Article
Fibrous Structures Produced Using the Solution Blow-Spinning Technique for Advanced Air Filtration Process
by Agata Penconek, Anna Jackiewicz-Zagórska, Rafał Przekop and Arkadiusz Moskal
Materials 2023, 16(22), 7118; https://doi.org/10.3390/ma16227118 - 10 Nov 2023
Cited by 9 | Viewed by 2162
Abstract
This study proposes utilising the solution blow-spinning process (SBS) for manufacturing a biodegradable filtration structure that ensures high efficiency of particle filtration with an acceptable pressure drop. The concept of multi-layer filters was applied during the design of filters. Polylactic acid (PLA) was [...] Read more.
This study proposes utilising the solution blow-spinning process (SBS) for manufacturing a biodegradable filtration structure that ensures high efficiency of particle filtration with an acceptable pressure drop. The concept of multi-layer filters was applied during the design of filters. Polylactic acid (PLA) was used to produce various layers, which may be mixed in different sequences, building structures with varying filtration properties. Changing the process parameters, one can create layers with diverse average fibre diameters and thicknesses. It enables the design and creation of optimal filtration materials prepared for aerosol particle filtration. The structures were numerically modelled using the lattice Boltzmann approach to obtain detailed production guidelines using the blow-spinning technique. The advantage of this method is the ability to blow fibres with diameters in the nanoscale, applying relatively simple and cost-effective equipment. For tested PLA solutions, i.e., 6% and 10%, the mean fibre diameter decreases as the concentration decreases. Therefore, the overall filtering efficiency decreases as the concentration of the used solution increases. The produced multi-layer filters have 96% overall filtration efficiency for particles ranging from 0.26 to 16.60 micrometres with a pressure drop of less than 160 Pa. Obtained results are auspicious and are a step in producing efficient, biodegradable air filters. Full article
Show Figures

Figure 1

14 pages, 7468 KiB  
Article
Magnetic Analysis of MgFe Hydrotalcites as Powder and Dispersed in Thin Films within a Keratin Matrix
by Franco Dinelli, Michele Modestino, Armando Galluzzi, Tamara Posati, Mirko Seri, Roberto Zamboni, Giovanna Sotgiu and Massimiliano Polichetti
Nanomaterials 2023, 13(14), 2029; https://doi.org/10.3390/nano13142029 - 8 Jul 2023
Cited by 1 | Viewed by 1715
Abstract
Hydrotalcites (HTlcs) are a class of nanostructured layered materials that may be employed in a variety of applications, from green to bio technologies. In this paper, we report an investigation on HTlcs made of Mg and Fe, recently employed to improve the growth [...] Read more.
Hydrotalcites (HTlcs) are a class of nanostructured layered materials that may be employed in a variety of applications, from green to bio technologies. In this paper, we report an investigation on HTlcs made of Mg and Fe, recently employed to improve the growth in vitro of osteoblasts within a keratin sponge. We carried out an analysis of powder materials and of HTlcs dispersed in keratin and spin-coated on a Si/SiO2 substrate at different temperatures. A magnetic study of the powders was carried out with a Quantum Design Physical Property Measurement System equipped with a Vibrating Sample Magnetometer. The data gathered prove that these HTlcs are fully paramagnetic, and keratin showed a very small magnetic response. Optical and Atomic Force Microscopy analyses of the thin films provide a detailed picture of clusters randomly dispersed in the films with various dimensions. The magnetic properties of these films were characterized using the Nano Magneto Optical Kerr Effect (NanoMOKE) down to 7.5 K. The data collected show that the local magnetic properties can be mapped with a micrometric resolution distinguishing HTlc regions from keratin ones. This approach opens new perspectives in the characterization of these composite materials. Full article
(This article belongs to the Special Issue Advances in Polymer Nanocomposite Films)
Show Figures

