Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (118)

Search Parameters:
Keywords = microfacies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 13420 KB  
Article
Bacteria-like Ferruginous Structures in Carboniferous Limestones as Remains of Post-Variscan Hydrothermal Activity in Southern Poland
by Marta Bąk, Krzysztof Bąk, Anna Wolska, Grzegorz Rzepa, Stanisław Szczurek, Piotr Strzeboński, Sławomir Bębenek and Piotr Dolnicki
Minerals 2025, 15(11), 1158; https://doi.org/10.3390/min15111158 (registering DOI) - 1 Nov 2025
Abstract
Structures resembling iron-related bacteria (IRB) have been found in the Mississippian limestones that form part of the carbonate platform in the Moravo-Silesian Basin that surrounds the Upper Silesian Block, an eastern margin of the Brunovistulicum. Microfacial, petrological, and geochemical analyses were used to [...] Read more.
Structures resembling iron-related bacteria (IRB) have been found in the Mississippian limestones that form part of the carbonate platform in the Moravo-Silesian Basin that surrounds the Upper Silesian Block, an eastern margin of the Brunovistulicum. Microfacial, petrological, and geochemical analyses were used to determine the bacteria-like structures that are present in narrow zones unrelated to bedding. We present here the morphology and chemistry of the studied microstructures showing their similarities to IRB from the present-day Sphaerotilus-Leptothrix group, the Galionella group, and the Mariprofundus ferrooxydans species. We suggest that bacterial growth occurred in the originally empty micropores of microfossil skeletons and shells, between bioclasts or in secondary voids formed during the selective dissolution of micrite or smaller sparite crystals. Hydrothermal solutions, associated probably with the post-Variscan magmatism in this area, provided iron compounds for the growth of the IRB. Full article
Show Figures

Figure 1

22 pages, 24589 KB  
Article
Genesis of Conventional Reservoirs in Braided Fluvial Tight Sandstones: Evidence from the He 1 Member, Upper Paleozoic, Southern Ordos Basin, China
by Xiaoqi Ding, Yi Wang, Jingyun Gao, Feilan Lin, Xiang Zhang, Shujie Han and Ying Zhu
Minerals 2025, 15(11), 1104; https://doi.org/10.3390/min15111104 - 23 Oct 2025
Viewed by 140
Abstract
The He 1 Member of the Xiashihezi Formation (Upper Paleozoic) in the Ordos Basin represents typical tight sandstones (Φ < 10%, k < 0.5 mD). However, against the extensive tight sandstone background of the He 1 Member in the southern basin, conventional reservoirs [...] Read more.
The He 1 Member of the Xiashihezi Formation (Upper Paleozoic) in the Ordos Basin represents typical tight sandstones (Φ < 10%, k < 0.5 mD). However, against the extensive tight sandstone background of the He 1 Member in the southern basin, conventional reservoirs (Φ > 12%, K > 1 mD) occur locally. Elucidating the genetic mechanism of these conventional reservoirs is critical for evaluating gas reservoirs in this region. Based on core descriptions and systematic sampling from cored wells, reservoir types are classified according to pore types and porosity in sandstones. Depositional microfacies, petrology, and diagenesis of each reservoir type are then investigated to ultimately elucidate the genetic mechanism of conventional reservoirs. Results demonstrate that intense compaction and quartz overgrowths are the primary controls on the development of the He 1 Member tight sandstones. Alteration of volcanic lithic fragments and volcanic ash matrix generated abundant intragranular dissolution pores and micropores within the matrix, while simultaneously producing substantial illite–smectite mixed-layer clays and chlorite clays. Additionally, this process supplied silica for quartz overgrowths. Moderate amounts of chlorite coatings can inhibit quartz overgrowths, thereby preserving residual intergranular porosity. Conventional reservoirs exhibit low lithic fragment content (<20 vol.%) and are characterized by a porosity assemblage of both intergranular (avg. 2.3%) and intragranular dissolution pores (avg. 6.5%). Their formation requires weak compaction, intense dissolution, and weak quartz overgrowths. These reservoirs develop within high-energy transverse bars that are sealed by overlying and underlying mudstones. Such transverse bars constitute closed intrastratal-diagenetic systems with restricted mass transfer during burial. This study provides a compelling example of diagenetic heterogeneity induced by variations in sandstone architecture within fluvial successions. Full article
(This article belongs to the Special Issue Natural and Induced Diagenesis in Clastic Rock)
Show Figures

