Lithofacies Characteristics and Sedimentary Evolution of the Lianggaoshan Formation in the Southeastern Sichuan Basin
Abstract
1. Introduction
2. Regional Geological Background
3. Samples and Methods
3.1. Sample Collection
3.2. Core Analysis
3.3. Laboratory Testing
3.4. Sedimentary Facies Interpretation
4. Results
4.1. Lithofacies Classification
4.2. Sedimentary Facies Characteristics of the LGS2-LS
5. Discussion
5.1. Analysis of Factors Controlling the Depositional Environment
5.2. Depositional Evolution of the LGS2-LS
5.3. Sedimentary Model and Petroleum Geological Significance
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, Y.; Liang, Q.; Tian, J.; Yu, Y.; Li, Y.; Chen, C.; Wang, D. Correlation and response of astronomical forcing in lacustrine deposits of the middle jurassic, sichuan basin, southwest China. Mar. Pet. Geol. 2024, 166, 106905. [Google Scholar] [CrossRef]
- Chen, S.; Wang, X.; Li, X.; Sui, J.; Yang, Y.; Yang, Q.; Li, Y.; Dai, C. Geophysical prediction technology for sweet spots of continental shale oil: A case study of the Lianggaoshan Formation, Sichuan Basin, China. Fuel 2024, 365, 131146. [Google Scholar] [CrossRef]
- Zou, C.; Yang, Z.; Sun, S.; Zhao, Q.; Bai, W.; Liu, H.; Pan, S.; Wu, S.; Yuan, Y. “Exploring petroleum inside source kitchen”: Shale oil and gas in Sichuan Basin. Sci. China Earth Sci. 2020, 63, 934–953. [Google Scholar] [CrossRef]
- Ma, X.; Xie, J. The progress and prospects of shale gas exploration and development in southern Sichuan Basin, SW China. Pet. Explor. Dev. 2018, 45, 172–182. [Google Scholar] [CrossRef]
- Dong, D.; Shi, Z.; Guan, Q.; Jiang, S.; Zhang, M.; Zhang, C.; Wang, S.; Sun, S.; Yu, R.; Liu, D.; et al. Progress, challenges and prospects of shale gas exploration in the Wufeng–Longmaxi reservoirs in the Sichuan Basin. Nat. Gas Ind. B 2018, 5, 415–424. [Google Scholar] [CrossRef]
- Cheng, D.; Zhang, Z.; Hong, H.; Zhang, S.; Qin, C.; Yuan, X.; Zhang, B.; Zhou, C.; Deng, Q. Sequence structure, sedimentary evolution and their controlling factors of the Jurassic Lianggaoshan Formation in the East Sichuan Basin, SW China. Pet. Explor. Dev. 2023, 50, 293–305. [Google Scholar] [CrossRef]
- Jiang, N.; Wang, X.; Zhou, H.; Luo, L.; Tan, X.; Zhu, Y.; Gluyas, J.; Liu, J.; Gao, X.; Li, Z.; et al. Coevolutionary Diagenesis in Tight Sandstone and Shale Reservoirs within Lacustrine-Delta Systems: A Case Study from the Lianggaoshan Formation in the Eastern Sichuan Basin, Southwest China. Minerals 2024, 14, 335. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, H.; Wang, Z.; Wang, X.; Cao, Q.; Cheng, D.; Zhu, Y.; Li, A. Characteristics and Factors Influencing Pore Structure in Shale Oil Reservoirs of Different Lithologies in the Jurassic Lianggaoshan Formation of the Yingshan Gas Field in Central Sichuan Basin. Minerals 2023, 13, 958. [Google Scholar] [CrossRef]
- Kong, X.; Jiang, Z.; Han, C.; Zhang, R. Organic matter enrichment and hydrocarbon accumulation models of the marlstone in the Shulu Sag, Bohai Bay Basin, Northern China. Int. J. Coal Geol. 2020, 217, 103350. [Google Scholar] [CrossRef]
- Mishra, S.; Peketi, A.; Hazra, B.; Da Silva, R.; Mazumdar, A. Nature and hydrocarbon potential of organic matter in offshore Mahanadi Basin, east coast of India. J. Earth Syst. Sci. 2023, 132, 108. [Google Scholar] [CrossRef]
- Wang, J.; Li, B.; Shao, H.; Zhang, Y.; Zhang, C.; Gao, B.; Jiang, Z.; Qiu, H.; Li, X. Geochemical and Reservoir Characteristics of the Middle-High-Mature Shale of the Jurassic Lianggaoshan Formation in Northeast Sichuan Basin and Their Influence on Shale Oil Enrichment. ACS Omega 2025, 10, 14094–14114. [Google Scholar] [CrossRef]