Figure 1

12 pages, 2921 KiB  
Article
Study of Optical and Electrical Properties of RF-Sputtered ZnSe/ZnTe Heterojunctions for Sensing Applications
by Ana-Maria Panaitescu and Vlad-Andrei Antohe
Coatings 2023, 13(1), 208; https://doi.org/10.3390/coatings13010208 - 16 Jan 2023
Cited by 5 | Viewed by 2921
Abstract
Cadmium (Cd)-free photodiodes based on n-type Zinc Selenide/p-type Zinc Telluride (n-ZnSe/p-ZnTe) heterojunctions were prepared by Radio Frequency-Magnetron Sputtering (RF-MS) technique, and their detailed optical and electrical characterization was performed. Onto an optical glass substrate, 100 nm gold (Au) thin film was deposited by [...] Read more.
Cadmium (Cd)-free photodiodes based on n-type Zinc Selenide/p-type Zinc Telluride (n-ZnSe/p-ZnTe) heterojunctions were prepared by Radio Frequency-Magnetron Sputtering (RF-MS) technique, and their detailed optical and electrical characterization was performed. Onto an optical glass substrate, 100 nm gold (Au) thin film was deposited by Thermal Vacuum Evaporation (TVE) representing the back-contact, followed by the successive RF-MS deposition of ZnTe, ZnSe, Zinc Oxide (ZnO) and Indium Tin Oxide (ITO) thin films, finally resulting in the Au/ZnTe/ZnSe/ZnO/ITO sub-micrometric “substrate”-type configuration. Next, the optical characterization by Ultraviolet-Visible (UV-VIS) spectroscopy was performed on the component thin films, and their optical band gap values were determined. The electrical measurements in the dark and under illumination at different light intensities were subsequently performed. The Current–Voltage (I–V) characteristics in the dark are nonlinear with a relatively high asymmetry, following the modified Shockley–Read equation. From their analysis, the series resistance, shunt resistance, the ideality factor and saturation current were determined with high accuracy. It is worth noting that the action spectrum of the structure is shifted to short wavelengths. A sensibility test for the 420–500 nm range was performed while changing the intensity of the incident light from 100 mW/cm2 down to 10 mW/cm2 and measuring the photocurrent. The obtained results provided sufficient information to consider the present sub-micrometric photodiodes based on n-ZnSe/p-ZnTe heterojunctions to be more suitable for the UV domain, demonstrating their potential for integration within UV photodetectors relying on environmentally-friendly materials. Full article
(This article belongs to the Special Issue New Trends in Functional Materials and Devices)
Show Figures

Figure 1

32 pages, 14543 KiB  
Article
Cuneiform Tablets Micro-Surveying in an Optimized Photogrammetric Configuration
by Sara Antinozzi, Fausta Fiorillo and Mirko Surdi
Heritage 2022, 5(4), 3133-3164; https://doi.org/10.3390/heritage5040162 - 17 Oct 2022
Cited by 5 | Viewed by 3913
Abstract
In the current panorama of 3D digital documentation, the survey of tiny artifacts with micrometric details is strongly influenced by two factors: firstly, the still high cost of the instruments and technologies (active sensors) required to achieve the necessary level of accuracy and [...] Read more.
In the current panorama of 3D digital documentation, the survey of tiny artifacts with micrometric details is strongly influenced by two factors: firstly, the still high cost of the instruments and technologies (active sensors) required to achieve the necessary level of accuracy and resolution; secondly, the needed professional skills for the macro-photogrammetric approach. In this context, this research aims to meet the demand for a digital survey and 3D representation of small objects with complex surfaces and sub-millimeter morphological characteristics using a low-cost configuration (passive sensors) for an image-based approach. The experiments concerned cuneiform tablets, which are challenging due to their morphological and geometrical characteristics. The digital replica of these unique artefacts can be helpful for their study and interpretation and many innovative applications: access and sharing, a collaborative interdisciplinary study among several experts, experimentation with machine learning for automatic character recognition, and linguistic studies. The micrometric surveying system described proves to be an efficient and reliable solution for cuneiform tablet digitization and documentation. Full article
(This article belongs to the Special Issue 3D Virtual Reconstruction and Visualization of Complex Architectures)
Show Figures