Figure 1

18 pages, 7448 KB  
Article
Sedimentary Facies Characteristics of Coal Seam Roof at Qinglong and Longfeng Coal Mines
by Juan Fan, Enke Hou, Shidong Wang, Kaipeng Zhu, Yingfeng Liu, Kang Guo, Langlang Wang and Hongyan Yu
Processes 2025, 13(10), 3353; https://doi.org/10.3390/pr13103353 - 20 Oct 2025
Viewed by 251
Abstract
This study aims to investigate the sedimentary facies characteristics of the coal seam roof in the Qinglong and Longfeng coal mines and their control over water abundance. By collecting core samples and well logging data from both mining areas, multiple methods were employed, [...] Read more.
This study aims to investigate the sedimentary facies characteristics of the coal seam roof in the Qinglong and Longfeng coal mines and their control over water abundance. By collecting core samples and well logging data from both mining areas, multiple methods were employed, including core observation, thin-section analysis, sedimentary microfacies distribution mapping, nitrogen adsorption tests, and nuclear magnetic resonance analysis, to systematically analyze the depositional environments, types of sedimentary microfacies, and their distribution patterns. Results indicate that the roof of Qinglong Coal Mine is predominantly composed of sandy microfacies with well-developed faults, which not only increase fracture porosity but also provide water-conducting pathways between surface water and aquifers, significantly enhancing water abundance. In contrast, Longfeng Coal Mine is characterized mainly by muddy microfacies, with small-scale faults exhibiting weak water-conducting capacity and relatively low water abundance. Hydrochemical analysis indicates that consistent water quality between Qinglong’s working face, karst water, and goaf water confirms fault-induced aquifer–surface water connectivity, whereas Longfeng’s water quality suggests weak aquifer–coal seam hydraulic connectivity. The difference in water hazard threats between the two mining areas primarily stems from variations in sedimentary microfacies and fault structures. Full article
Show Figures

Figure 1

18 pages, 3724 KB  
Article
Reservoir Characteristics of Tight Sandstone in Different Sedimentary Microfacies: A Case Study of the Triassic Chang 8 Member in Longdong Area, Ordos Basin
by Jianchao Shi, Likun Cao, Baishun Shi, Shuting Shi, Xinjiu Rao, Xinju Liu, Wangyikun Fan, Sisi Chen and Hongyan Yu
Processes 2025, 13(10), 3246; https://doi.org/10.3390/pr13103246 - 12 Oct 2025
Viewed by 348
Abstract
The complexity of tight sandstone reservoirs challenges effective oil and gas exploration. The Chang 8 Member of the Yanchang Formation in the Longdong area of the Ordos Basin has significant exploration potential. However, its reservoir characteristics are controlled by two distinct provenance systems [...] Read more.
The complexity of tight sandstone reservoirs challenges effective oil and gas exploration. The Chang 8 Member of the Yanchang Formation in the Longdong area of the Ordos Basin has significant exploration potential. However, its reservoir characteristics are controlled by two distinct provenance systems and diverse sedimentary microfacies. The specific impacts of these factors on reservoir quality and their relative importance have remained unclear. This study employs an integrated analytical approach combining casting thin sections, conventional porosity-permeability measurements, and Nuclear Magnetic Resonance (NMR) to systematically investigate the petrological characteristics, pore structure, and physical properties of the Chang 8 reservoirs. Our findings reveal that the entire section of Chang 8 is a delta front subfacies, with sub sections of Chang 81 and 82 developing microfacies such as underwater distributary channels, underwater natural levees, sheet sand and mouth bars. The tight sandstone reservoir is mainly composed of lithic arkose and feldspathic litharenite, with its porosity dominated by dissolution and intergranular types. These secondary pores, particularly those resulting from feldspar dissolution, are of great importance. The underwater distributary channels have the best pores, followed by sheet sands, and underwater natural levees the worst. Compaction in Chang 82 is stronger than in Chang 81, leading to smaller pores. The northwest provenance is characterized by high clay content and small pores, while the southwest provenance has coarser grain size and better-preserved intergranular pores. Reservoir properties improve toward the lake but deteriorate at the lake-proximal end due to more small pores. This study reveals the control laws of sedimentary microfacies, provenance, and diagenesis on the pore development of tight sandstone in the Longdong area, providing theoretical guidance for the exploration and development of tight sandstone oil and gas in the region. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