- Wang, X.; Wang, M.; Zhao, C.; Yang, X.; Jia, Y.; Wu, R.; Li, T.; Zhao, X.; Tang, Y. Reservoir characteristics and controlling factors of the middle–high maturity multiple lithofacies reservoirs of the Lianggaoshan Formation shale strata in the northeastern Sichuan basin, China. Mar. Pet. Geol. 2024, 161, 106692. [Google Scholar] [CrossRef]
- Fang, Z.; Zhang, L.; Ma, C. Development and controlling factors of shale lithofacies cycles in a continental rift basin: A case study of Es4u in the Boxing Subsag of Dongying Sag, Bohai Bay Basin, China. Front. Earth Sci. 2023, 11, 1136012. [Google Scholar] [CrossRef]
- Bai, X.; Wang, X.; Wang, M.; Li, J.; Lu, S.; Yang, X.; Jia, Y.; Wu, R.; Li, T.; Wang, Y. Occurrence characteristics and factors that influence shale oil in the Jurassic Lianggaoshan Formation, northeastern Sichuan Basin. Mar. Pet. Geol. 2025, 171, 107197. [Google Scholar] [CrossRef]
- Luo, X.; Gao, X.; Luo, L.; Liu, J.; Wang, J.; Zhou, H.; Yang, X.; Yu, X.; Chen, L.; Gou, Z.; et al. Study on natural gas-source correlation and hydrocarbon accumulation of the Lianggaoshan Formation in the east of Sichuan Basin, China. Acta Geochim. 2024, 44, 547–572. [Google Scholar] [CrossRef]
- Wang, P.; Liu, Z.; Zhang, D.; Li, X.; Liu, H.; Zhou, L.; Li, P. Source rock and reservoir qualities of middle Jurassic Lianggaoshan lacustrine shale at fuxing area, Sichuan Basin: Implication for shale-oil enrichment. Unconv. Resour. 2023, 3, 37–43. [Google Scholar] [CrossRef]
- Wang, J.; Shao, H.; Zhang, Y.; Jiang, Z.; Gao, B.; Li, L.; Pan, H.; Wang, H.; Lu, X.; Qiu, H.; et al. Multifractal characteristics of pore structure in the terrestrial shale reservoirs of the Lianggaoshan formation in northeast sichuan basin and its geological significance. Front. Earth Sci. 2025, 13, 1505090. [Google Scholar] [CrossRef]
- Li, N.; Hong, H.; Li, G.; Zhou, H.; Jia, M.; Kang, J. Geological characteristics of shale oil and gas of Lianggaoshan Formation in high-steep structural zone, Sichuan Basin. Nat. Gas Explor. Dev. 2022, 45, 86–95. [Google Scholar]
- Liu, B.; Wang, H.; Fu, X.; Bai, Y.; Bai, L.; Jia, M.; He, B. Lithofacies and depositional setting of a highly prospective lacustrine shale oil succession from the Upper Cretaceous Qingshankou Formation in the Gulong sag, northern Songliao Basin, northeast China. AAPG Bull. 2019, 103, 405–432. [Google Scholar] [CrossRef]
- Sun, N.; Chen, T.; Gao, J.; Zhong, J.; Huo, Z.; Qu, J. Lithofacies and reservoir characteristics of saline lacustrine fine-grained sedimentary rocks in the northern Dongpu Sag, Bohai Bay Basin: Implications for shale oil exploration. J. Asian Earth Sci. 2023, 252, 105686. [Google Scholar] [CrossRef]
- Nie, H.; Ma, X.; Yu, C.; Ye, X.; Bian, R.; Liu, Z. Shale gas reservoir characteristics and its exploration potential-analysis on the Lower Jurassic shale in the eastern Sichuan Basin. Oil Gas Geol. 2017, 38, 438–447. [Google Scholar]
- Fang, R.; Jiang, Y.; Sun, S.; Luo, Y.; Qi, L.; Dong, D.; Lai, Q.; Luo, Y.; Jiang, Z. Controlling factors of organic matter accumulation and lacustrine shale distribution in Lianggaoshan Formation, Sichuan Basin, SW China. Front. Earth Sci. 2023, 11, 1218215. [Google Scholar] [CrossRef]
- Sun, S.; Dong, D.; Li, Y.; Wang, H.; Shi, Z.; Huang, S.; Chang, Y.; Bai, W. Geological characteristics and controlling factors of hydrocarbon accumulation in terrestrial shale in the Da’anzhai Member of the Jurassic Ziliujing Formation, Sichuan Basin. Oil Gas Geol. 2021, 42, 124–135. [Google Scholar]
- Liu, Z.; Liu, G.; Hu, Z.; Feng, D.; Zhu, T.; Bian, R.; Jiang, T.; Jin, Z. Lithofacies types and assemblage features of continental shale strata and their significance for shale gas exploration: A case study of the Middle and Lower Jurassic strata in the Sichuan Basin. Nat. Gas Ind. 2019, 39, 10–21. [Google Scholar]