Figure 1

16 pages, 5236 KiB  
Article
High-Throughput Separation of Long DNA in Deterministic Lateral Displacement Arrays
by Oskar E. Ström, Jason P. Beech and Jonas O. Tegenfeldt
Micromachines 2022, 13(10), 1754; https://doi.org/10.3390/mi13101754 - 17 Oct 2022
Cited by 13 | Viewed by 2930
Abstract
Length-based separation of DNA remains as relevant today as when gel electrophoresis was introduced almost 100 years ago. While new, long-read genomics technologies have revolutionised accessibility to powerful genomic data, the preparation of samples has not proceeded at the same pace, with sample [...] Read more.
Length-based separation of DNA remains as relevant today as when gel electrophoresis was introduced almost 100 years ago. While new, long-read genomics technologies have revolutionised accessibility to powerful genomic data, the preparation of samples has not proceeded at the same pace, with sample preparation often constituting a considerable bottleneck, both in time and difficulty. Microfluidics holds great potential for automated, sample-to-answer analysis via the integration of preparatory and analytical steps, but for this to be fully realised, more versatile, powerful and integrable unit operations, such as separation, are essential. We demonstrate the displacement and separation of DNA with a throughput that is one to five orders of magnitude greater than other microfluidic techniques. Using a device with a small footprint (23 mm × 0.5 mm), and with feature sizes in the micrometre range, it is considerably easier to fabricate than parallelized nano-array-based approaches. We show the separation of 48.5 kbp and 166 kbp DNA strands achieving a significantly improved throughput of 760 ng/h, compared to previous work and the separation of low concentrations of 48.5 kbp DNA molecules from a massive background of sub 10 kbp fragments. We show that the extension of DNA molecules at high flow velocities, generally believed to make the length-based separation of long DNA difficult, does not place the ultimate limitation on our method. Instead, we explore the effects of polymer rotations and intermolecular interactions at extremely high DNA concentrations and postulate that these may have both negative and positive influences on the separation depending on the detailed experimental conditions. Full article
(This article belongs to the Special Issue Feature Papers of Micromachines in Biology and Biomedicine 2022)
Show Figures

Graphical abstract

18 pages, 6863 KiB  
Article
The Use of Nanoscale Montmorillonite (MMT) as Reinforcement for Polylactide Acid (PLA) Prepared by Fused Deposition Modeling (FDM)—Comparative Study with Biocarbon and Talc Fillers
by Jacek Andrzejewski, Mateusz Markowski and Mateusz Barczewski
Materials 2022, 15(15), 5205; https://doi.org/10.3390/ma15155205 - 27 Jul 2022
Cited by 26 | Viewed by 3166
Abstract
The subject of the presented research focuses on a comparative assessment of three types of polymer fillers used to modify highly crystalline poly(lactic acid) PLA intended for the FDM technique. The aim of the presented work was to determine the performance of the [...] Read more.
The subject of the presented research focuses on a comparative assessment of three types of polymer fillers used to modify highly crystalline poly(lactic acid) PLA intended for the FDM technique. The aim of the presented work was to determine the performance of the developed materials. The key aspect of the work was the use of polymer fillers of three different types. Nano-sized montmorillonite (MMT), biobased biocarbon (BC) and mineral talc. The several types of composites were prepared using extrusion technique. The maximum content for BC and talc filler was limited to 20 wt%, while for MMT it was 5 wt%. Prepared samples were subjected to detailed material analysis including mechanical tests (tensile, flexural, Charpy), thermal analysis (DSC, DMTA), HDT/Vicat tests and structure analysis. The results of the test confirmed that even relatively small amount of nano-type filler can be more efficient than micrometric particles. The used type of matrix was highly crystalline PLA, which resulted in a significant nucleation effect of the crystalline structure. However, thermomechanical tests revealed no improvement in thermal resistance. Microscopic survey confirmed that for MMT and talc filler the structure anisotropy was leading to more favorable properties, especially when compared to structures based on spherical BC particles. Full article
(This article belongs to the Special Issue Additive Manufacturing of Polymers: Materials and Applications)
Show Figures