22 pages, 10743 KB  
Article
Prediction of Favorable Sand Bodies in Fan Delta Deposits of the Second Member in Baikouquan Formation, X Area of Mahu Sag, Junggar Basin
by Jingyuan Wang, Xu Chen, Xiaohu Liu, Yuxuan Huang and Ao Su
Appl. Sci. 2025, 15(20), 10908; https://doi.org/10.3390/app152010908 - 10 Oct 2025
Viewed by 365
Abstract
The prediction of thin-bedded, favorable sand bodies within the Triassic Baikouquan Formation fan delta on the western slope of the Mahu Sag is challenging due to their strong spatial heterogeneity. To address this, we propose an integrated workflow that synergizes seismic sedimentology with [...] Read more.
The prediction of thin-bedded, favorable sand bodies within the Triassic Baikouquan Formation fan delta on the western slope of the Mahu Sag is challenging due to their strong spatial heterogeneity. To address this, we propose an integrated workflow that synergizes seismic sedimentology with geologically constrained seismic inversion. This study leverages well logging, core data, and 3D seismic surveys. Initially, seismic attribute analysis and stratal slicing were employed to delineate sedimentary microfacies, revealing that the fan delta front subfacies comprises subaqueous distributary channels, interdistributary bays, and distal bars. Subsequently, the planform distribution of these microfacies served as a critical constraint for the Seismic Waveform Indicative Inversion (SWII), effectively enhancing the resolution for thin sand body identification. The results demonstrate the following: (1). Two NW-SE trending subaqueous distributary channel systems, converging near the BAI65 well, form the primary reservoirs. (2). The SWII, optimized by our workflow, successfully predicts high-quality sand bodies with a cumulative area of 159.2 km2, primarily located in the MAXI1, AIHU10, and AICAN1 well areas, as well as west of the MA18 well. This study highlights the value of integrating sedimentary facies boundaries as a geological constraint in seismic inversion, providing a more reliable method for predicting heterogeneous thin sand bodies and delineating future exploration targets in the Mahu Sag. Full article
Show Figures

Figure 1

21 pages, 10673 KB  
Article
Sedimentary Environment and Evolution of the Lower Cretaceous Jiufotang Formation in the Pijiagou and Tanjiagou Sections, Southern Fuxin Basin, NE China
by Yiming Huang, Shichao Li, Fei Xiao, Lei Shi, Yulai Yao and Jianguo Yang
Appl. Sci. 2025, 15(19), 10637; https://doi.org/10.3390/app151910637 - 1 Oct 2025
Viewed by 317
Abstract
The Lower Cretaceous Jiufotang Formation in the Fuxin Basin contains a proven petroleum system. However, its southern part remains underexplored due to limited drilling and fragmentary sedimentary studies. To address this issue, we conducted detailed sedimentological logging of the two typical outcrop sections, [...] Read more.
The Lower Cretaceous Jiufotang Formation in the Fuxin Basin contains a proven petroleum system. However, its southern part remains underexplored due to limited drilling and fragmentary sedimentary studies. To address this issue, we conducted detailed sedimentological logging of the two typical outcrop sections, Pijiagou and Tanjiagou. Field observations, petrographic data, and grain-size analysis were integrated to decipher hydrodynamic conditions, calibrate microfacies associations, and reconstruct the sedimentary evolution through facies stacking pattern analysis. The results show that the Jiufotang Formation predominantly consists of calcareous fine-grained clastic rocks, with poorly sorted sandstones indicative of low-energy conditions. Sediment transport mechanisms include both traction and turbidity currents, with suspension being predominant. The succession records a depositional transition from fan-delta to lacustrine environments. Two subfacies, fan-delta front and shore-shallow lacustrine, were identified and subdivided into seven microfacies: subaqueous distributary channels, interdistributary bays, subaqueous levees, mouth bars, muddy shoals, sandy shoals, and carbonate shoals. The sedimentary evolution reflects an initial lacustrine transgression followed by regression, interrupted by multiple lacustrine-level fluctuations. The alternating depositional pattern of lacustrine and deltaic facies has formed complete source-reservoir-seal assemblages in the Jiufotang Formation in the study area, making it a potential favorable target for hydrocarbon accumulation. Full article
(This article belongs to the Topic Advanced Technology for Oil and Nature Gas Exploration)
Show Figures