- Fu, X.L.; Liu, M. The microfacies characteristics and oil and gas enrichment patterns of organic rich mudstone in the Lianggaoshan Formation in the Fuling area. Block Oil Gas Field 2023, 30, 230–237. [Google Scholar]
- Zhong, Q. Study on Sedimentary Facies and Reservoir Characteristics of Lianggaoshan Formation of Gongshan Miao Oilfield in Central Sichuan. Master’s Thesis, Southwest Petroleum University, Chengdu, China, 2018. [Google Scholar]
- Ma, K.; Wen, L.; Zhang, B.; Li, Y.; Zhong, J.; Wang, Y.; Peng, H.; Zhang, X.; Yan, W.; Ding, Y.; et al. Segmented evolution of Deyang–Anyue erosion rift trough in Sichuan Basin and its significance for oil and gas exploration, SW China. Pet. Explor. Dev. 2022, 49, 313–326. [Google Scholar] [CrossRef]
- Zhang, Y.-X.; Zheng, B.; Zhang, X.-L.; Huang, P. Unraveling the Early Devonian provenance of the Longmenshan region through detrital zircon records: Implications for floral differentiation in South China. Palaeoworld 2024, 33, 570–583. [Google Scholar]
- Liu, S.; Yang, Y.; Deng, B.; Zhong, Y.; Wen, L.; Sun, W.; Li, Z.; Jansa, L.; Li, J.; Song, J.; et al. Tectonic evolution of the Sichuan Basin, Southwest China. Earth Sci. Rev. 2021, 213, 103470. [Google Scholar] [CrossRef]
- Yan, Z.; Tian, Y.; Li, R.; Vermeesch, P.; Sun, X.; Li, Y.; Rittner, M.; Carter, A.; Shao, C.; Huang, H.; et al. Late Triassic tectonic inversion in the upper Yangtze Block: Insights from detrital zircon U–Pb geochronology from south-western Sichuan Basin. Basin Res. 2018, 31, 92–113. [Google Scholar]
- Chen, Z.; Li, W.; Wang, L.; Lei, Y.; Yang, G.; Zhang, B.; Yin, H.; Yuan, B. Structural geology and favorable exploration prospect belts in northwestern Sichuan Basin, SW China. Pet. Explor. Dev. 2019, 46, 413–425. [Google Scholar] [CrossRef]
- Hu, D.; Wei, Z.; Liu, R.; Wei, X.; Liu, Z.; Chen, F. Major breakthrough of shale oil and gas in Well Taiye 1 in Bashansi Syncline in the Sichuan Basin and its significance. China Pet. Explor. 2021, 26, 21–32. [Google Scholar]
- Hu, D.; Wei, Z.; Liu, R.; Wei, X.; Chen, F.; Liu, Z. Enrichment control factors and exploration potential of lacustrine shale oil and gas: A case study of Jurassic in the Fuling area of the Sichuan Basin. Nat. Gas Ind. B 2022, 9, 1–8. [Google Scholar] [CrossRef]
- Qian, T.; Li, W.; Liu, S. Early to Middle Jurassic sedimentation within the northern Sichuan Basin in response to exhumation of the South Qinling orogenic belt, central China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2023, 630, 111805. [Google Scholar] [CrossRef]
- Huang, D.; Qi, M.; Deng, X.; Huang, Y.; Wang, H.; Li, X. Organic Matter Accumulation Model of Jurassic Lianggaoshan Shale Under Lake-Level Variations in Sichuan Basin: Insights from Environmental Conditions. Minerals 2025, 15, 159. [Google Scholar] [CrossRef]
- Hou, L.; Huang, H.; Yang, C.; Ma, W. Experimental Simulation of Hydrocarbon Expulsion in Semi-open Systems from Variable Organic Richness Source Rocks. ACS Omega 2021, 6, 14664–14676. [Google Scholar] [CrossRef] [PubMed]
- Cao, T.; Deng, M.; Cao, Q.; Huang, Y.; Yu, Y.; Cao, X. Pore formation and evolution of organic-rich shale during the entire hydrocarbon generation process: Examination of artificially and naturally matured samples. J. Nat. Gas Sci. Eng. 2021, 93, 104020. [Google Scholar] [CrossRef]
- Abass, A.N.; Hakimi, M.H.; Lashin, A.; Yelwa, N.A.; Nady, M.M.E. Geochemistry of organic-rich shales in the Miocene Miadol Formation, Melut Rift Basin, South Sudan: Implications for their organic matter input and oil/gas generation potentials. Arabian J. Geosci. 2021, 15, 52. [Google Scholar] [CrossRef]
- SY/T 6404-2018; Method for Analysis of Metal Elements in Rock by Inductively Coupled Plasma Optical Emission Spectrometry and Mass Spectrometry. National Energy Administration: Beijing, China, 2018.