Figure 1

13 pages, 7226 KiB  
Article
Combining Micro-Raman Spectroscopy and Scanning Electron Microscopy Mapping: A Stony Meteorite Study
by Maya Musa, Riccardo Rossini, Daniela Di Martino, Maria Pia Riccardi, Massimiliano Clemenza and Giuseppe Gorini
Materials 2021, 14(24), 7585; https://doi.org/10.3390/ma14247585 - 10 Dec 2021
Cited by 2 | Viewed by 2156
Abstract
Meteorite characterisation represents a privileged and unique opportunity to increase our knowledge about the materials composing the Universe and, particularly, the Proto Solar System. Moreover, meteorites studies evolve contextually with the development of analytical technologies. In the present paper, the results from an [...] Read more.
Meteorite characterisation represents a privileged and unique opportunity to increase our knowledge about the materials composing the Universe and, particularly, the Proto Solar System. Moreover, meteorites studies evolve contextually with the development of analytical technologies. In the present paper, the results from an unclassified stony meteorite (chondrite) characterisation have been reported on the basis of the innovative analytical protocol presented here. Advanced Mapping by micro-Raman Spectroscopy and Scanning Electron Microscopy equipped with Energy Dispersive Spectroscopy have been combined to disclose molecular and elemental features on the same regions sample at a micrometric resolution. Thanks to their non-destructive properties, the mapping tools of both instruments have been applied to single chondrules analysis and the best match between the mineralogical information and the chemical composition has been obtained. This combined approach proved to be highly suitable in disclosing the crystallinity features of the phases, with in-depth spatial and morphological details too. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

12 pages, 11531 KiB  
Article
Unveiling the Invisible in Uffizi Gallery’s Drawing 8P by Leonardo with Non-Invasive Optical Techniques
by Alice Dal Fovo, Jana Striova, Enrico Pampaloni and Raffaella Fontana
Appl. Sci. 2021, 11(17), 7995; https://doi.org/10.3390/app11177995 - 29 Aug 2021
Cited by 6 | Viewed by 3515
Abstract
Until recently, the study of drawings by old masters has been confined to the art history conservation field. More specifically, scientific investigations of Leonardo’s drawings are still very few, possibly due to the latter’s extreme fragility and artistic value. However, analytical data are [...] Read more.
Until recently, the study of drawings by old masters has been confined to the art history conservation field. More specifically, scientific investigations of Leonardo’s drawings are still very few, possibly due to the latter’s extreme fragility and artistic value. However, analytical data are crucial to develop a solid knowledge base of the drawing materials and techniques used by artists in the past. In this work, we report on the application of non-invasive optical techniques on a double-sided drawing by Leonardo belonging to the Uffizi Gallery (8P). We used multispectral reflectography in the visible (Vis) and near-infrared (NIR) regions to obtain a spectral mapping of the drawing materials, to be subsequently integrated with technical information provided by art historians and conservators. Morphological analysis by microprofilometry allowed for the identification of the typical wave-like texture impressed in the paper during the sheet’s manufacture, as well as of further paper-impressed traits attributable to the drawing transfer method used by Leonardo. Optical coherence tomography revealed a set of micrometric engraved details in the blank background, which lack any trace of colored material, nor display any apparent relation to the drawn landscape. The disclosure of hidden technical features allowed us to offer new insights into Leonardo’s still under-investigated graphic practices. Full article
(This article belongs to the Special Issue Application of Materials Science in the Study of Cultural Heritage)
Show Figures