Figure 1

18 pages, 7190 KB  
Article
Lithofacies Characteristics and Sedimentary Evolution of the Lianggaoshan Formation in the Southeastern Sichuan Basin
by Qingshao Liang, Qianglu Chen, Yunfei Lu, Yanji Li, Jianxin Tu, Guang Yang and Longhui Gao
Minerals 2025, 15(9), 1003; https://doi.org/10.3390/min15091003 - 22 Sep 2025
Viewed by 450
Abstract
The Lower Submember of the Second Member of the Lianggaoshan Formation (LGS2-LS) in the Fuling area, southeastern Sichuan Basin, represents the deepest lacustrine depositional stage of the formation and constitutes an important target for shale oil and gas exploration. Based on core observations, [...] Read more.
The Lower Submember of the Second Member of the Lianggaoshan Formation (LGS2-LS) in the Fuling area, southeastern Sichuan Basin, represents the deepest lacustrine depositional stage of the formation and constitutes an important target for shale oil and gas exploration. Based on core observations, thin-section petrography, X-ray diffraction, geochemical analyses, and sedimentary facies interpretation from representative wells, this study characterizes the lithofacies types, sedimentary environments, and depositional evolution of the LGS2-LS. Results show that the LGS2-LS is dominated by clay–quartz assemblages, with average clay mineral and quartz contents of 44.6% and 38.8%, respectively, and can be subdivided into shallow and semi-deep lacustrine subfacies comprising eight microfacies. Geochemical proxies indicate alternating warm-humid and hot-arid paleoclimatic phases, predominantly freshwater conditions, variable redox states, and fluctuations in paleoproductivity. Sedimentary evolution reveals multiple transgressive–regressive cycles, with Sub-layer 6 recording the maximum water depth and deposition of thick organic-rich shales under strongly reducing conditions. The proposed sedimentary model outlines a terrigenous clastic lacustrine system controlled by lake-level fluctuations, transitioning from littoral to shallow-lake to semi-deep-lake environments. The distribution of high-quality organic-rich shales interbedded with sandstones highlights the LGS2-LS as a favorable interval for shale oil and gas accumulation, providing a geological basis for further hydrocarbon exploration in the southeastern Sichuan Basin. Full article
(This article belongs to the Special Issue Sedimentary Basins and Minerals)
Show Figures