- Xiang, X.; Lee, E.Y.; Draganits, E.; Wagreich, M. Mineralogical and Geochemical Compositions of Sedimentary Rocks in the Gosau Group (Late Cretaceous), Grünbach–Neue Welt Area, Austria. Data 2025, 10, 69. [Google Scholar] [CrossRef]
- Ni, C.; Lv, X.; Zhu, X.; Zhang, J.; Wang, J.; Wang, M.; Xu, R. Sedimentary Facies Types and Their Control of Reservoirs in the Lower Jurassic Lacustrine Facies Shale of the Lianggaoshan Formation, Northeastern Sichuan Basin, China. Processes 2023, 11, 2463. [Google Scholar] [CrossRef]
- Kontakiotis, G.; Karakitsios, V.; Maravelis, A.G.; Zarkogiannis, S.D.; Agiadi, K.; Antonarakou, A.; Pasadakis, N.; Zelilidis, A. Integrated isotopic and organic geochemical constraints on the depositional controls and source rock quality of the Neogene Kalamaki sedimentary successions (Zakynthos Island, Ionian Sea). Mediterr. Geosci. Rev. 2020, 3, 193–217. [Google Scholar] [CrossRef]
- Kontakiotis, G.; Karakitsios, V.; Cornée, J.-J.; Moissette, P.; Zarkogiannis, S.D.; Pasadakis, N.; Koskeridou, E.; Manoutsoglou, E.; Drinia, H.; Antonarakou, A. Preliminary results based on geochemical sedimentary constraints on the hydrocarbon potential and depositional environment of a Messinian sub-salt mixed siliciclastic-carbonate succession onshore Crete (Plouti section, eastern Mediterranean). Mediterr. Geosci. Rev. 2020, 2, 247–265. [Google Scholar]
- Sayed, M.M.; Heinz, P.; Abd El-Gaied, I.M.; Gier, S.; El-Kahawy, R.M.; Sayed, D.M.; Salama, Y.F.; Abuamarah, B.A.; Wagreich, M. Paleoenvironments and Paleoclimate Reconstructions of the Middle–Upper Eocene Rocks in the North–West Fayum Area (Western Desert, Egypt): Insights from Geochemical Data. Minerals 2025, 15, 227. [Google Scholar]
- Omar, N.; McCann, T.; Al-Juboury, A.I.; Franz, S.O.; Zanoni, G.; Rowe, H. A comparative study of the paleoclimate, paleosalinity and paleoredox conditions of Lower Jurassic-Lower Cretaceous sediments in northeastern Iraq. Mar. Pet. Geol. 2023, 156, 106430. [Google Scholar] [CrossRef]
- Pracný, P.; Faimon, J.; Všianský, D.; Přichystal, A. Evolution of Mg/Ca and Sr/Ca ratios during the experimental dissolution of limestone. Chem. Geol. 2019, 523, 107–120. [Google Scholar]
- Yang, H.; Zhao, Y.; Cui, Q.; Ren, W.; Li, Q. Paleoclimatic indication of X-ray fluorescence core-scanned Rb/Sr ratios: A case study in the Zoige Basin in the eastern Tibetan Plateau. Sci. China Earth Sci. 2020, 64, 80–95. [Google Scholar]
- Wang, A.; Wang, Z.; Liu, J.; Xu, N.; Li, H. The Sr/Ba ratio response to salinity in clastic sediments of the Yangtze River Delta. Chem. Geol. 2021, 559, 119923. [Google Scholar] [CrossRef]
- Remírez, M.; Gilleaudeau, G.J.; McBride, R.; Pederson, C.; Miller, C.M.; Wallace, D.J.; Guerra, L.; Piovano, E.; Virtasalo, J.J.; Culver-Miller, E.; et al. Calibrating elemental salinity proxies in Holocene sedimentary environments. Chem. Geol. 2025, 678, 122664. [Google Scholar] [CrossRef]
- Botta, S.; Albuquerque, C.; Hohn, A.A.; da Silva, V.M.F.; Santos, M.C.O.; Meirelles, C.; Barbosa, L.; Di Beneditto, A.P.M.; Ramos, R.M.A.; Bertozzi, C.; et al. Ba/Ca ratios in teeth reveal habitat use patterns of dolphins. Mar. Ecol. Prog. Ser. 2015, 521, 249–263. [Google Scholar] [CrossRef]
- Zhao, Y.; Xue, C.; Liu, S.-A.; Mathur, R.; Zhao, X.; Yang, Y.; Dai, J.; Man, R.; Liu, X. Redox reactions control Cu and Fe isotope fractionation in a magmatic Ni–Cu mineralization system. Geochim. Cosmochim. Acta 2019, 249, 42–58. [Google Scholar]