Figure 1

15 pages, 7399 KiB  
Article
Micro-Machining of Diamond, Sapphire and Fused Silica Glass Using a Pulsed Nano-Second Nd:YVO4 Laser
by David G. Waugh and Chris D. Walton
Optics 2021, 2(3), 169-183; https://doi.org/10.3390/opt2030016 - 23 Aug 2021
Cited by 5 | Viewed by 3510
Abstract
Optically transparent materials are being found in an ever-increasing array of technological applications within industries, such as automotive and communications. These industries are beginning to realize the importance of implementing surface engineering techniques to enhance the surface properties of materials. On account of [...] Read more.
Optically transparent materials are being found in an ever-increasing array of technological applications within industries, such as automotive and communications. These industries are beginning to realize the importance of implementing surface engineering techniques to enhance the surface properties of materials. On account of the importance of surface engineering, this paper details the use of a relatively inexpensive diode-pumped solid state (DPSS) Nd:YVO4 laser to modify the surfaces of fused silica glass, diamond, and sapphire on a micrometre scale. Using threshold fluence analysis, it was identified that, for this particular laser system, the threshold fluence for diamond and sapphire ranged between 10 Jcm−2 and 35 Jcm−2 for a laser wavelength of 355 nm, dependent on the cumulative effects arising from the number of incident pulses. Through optical microscopy and scanning electron microscopy, it was found that the quality of processing resulting from the Nd:YVO4 laser varied with each of the materials. For fused silica glass, considerable cracking and deformation occurred. For sapphire, good quality features were produced, albeit with the formation of debris, indicating the requirement for post-processing to remove the observed debris. The diamond material gave rise to the best quality results, with extremely well defined micrometre features and minimal debris formation, comparative to alternative techniques such as femtosecond laser surface engineering. Full article
(This article belongs to the Special Issue Feature Papers in Optics)
Show Figures

Figure 1

12 pages, 5368 KiB  
Article
Fibre-Reinforced Geopolymer Composites Micro-Nanochemistry by SEM-EDS Simulations
by Daniele Moro, Gianfranco Ulian and Giovanni Valdrè
J. Compos. Sci. 2021, 5(8), 214; https://doi.org/10.3390/jcs5080214 - 12 Aug 2021
Cited by 2 | Viewed by 2492
Abstract
The focus of the present study is on fibre-reinforced geopolymer composites, whose optimization and application necessarily need a detailed chemical characterization at the micro-nanoscale. In this regard, many geopolymer composites presenting micro and nanometric architectures pose a challenge for scanning electron microscopy with [...] Read more.
The focus of the present study is on fibre-reinforced geopolymer composites, whose optimization and application necessarily need a detailed chemical characterization at the micro-nanoscale. In this regard, many geopolymer composites presenting micro and nanometric architectures pose a challenge for scanning electron microscopy with energy dispersive X-ray microanalysis (SEM-EDS) quantification, because of several potential sources of errors. For this reason, the present work reports a SEM-EDS Monte Carlo approach to carefully investigate the complex physical phenomena related to the cited quantification errors. The model used for this theoretical analysis is a simplified fibre-reinforced geopolymer with basalt-derived glass fibres immersed in a potassium-poly(sialate-siloxo) matrix. The simulated SEM-EDS spectra showed a strong influence on the measured X-ray intensity of (i) the sample nano-to-micro architecture, (ii) the electron beam probing energy and (iii) the electron probe-sample-EDS detector relative position. The results showed that, compared to a bulk material, the X-ray intensity for a nano-micrometric sized specimen may give rise to potential underestimation and/or overestimation of the elemental composition of the sample. The proposed Monte Carlo approach indicated the optimal instrumental setup depending on the sample and on the specific SEM-EDS equipment here considered. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers)
Show Figures