Figure 1

18 pages, 4138 KB  
Article
Classification of Thin-Section Rock Images Using a Combined CNN and SVM Approach
by İlhan Aydın, Taha Kubilay Şener, Ayşe Didem Kılıç and Hüseyin Derviş
Minerals 2025, 15(9), 976; https://doi.org/10.3390/min15090976 - 15 Sep 2025
Viewed by 1193
Abstract
The accurate classification of rocks is crucial for applications such as earthquake prediction, resource exploration, and geological analysis. Traditional methods rely on expert examination of thin-section images under a microscope, making the process time-consuming and prone to errors. Recent advancements in deep learning [...] Read more.
The accurate classification of rocks is crucial for applications such as earthquake prediction, resource exploration, and geological analysis. Traditional methods rely on expert examination of thin-section images under a microscope, making the process time-consuming and prone to errors. Recent advancements in deep learning have emerged as a powerful tool for automated rock classification; however, distinguishing between similar rock types such as sedimentary, metamorphic, and magmatic rocks remains a challenge. This study proposes a novel hybrid convolutional neural network (CNN) approach that combines the strengths of VGG16 and EfficientNetV2 architectures for the classification of thin-section rock images. The model, developed using the Feature-Selected Hybrid Network (FSHNet), demonstrates significant improvements over individual models, achieving a 5% increase in accuracy compared to Efficient-NetV2B0 and a 9% increase compared to VGG16. By employing the ReliefF algorithm for feature selection and Support Vector Machines (SVMs) for classification, the model further reduces the dimensionality of the feature space, enhancing computational efficiency. The proposed model has been applied to two different rock datasets. The first dataset consists of 2634 images, categorized into sedimentary, metamorphic, and magmatic rock classes. Additionally, the approach was tested on a second dataset comprising petrographic microfacies images, demonstrating its effectiveness in multiclass geological structure classification. Validation on both datasets shows that the proposed method outperforms popular deep learning models and previous studies, achieving a 3% increase in accuracy. These results highlight that the proposed approach provides a robust and efficient solution for automated rock classification, offering significant advancements for geological research and real-world applications. Full article
(This article belongs to the Special Issue Thin Sections: The Past Serving The Future)
Show Figures

Figure 1

17 pages, 9993 KB  
Article
Evaluation of Tight Gas Reservoirs and Characteristics of Fracture Development: A Case Study of the He 8 Member in the Western Sulige Area, Ordos Basin
by Zhaoyu Zhang, Jingong Zhang, Zhiqiang Chen and Wanting Wang
Processes 2025, 13(9), 2838; https://doi.org/10.3390/pr13092838 - 4 Sep 2025
Viewed by 3053
Abstract
This study focuses on the tight sandstone reservoirs of the He 8 Member (Lower Permian Shihezi Formation) in the western Sulige area, Ordos Basin. Multiple analytical methods were integrated, including core observation, thin-section analysis, X-ray diffraction (XRD), and rock mechanics experiments, to systematically [...] Read more.
This study focuses on the tight sandstone reservoirs of the He 8 Member (Lower Permian Shihezi Formation) in the western Sulige area, Ordos Basin. Multiple analytical methods were integrated, including core observation, thin-section analysis, X-ray diffraction (XRD), and rock mechanics experiments, to systematically evaluate the reservoir’s petrology, pore microstructure, physical properties, and fracture formation mechanisms. Results indicate that the reservoir is primarily composed of quartz arenite (78%), characterized by low porosity (avg. 5.5%) and permeability (avg. 0.15 mD). The pore system comprises dissolution pores, lithic dissolution pores, intergranular pores, and intercrystalline pores. Depositional microfacies significantly influence reservoir quality. Subaqueous distributary channel sands exhibit the best properties (porosity > 5%), followed by mouth bar deposits. The reservoir experienced intense compaction and siliceous cementation, which considerably reduced primary porosity. In contrast, dissolution and tectonic fracturing processes significantly enhanced reservoir quality. Rock mechanics tests reveal that highly heterogeneous rocks are more prone to fracturing under differential stress (σ1–σ3). These fractures considerably improve the flow capacity of tight reservoirs. Full article
Show Figures