- Wang, Y.; Mao, C.; Duan, X. Coupling of Paleosedimentary Environment and Lithofacies: Implications for Shale Oil Enrichment in the Lianggaoshan Formation, Northeastern Sichuan Basin, China. ACS Omega 2024, 9, 28237–28252. [Google Scholar] [CrossRef]
- Francois, R.; Honjo, S.; Manganini, S.J.; Ravizza, G.E. Biogenic barium fluxes to the deep sea: Implications for paleoproductivity reconstruction. Global Biogeochem. Cycles 2010, 9, 289–303. [Google Scholar] [CrossRef]
- Pirrung, M.; Illner, P.; Matthiessen, J. Biogenic barium in surface sediments of the European Nordic Seas. Mar. Geol. 2008, 250, 89–103. [Google Scholar] [CrossRef]
- Dymond, J.; Suess, E.; Lyle, M. Barium in Deep-Sea Sediment: A Geochemical Proxy for Paleoproductivity. Paleoceanography 2010, 7, 163–181. [Google Scholar] [CrossRef]
- Fu, P.; Zhang, D.; Hu, M.; Yang, G.; Wei, S.; Zeng, F. The Methane Adsorption Ability of Lacustrine Shale and Its Controlling Factors: A Case Study of Shale from the Jurassic Lianggaoshan Formation in the Sichuan Basin. Processes 2025, 13, 1061. [Google Scholar] [CrossRef]
- Lee, E.Y.; Fathy, D.; Xiang, X.; Spahić, D.; Ahmed, M.S.; Fathi, E.; Sami, M. Middle Miocene syn-rift sequence on the central Gulf of Suez, Egypt: Depositional environment, diagenesis, and their roles in reservoir quality. Mar. Pet. Geol. 2025, 174, 107305. [Google Scholar] [CrossRef]
- Zhu, T.L.; Long, S.; Wang, F.; Peng, Y. Sedimentary models and lithofacies types of lacustrine mud shale in the Sichuan Basin. Nat. Gas Ind. 2016, 36, 22–28. [Google Scholar]
- Cheng, D.; Zhang, Z.; Hong, H.; Zhang, S.; Qin, C.; Yuan, X.; Zhang, B.; Zhou, C.; Deng, Q. Sedimentary and provenance characteristics and the basin-mountain relationship of the Jurassic Lianggaoshan Formation in eastern Sichuan Basin, SW China. Pet. Explor. Dev. Eng. 2023, 50, 262–272. [Google Scholar]
- Gratacós, O.; Bitzer, K.; Casamor, J.L.; Cabrera, L.; Calafat, A.; Canals, M.; Roca, E. Simulating transport and deposition of clastic sediments in an elongate basin using the SIMSAFADIM-CLASTIC program: The Camarasa artificial lake case study (NE Spain). Sediment. Geol. 2009, 222, 16–26. [Google Scholar] [CrossRef]
- Zou, C.; Feng, Y.; Yang, Z.; Jiang, W.; Zhang, T.; Zhang, H.; Wang, X.; Zhu, J.; Wei, Q. Fine-grained gravity flow sedimentation and its influence on development of shale oil sweet sections in lacustrine basins in China. Pet. Explor. Dev. 2023, 50, 1013–1029. [Google Scholar] [CrossRef]
- Munir, M.N.; Zafar, M.; Ehsan, M.; Chen, R.; Abdelrahman, K.; Ullah, J.; Hayat, T.; Rahim, H.U. Diagenetic and mineralogical impacts on clastic reservoir; A case study from the lower Indus Basin, Pakistan. J. Asian Earth Sci. 2025, 283, 106539. [Google Scholar] [CrossRef]
- Jan, J.A.; Shah, M.M.; Rahim, H.u.; Iqbal, S.; Jahandad, S.; Jamil, M.; Khalil, R.; Amin, Y. Depositional and diagenetic studies of clastic reservoirs zone in the Cretaceous Lower Goru Formation, Sindh Monocline, South Pakistan. J. Earth Syst. Sci. 2024, 133, 115. [Google Scholar] [CrossRef]
- Feng, R. Tectono-Thermal Evolution of the Eastern Sichuan Basin Since the Late Paleozoic. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2020. [Google Scholar]