Figure 1

15 pages, 15521 KiB  
Article
A Selective Ratiometric Fluorescent Probe for No-Wash Detection of PVC Microplastic
by Valeria Caponetti, Alexandra Mavridi-Printezi, Matteo Cingolani, Enrico Rampazzo, Damiano Genovese, Luca Prodi, Daniele Fabbri and Marco Montalti
Polymers 2021, 13(10), 1588; https://doi.org/10.3390/polym13101588 - 14 May 2021
Cited by 16 | Viewed by 4527
Abstract
Microplastics (MP) are micrometric plastic particles present in drinking water, food and the environment that constitute an emerging pollutant and pose a menace to human health. Novel methods for the fast detection of these new contaminants are needed. Fluorescence-based detection exploits the use [...] Read more.
Microplastics (MP) are micrometric plastic particles present in drinking water, food and the environment that constitute an emerging pollutant and pose a menace to human health. Novel methods for the fast detection of these new contaminants are needed. Fluorescence-based detection exploits the use of specific probes to label the MP particles. This method can be environmentally friendly, low-cost, easily scalable but also very sensitive and specific. Here, we present the synthesis and application of a new probe based on perylene-diimide (PDI), which can be prepared in a few minutes by a one-pot reaction using a conventional microwave oven and can be used for the direct detection of MP in water without any further treatment of the sample. The green fluorescence is strongly quenched in water at neutral pH because of the formation dimers. The ability of the probe to label MP was tested for polyvinyl chloride (PVC), polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS), poly methyl methacrylate (PMMA) and polytetrafluoroethylene (PTFE). The probe showed considerable selectivity to PVC MP, which presented an intense red emission after staining. Interestingly, the fluorescence of the MP after labeling could be detected, under excitation with a blue diode, with a conventional CMOS color camera. Good selectivity was achieved analyzing the red to green fluorescence intensity ratio. UV–Vis absorption, steady-state and time-resolved fluorescence spectroscopy, fluorescence anisotropy, fluorescence wide-field and confocal laser scanning microscopy allowed elucidating the mechanism of the staining in detail. Full article
(This article belongs to the Special Issue Microplastics Degradation and Characterization)
Show Figures

Graphical abstract

18 pages, 8347 KiB  
Article
Combined Manufacturing Process of Copper Electrodes for Micro Texturing Applications (AMSME)
by Carlos J. Sánchez, Pedro M. Hernández, María D. Martínez, María D. Marrero and Jorge Salguero
Materials 2021, 14(10), 2497; https://doi.org/10.3390/ma14102497 - 12 May 2021
Cited by 4 | Viewed by 2610
Abstract
Surface texturing has brought significant improvements in the functional properties of parts and components. Sinker electro discharge machining (SEDM) is one of the processes which generates great texturing results at different scale. An electrode is needed to reproduce the geometry to be textured. [...] Read more.
Surface texturing has brought significant improvements in the functional properties of parts and components. Sinker electro discharge machining (SEDM) is one of the processes which generates great texturing results at different scale. An electrode is needed to reproduce the geometry to be textured. Some geometries are difficult or impossible to achieve on an electrode using conventional and even unconventional machining methods. This work sets out the advances made in the manufacturing of copper electrodes for electro erosion by additive manufacturing, and their subsequent application to the functional texturing of Al-Cu UNS A92024-T3 alloy. A combined procedure of digital light processing (DLP) additive manufacturing, sputtering and micro-electroforming (AMSME), has been used to produce electrodes. Also, a specific laboratory equipment has been developed to reproduce details on a microscopic scale. Shells with outgoing spherical geometries pattern have been manufactured. AMSME process has shown ability to copper electrodes manufacturing. A highly detailed surface on a micrometric scale have been achieved. Copper shells with minimum thickness close to 300 µm have been tested in sinker electro discharge machining (SEDM) and have been shown very good performance in surface finishing operations. The method has shown great potential for use in surfaces texturing. Full article
Show Figures

Figure 1

Back to TopTop