Figure 1

20 pages, 6322 KB  
Article
Alluvial Fan Fringe Reservoir Architecture Anatomy—A Case Study of the X4-X5 Section of the Xihepu Formation in the Kekeya Oilfield
by Baiyi Zhang, Lixin Wang and Yanshu Yin
Appl. Sci. 2025, 15(15), 8547; https://doi.org/10.3390/app15158547 - 31 Jul 2025
Viewed by 537
Abstract
The Kekeya oilfield is located at the southwestern edge of the Tarim Basin, in the southern margin of the Yecheng depression, at the western end of the second structural belt of the northern foothills of the Kunlun Mountains. It is one of the [...] Read more.
The Kekeya oilfield is located at the southwestern edge of the Tarim Basin, in the southern margin of the Yecheng depression, at the western end of the second structural belt of the northern foothills of the Kunlun Mountains. It is one of the important oil and gas fields in western China, with significant oil and gas resource potential in the X4-X5 section of the Xihepu Formation. This study focuses on the edge of the alluvial fan depositional system, employing various techniques, including core data and well logging data, to precisely characterize the sand body architecture and comprehensively analyze the reservoir architecture in the study area. First, the regional geological background of the area is analyzed, clarifying the sedimentary environment and evolutionary process of the Xihepu Formation. Based on the sedimentary environment and microfacies classification, the sedimentary features of the region are revealed. On this basis, using reservoir architecture element analysis, the interfaces of the reservoir architecture are finely subdivided. The spatial distribution characteristics of the planar architecture are discussed, and the spatial distribution and internal architecture of individual sand body units are analyzed. The study focuses on the spatial combination of microfacies units along the profile and their internal distribution patterns. Additionally, a quantitative analysis of the sizes of various types of sand bodies is conducted, constructing the sedimentary model for the region and revealing the control mechanisms of different sedimentary architectures on reservoir properties and oil and gas accumulation patterns. This study pioneers a quantitative model for alluvial fan fringe in gentle-slope basins, featuring the following: (1) lobe width-thickness ratios (avg. 128), (2) four base-level-sensitive boundary markers, and (3) a retrogradational stacking mechanism. The findings directly inform reservoir development in analogous arid-climate systems. This research not only provides a scientific basis for the exploration and development of the Kekeya oilfield but also serves as an important reference for reservoir architecture studies in similar geological contexts. Full article
Show Figures

Figure 1

22 pages, 11338 KB  
Article
Genesis of Clastic Reservoirs in the First Member of Yaojia Formation, Northern Songliao Basin
by Junhui Li, Qiang Zheng, Yu Cai, Huaye Liu, Tianxin Hu and Haiguang Wu
Minerals 2025, 15(8), 795; https://doi.org/10.3390/min15080795 - 29 Jul 2025
Viewed by 423
Abstract
This study focuses on the clastic reservoir in the first member of Yaojia Formation within Qijia-Gulong Sag, Songliao Basin. The results indicate that the reservoir in the study area develops within a shallow-water delta sedimentary system. The dominant sedimentary microfacies comprise underwater distributary [...] Read more.
This study focuses on the clastic reservoir in the first member of Yaojia Formation within Qijia-Gulong Sag, Songliao Basin. The results indicate that the reservoir in the study area develops within a shallow-water delta sedimentary system. The dominant sedimentary microfacies comprise underwater distributary channels, mouth bars, and sheet sands. Among these, the underwater distributary channel microfacies exhibits primary porosity ranging from 15.97% to 17.71%, showing the optimal reservoir quality, whereas the sheet sand microfacies has a porosity of only 7.45% to 12.08%, indicating inferior physical properties. During diagenesis, compaction notably decreases primary porosity via particle rearrangement and elastic deformation, while calcite cementation and quartz overgrowth further occlude pore throats. Although dissolution can generate secondary porosity (locally up to 40%), the precipitation of clay minerals tends to block pore throats, leading to “ineffective porosity” (permeability generally < 5 mD) and overall low-porosity and low-permeability characteristics. Carbon–oxygen isotope analysis reveals a deficiency in organic acid supply in the study area, restricting the intensity of dissolution alteration. Reservoir quality evolution is dominantly governed by the combined controls of sedimentary microfacies and diagenesis. This study emphasizes that, within shallow-water delta sedimentary settings, the material composition of sedimentary microfacies and the dynamic equilibrium of diagenetic processes jointly govern reservoir property variations. This insight provides critical theoretical support for understanding diagenetic evolution mechanisms in clastic reservoirs and enabling precise prediction of high-quality reservoir distribution. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