- Lee, H.; Lee, J.-H.; Choi, T.; Oh, M.-K.; Choi, S.H. Million-year-scale changes in the provenance of the Miocene Doumsan fan-delta system, Pohang Basin, SE Korea: Separating the effects of eustasy and tectonic subsidence. Sediment. Geol. 2022, 437, 106180. [Google Scholar] [CrossRef]
- Gautier, D.L.; Schenk, C.J.; Navarro Fuentes, J.C. Interbedded Alluvium, Tidal Muds and Coarse Littoral Deposits near San Felipe, Baja California–Implications for the Sedimentary Record: ABSTRACT. AAPG Bull. 1987, 71, 10.1306/9488721c-1704-11d7-8645000102c1865d. [Google Scholar]
- Zhao, S.; Qi, H.; Cai, F.; Zhu, J.; Zhou, X.; Lei, G. Morphological and sedimentary features of sandy-muddy transitional beaches in estuaries and bays along mesotidal to macrotidal coasts. Earth Surf. Process. Landf. 2020, 45, 1660–1676. [Google Scholar] [CrossRef]
- Tan, Z.; Wang, X.; Chen, B.; Liu, X.; Zhang, Q. Surface water connectivity of seasonal isolated lakes in a dynamic lake-floodplain system. J. Hydrol. 2019, 579, 124154. [Google Scholar] [CrossRef]
- Schillereff, D.N.; Chiverrell, R.C.; Macdonald, N.; Hooke, J.M. Flood stratigraphies in lake sediments: A review. Earth Sci. Rev. 2014, 135, 17–37. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, Z.; Liu, L.; Li, Y.; Zhang, J.; Shen, W. How to distinguish between marine and lacustrine sedimentary environments?—A case study of Lishui Sag, East China Sea Shelf Basin. Geoenergy Sci. Eng. 2023, 228, 212032. [Google Scholar] [CrossRef]
- Olivito, J.P.R.; Souza, F.J. Depositional model of early Cretaceous lacustrine carbonate reservoirs of the Coqueiros formation—Northern Campos Basin, southeastern Brazil. Mar. Pet. Geol. 2020, 111, 414–439. [Google Scholar] [CrossRef]
- Wang, X.; Jin, Z.; Zhao, J.; Zhu, Y.; Hu, Z.; Liu, G.; Jiang, T.; Wang, H.; Li, S.; Shi, S. Depositional environment and organic matter accumulation of Lower Jurassic nonmarine fine-grained deposits in the Yuanba Area, Sichuan Basin, SW China. Mar. Pet. Geol. 2020, 116, 104352. [Google Scholar] [CrossRef]
- Xue, X.; Storms, J.; Zăinescu, F.; Schuster, M.; Wang, L.; May, J.H.; Ng, Z.L.; van der Vegt, H.; Nutz, A.; Bozetti, G.; et al. Wind-driven hydrodynamic and depositional patterns in shallow lakes: An exploratory modelling approach based on an archetypal case of Lake Hulun. Sedimentology 2025, 72, 1040–1064. [Google Scholar] [CrossRef]
No. | Layer No. | Depth/m | Clay Minerals/% | Detrital Minerals/% | Carbonate Minerals/% | Other Minerals/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Clay | Quartz | Potassium Feldspar | Plagioclase | Calcite | Dolomite | Siderite | Pyrite | Barite | Amphibole | Gypsum | Anhydrite | Pyroxene | |||
1 | Layer 8 | 2536.53 | 26.0 | 42.0 | 13.9 | 0.2 | 0.3 | 15.5 | 0.5 | 0.6 | 0.1 | ||||
2 | 2538.46 | 45.6 | 37.8 | 2.7 | 0.8 | 0.2 | 10.7 | 0.3 | 0.4 | 0.1 | |||||
3 | Layer 7 | 2541.66 | 51.6 | 36.3 | 1.3 | 0.2 | 0.3 | 3.1 | 1.2 | 0.8 | 1.3 | 0.2 | |||
4 | 2543.14 | 50.0 | 38.8 | 1.3 | 0.2 | 3.9 | 1.2 | 0.2 | 1.1 | 0.1 | |||||
5 | 2544.97 | 52.6 | 29.7 | 9.5 | 0.1 | 0.2 | 2.5 | 1.2 | 0.9 | 0.8 | 0.2 | ||||
6 | 2545.87 | 57.9 | 29.7 | 1.2 | 0.5 | 0.4 | 2.4 | 1.6 | 0.8 | 1.3 | 0.1 | ||||
7 | 2546.77 | 46.3 | 33.4 | 7.8 | 0.2 | 0.3 | 3.9 | 1.8 | 1.9 | 0.4 | |||||
8 | 2548.08 | 44.9 | 33.4 | 6.9 | 1.0 | 9.3 | 1.3 | 1.2 | 0.1 | ||||||
9 | Layer 6 | 2548.95 | 33.3 | 48.2 | 2.5 | 0.1 | 0.4 | 10.7 | 0.9 | 0.4 | 1.1 | ||||
10 | 2549.88 | 46.1 | 41.1 | 2.2 | 0.1 | 6.1 | 1.0 | 0.7 | |||||||
11 | 2550.94 | 55.7 | 33.6 | 0.1 | 0.1 | 0.2 | 3.8 | 1.2 | 0.6 | 0.9 | 0.1 | ||||
12 | 2552.03 | 52.0 | 30.2 | 2.6 | 2.8 | 0.4 | 3.4 | 1.6 | 0.6 | 1.4 | 0.2 | ||||
13 | 2552.48 | 57.3 | 32.7 | 0.3 | 0.0 | 4.0 | 0.7 | 0.9 | 0.2 | ||||||
14 | 2553.52 | 42.5 | 40.6 | 6.5 | 0.3 | 0.3 | 3.7 | 1.8 | 1.7 | 0.4 | 0.3 | ||||
15 | 2555.56 | 49.7 | 39.2 | 0.1 | 0.3 | 0.2 | 3.8 | 1.0 | 0.5 | 0.6 | 0.4 | 0.2 | |||
16 | 2556.18 | 51.1 | 37.2 | 0.4 | 1.1 | 0.2 | 4.7 | 1.1 | 0.3 | 0.9 | |||||
17 | 2557.35 | 52.5 | 36.4 | 1.0 | 0.4 | 0.3 | 4.4 | 0.6 | 0.8 | 0.1 | |||||
18 | 2558.10 | 55.5 | 31.4 | 1.1 | 0.8 | 0.4 | 4.2 | 1.3 | 0.2 | 0.6 | 0.0 | ||||
19 | 2559.10 | 50.1 | 30.1 | 9.3 | 0.1 | 0.2 | 2.2 | 2.5 | 1.5 | 0.5 | 1.2 | 0.2 | |||
20 | 2560.41 | 54.9 | 33.0 | 0.8 | 0.8 | 0.3 | 4.1 | 1.0 | 0.5 | 0.2 | 0.3 | 0.2 | |||
21 | 2561.28 | 51.4 | 38.4 | 0.2 | 3.5 | 0.9 | 0.4 | 0.6 | 0.6 | 0.2 | 1.2 | 2.6 | |||
22 | Layer 5 | 2562.27 | 52.3 | 35.4 | 0.2 | 4.6 | 0.4 | 0.1 | 1.5 | 0.9 | 0.2 | 0.3 | 0.2 | 1.2 | 2.7 |
23 | 2563.20 | 42.7 | 41.1 | 8.6 | 0.2 | 1.4 | 1.2 | 0.2 | 1.5 | 1.2 | 1.9 | ||||
24 | 2565.32 | 40.4 | 47.4 | 0.2 | 7.2 | 0.6 | 0.6 | 0.6 | 0.1 | 0.1 | 0.9 | 1.9 | |||
25 | Layer 4 | 2566.94 | 46.9 | 40.7 | 0.4 | 7.5 | 0.4 | 0.5 | 0.7 | 0.3 | 0.1 | 0.7 | 1.8 | ||
26 | 2568.35 | 55.7 | 32.4 | 0.5 | 4.3 | 0.8 | 0.3 | 1.1 | 0.3 | 0.4 | 0.7 | 0.1 | 1.1 | 2.3 | |
27 | 2568.70 | 40.0 | 44.6 | 0.8 | 6.6 | 0.1 | 0.1 | 1.3 | 1.4 | 1.6 | 3.5 | ||||
28 | 2569.70 | 52.2 | 36.0 | 3.8 | 2.5 | 0.2 | 1.4 | 0.2 | 1.0 | 1.0 | 1.7 | ||||
29 | 2571.05 | 50.5 | 35.1 | 0.1 | 3.7 | 3.4 | 1.0 | 1.0 | 0.7 | 1.0 | 0.2 | 1.2 | 2.1 | ||
30 | 2571.44 | 50.9 | 37.7 | 0.1 | 3.5 | 0.9 | 0.6 | 1.2 | 0.5 | 1.1 | 1.2 | 2.3 | |||
31 | 2572.20 | 42.8 | 41.3 | 0.2 | 6.6 | 1.5 | 1.2 | 0.7 | 1.3 | 1.3 | 1.0 | 2.1 | |||
32 | 2573.23 | 45.8 | 39.5 | 0.3 | 7.6 | 1.7 | 0.7 | 0.6 | 0.9 | 0.2 | 1.2 | 1.5 | |||
33 | 2574.45 | 53.9 | 35.6 | 0.2 | 4.6 | 0.4 | 0.4 | 1.2 | 0.3 | 1.2 | 2.2 | ||||
34 | 2575.25 | 50.8 | 37.0 | 6.0 | 0.5 | 1.0 | 0.9 | 0.6 | 0.1 | 0.7 | 2.4 | ||||
35 | 2576.34 | 51.7 | 34.7 | 0.2 | 5.7 | 0.9 | 1.2 | 0.7 | 0.7 | 0.5 | 0.1 | 1.2 | 2.4 | ||
36 | 2577.67 | 52.4 | 37.0 | 0.2 | 3.4 | 2.3 | 0.9 | 0.9 | 0.2 | 0.1 | 1.0 | 1.6 | |||
37 | 2579.14 | 54.3 | 34.8 | 0.3 | 2.9 | 2.5 | 1.6 | 0.8 | 0.2 | 1.1 | 1.5 | ||||
38 | 2579.92 | 56.4 | 34.1 | 0.2 | 4.3 | 0.2 | 0.1 | 1.5 | 1.0 | 1.2 | 1.0 | ||||
39 | Layer 3 | 2581.10 | 46.5 | 41.2 | 6.7 | 0.9 | 0.7 | 0.2 | 0.9 | 0.1 | 0.8 | 2.0 | |||
40 | 2582.13 | 45.0 | 41.1 | 0.2 | 7.0 | 0.4 | 1.5 | 0.8 | 0.4 | 0.8 | 0.1 | 1.1 | 1.6 | ||
41 | 2584.43 | 17.3 | 34.8 | 0.3 | 16.1 | 29.1 | 0.5 | 0.2 | 0.4 | 0.7 | 0.6 | ||||
42 | Layer 2 | 2585.34 | 24.1 | 35.8 | 0.2 | 35.7 | 1.3 | 0.0 | 0.1 | 0.2 | 0.7 | 0.1 | 0.7 | 1.1 | |
43 | 2586.73 | 49.3 | 40.3 | 0.2 | 3.8 | 0.3 | 0.3 | 0.7 | 0.5 | 0.3 | 0.8 | 0.1 | 0.9 | 2.5 | |
44 | 2587.97 | 56.3 | 32.8 | 0.4 | 3.1 | 1.2 | 1.1 | 0.4 | 0.7 | 1.0 | 0.2 | 0.9 | 1.9 | ||
45 | 2589.61 | 50.5 | 37.9 | 0.5 | 5.4 | 0.8 | 0.8 | 0.7 | 1.0 | 0.6 | 0.9 | 0.9 | |||
46 | 2590.49 | 46.9 | 39.2 | 0.3 | 4.6 | 0.5 | 2.6 | 2.1 | 0.7 | 0.1 | 0.8 | 2.2 | |||
47 | 2591.28 | 47.7 | 40.1 | 0.4 | 5.0 | 0.4 | 0.2 | 1.1 | 0.5 | 0.2 | 1.3 | 3.1 | |||
48 | 2592.25 | 46.0 | 41.0 | 0.5 | 3.3 | 1.5 | 1.0 | 1.4 | 0.7 | 0.4 | 0.7 | 1.2 | 2.3 | ||
49 | 2593.74 | 48.3 | 41.3 | 0.4 | 3.4 | 0.3 | 0.2 | 1.4 | 0.4 | 0.1 | 1.1 | 3.1 | |||