19 pages, 15236 KB  
Article
Sedimentary Characteristics and Model of Estuary Dam-Type Shallow-Water Delta Front: A Case Study of the Qing 1 Member in the Daqingzijing Area, Songliao Basin, China
by Huijian Wen, Weidong Xie, Chao Wang, Shengjuan Qian and Cheng Yuan
Appl. Sci. 2025, 15(15), 8327; https://doi.org/10.3390/app15158327 - 26 Jul 2025
Viewed by 2526
Abstract
The sedimentary characteristics and model of the shallow-water delta front are of great significance for the development of oil and gas reservoirs. At present, there are great differences in the understanding of the distribution patterns of estuary dams in the shallow-water delta front. [...] Read more.
The sedimentary characteristics and model of the shallow-water delta front are of great significance for the development of oil and gas reservoirs. At present, there are great differences in the understanding of the distribution patterns of estuary dams in the shallow-water delta front. Therefore, this paper reveals the distribution characteristics of estuary dams through the detailed dissection of the Qing 1 Member in the Daqingzijing area and establishes a completely new distribution pattern of estuary dams. By using geological data such as logging and core measurements, sedimentary microfacies at the shallow-water delta front are classified and logging facies identification charts for each sedimentary microfacies are developed. Based on the analysis of single-well and profile facies, the sedimentary evolution laws of the Qing 1 Member reservoirs are analyzed. On this basis, the sedimentary characteristics and model of the lacustrine shallow-water delta front are established. The results indicate that the Qing 1 Member in the Daqingzijing area exhibits a transitional sequence from a delta front to pro-delta facies and finally to deep lacustrine facies, with sediments continuously retrograding upward. Subaqueous distributary channels and estuary dams constitute the skeletal sand bodies of the retrogradational shallow-water delta. The estuary dam sand bodies are distributed on both sides of the subaqueous distributary channels, with sand body development gradually decreasing in scale from bottom to top. These bodies are intermittently distributed, overlapping, and laterally connected in plan view, challenging the conventional understanding that estuary dams only occur at the bifurcation points of underwater distributary channels. Establishing the sedimentary characteristics and model of the shallow-water delta front is of great significance for the exploration and development of reservoirs with similar sedimentary settings. Full article
Show Figures

Figure 1

23 pages, 30355 KB  
Article
Controls on Stylolite Formation in the Upper Cretaceous Kometan Formation, Zagros Foreland Basin, Iraqi Kurdistan
by Hussein S. Hussein, Ondřej Bábek, Howri Mansurbeg, Juan Diego Martín-Martín and Enrique Gomez-Rivas
Minerals 2025, 15(7), 761; https://doi.org/10.3390/min15070761 - 20 Jul 2025
Viewed by 1260
Abstract
Stylolites are ubiquitous diagenetic products in carbonate rocks. They play a significant role in enhancing or reducing fluid flow in subsurface reservoirs. This study unravels the relationship between stylolite networks, carbonate microfacies, and the elemental geochemistry of Upper Cretaceous limestones of the Kometan [...] Read more.
Stylolites are ubiquitous diagenetic products in carbonate rocks. They play a significant role in enhancing or reducing fluid flow in subsurface reservoirs. This study unravels the relationship between stylolite networks, carbonate microfacies, and the elemental geochemistry of Upper Cretaceous limestones of the Kometan Formation (shallow to moderately deep marine) in Northern Iraq. Stylolites exhibit diverse morphologies across mud- and grain-supported limestone facies. Statistical analyses of stylolite spacing, wavelength, amplitude, and their intersections and connectivity indicate that grain size, sorting, and mineral composition are key parameters that determine the geometrical properties of the stylolites and stylolite networks. Stylolites typically exhibit weak connectivity and considerable vertical spacing when hosted in packstone facies with moderate grain sorting. Conversely, mud-supported limestones, marked by poor sorting and high textural heterogeneity, host well-developed stylolite networks characterized by high amplitude and frequent intersections, indicating significant dissolution and deformation processes. Stylolites in mud-supported facies are closely spaced and present heightened amplitudes and intensified junctions, with suture and sharp-peak type. This study unveils that stylolites can potentially enhance porosity in the studied formation. Full article
(This article belongs to the Special Issue Stylolites: Development, Properties, Inversion and Scaling)
Show Figures

Figure 1

23 pages, 20063 KB  
Article
The Genesis of a Thin-Bedded Beach-Bar System Under the Strike-Slip Extensional Tectonic Framework: A Case Study in the Bohai Bay Basin
by Jing Wang, Youbin He, Hua Li, Bin Feng, Zhongxiang Zhao, Xing Yu and Xiangyang Hou
Appl. Sci. 2025, 15(14), 7964; https://doi.org/10.3390/app15147964 - 17 Jul 2025
Viewed by 546
Abstract
The lower sub-member of Member 2, Dongying Formation (Paleogene) in the HHK Depression hosts an extensively developed thin-bedded beach-bar system characterized by favorable source rock conditions and reservoir properties, indicating significant hydrocarbon exploration potential. Integrating drilling cores, wireline log interpretations, three-dimensional seismic data, [...] Read more.
The lower sub-member of Member 2, Dongying Formation (Paleogene) in the HHK Depression hosts an extensively developed thin-bedded beach-bar system characterized by favorable source rock conditions and reservoir properties, indicating significant hydrocarbon exploration potential. Integrating drilling cores, wireline log interpretations, three-dimensional seismic data, geochemical analyses, and palynological data, this study investigates the sedimentary characteristics, sandbody distribution patterns, controlling factors, and genetic model of this lacustrine beach-bar system. Results reveal the following: (1) widespread thin-bedded beach-bar sandbodies dominated by fine-grained sandstones and siltstones, exhibiting wave ripples and low-angle cross-bedding; (2) two vertical stacking patterns, Type A, thick mudstone intervals intercalated with laterally continuous thin sandstone layers, and Type B, composite sandstones comprising thick sandstone units overlain by thin sandstone beds, both demonstrating significant lateral continuity; (3) three identified microfacies: bar-core, beach-core, and beach-margin facies; (4) key controls on sandbody development: paleoenvironmental evolution establishing the depositional framework, secondary fluctuations modulating depositional processes, strike-slip extensional tectonics governing structural zonation, paleobathymetry variations and paleotopography controlling distribution loci, and provenance clastic influx regulating scale and enrichment (confirmed by detrital zircon U-Pb dating documenting a dual provenance system). Collectively, these findings establish a sedimentary model for a thin-bedded beach-bar system under the strike-slip extensional tectonic framework. Full article
(This article belongs to the Special Issue Advances in Reservoir Geology and Exploration and Exploitation)
Show Figures

Figure 1

13 pages, 1060 KB  
Article
Study on Injection Allocation Technology of Layered Water Injection in Oilfield Development
by Xianing Li, Bing Hou, He Liu, Hao Guo and Jiqun Zhang
Energies 2025, 18(13), 3502; https://doi.org/10.3390/en18133502 - 2 Jul 2025
Viewed by 377
Abstract
Reservoir heterogeneity, fluid property variations, and permeability contrasts across different geological layers result in significant disparities in water absorption capacities during oilfield development, often leading to premature water breakthrough, uneven sweep efficiency, and suboptimal waterflooding outcomes. The accurate determination of layer-specific water injection [...] Read more.
Reservoir heterogeneity, fluid property variations, and permeability contrasts across different geological layers result in significant disparities in water absorption capacities during oilfield development, often leading to premature water breakthrough, uneven sweep efficiency, and suboptimal waterflooding outcomes. The accurate determination of layer-specific water injection volumes is critical to addressing these challenges. This study focuses on a study area in China, employing comprehensive on-site investigations to evaluate the current state of layered water injection practices. The injection allocation strategy was optimized using a hybrid approach combining the splitting coefficient method and grey correlation analysis. Key challenges identified in the study area include severe reservoir heterogeneity, poor injection–production correspondence, rapid water cut escalation, and low recovery rates. Seven dominant influencing factors—the sedimentary microfacies coefficient, effective thickness, stimulation factor, well spacing, permeability, connectivity, and permeability range coefficient—were identified through grey correlation analysis. Field application of the proposed method across fourteen wells demonstrated significant improvements: a monthly oil production increase of 40 tons, a water production reduction of 399.24 m3/month, and a 2.45% decline in the water cut. The obtained results substantiate the method’s capability in resolving interlayer conflicts, optimizing oil recovery performance, and effectively controlling water channeling problems. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

Back to TopTop