50 | 2594.36 | 53.0 | 37.9 | 0.5 | 3.5 | 0.2 | 0.1 | 0.6 | 0.5 | 0.5 | 0.1 | 1.1 | 2.0 | ||
51 | 2595.02 | 56.5 | 33.7 | 0.3 | 3.8 | 0.3 | 0.3 | 1.1 | 0.3 | 0.8 | 1.0 | 1.9 | |||
52 | 2596.35 | 42.2 | 49.3 | 0.2 | 3.9 | 0.4 | 0.6 | 0.4 | 0.1 | 0.7 | 0.1 | 0.8 | 1.3 | ||
53 | Layer 1 | 2598.15 | 50.2 | 41.6 | 0.2 | 1.7 | 0.1 | 0.3 | 1.0 | 0.2 | 0.2 | 0.6 | 0.1 | 1.1 | 2.7 |
54 | 2599.96 | 22.0 | 63.4 | 0.2 | 5.2 | 6.7 | 0.3 | 0.1 | 0.5 | 0.6 | 0.1 | 0.3 | 0.6 |
Facies Type | Subfacies Type | Microfacies Type | Lithology | Sedimentary Structures | Logging Response Characteristics |
---|---|---|---|---|---|
Continental Lacustrine | Shallow Lake Subfacies | Gray Massive Sandstone Microfacies | Gray fine sandstone, gray lithic sandstone | Horizontal bedding, wavy bedding, occasional mud clasts, calcite veins | Low GR, Low KTH GR values range from 50.61 to 86.30 API, with an average of 62.17 API; KTH values range from 32.45 to 53.64 API, with an average of 42.35 API |
Gray-White Dense Shell Limestone Microfacies | Shell limestone, argillaceous limestone | Liquefaction deformation, convolute bedding, developed bioclastic layers | Medium to High GR, Medium to High KTH GR values range from 98.08 to 107.36 API, with an average of 103.21 API; KTH values range from 81.05 to 86.97 API, with an average of 84.49 API. | ||
Gray Sand-Wavy Bedded Siltstone Microfacies | Gray silty mudstone, gray siltstone | Horizontal bedding, slump structures | Low GR, Low KTH GR values range from 86.78 to 104.62 API, with an average of 90.65 API; KTH values range from 60.85 to 78.34 API, with an average of 67.29 API. | ||
Dark Gray Low-Carbon Silty Shell-Laminated Mixed Shale Microfacies | Dark gray mudstone, gray-white massive mud-rich shell limestone | Developed bedding, horizontal bedding, bioclastic layers | Medium to High GR, Low KTH GR values range from 87.54 to 116.68 API, with an average of 103.10 API; KTH values range from 63.95 to 80.77 API, with an average of 73.14 API. | ||
Gray to Dark Gray Liquefied Deformed Sand-Mud Interbedded Microfacies | Gray silty mudstone, dark gray muddy siltstone interlayers | Developed lamination, sand wave lamination, lenticular bedding, liquefaction structures | High GR, Medium to High KTH GR values range from 98.11 to 113.36 API, with an average of 105.06 API; KTH values range from 74.91 to 85.18 API, with an average of 79.21 API. | ||
Semi-Deep Lake Subfacies | Gray-Black Medium-Carbon Silty Laminated Clay Shale Microfacies | Gray-black mudstone | Developed bedding, horizontal bedding, occasional bioclasts | Medium to High GR, Medium to High KTH GR values range from 89.84 to 110.00 API, with an average of 100.85 API; KTH values range from 68.89 to 89.10 API, with an average of 76.64 API. | |
Gray-Black High-Carbon Silty Laminated Clay Shale Microfacies | Gray-black mudstone | Bedding fractures, high-angle fractures filled with calcite, horizontal bedding | High GR, Medium to High KTH GR values range from 103.89 to 110.82 API, with an average of 106.93 API; KTH values range from 68.89 to 89.10 API, with an average of 76.64 API. | ||
Dark Gray Medium-Carbon Interbedded Silty Laminated Clay Shale Microfacies | Dark gray mudstone | Horizontal bedding, muddy lamination, lenticular structures, convolute structures | High GR, High KTH GR values range from 99.76 to 121.62 API, with an average of 109.70 API; KTH values range from 77.92 to 94.28 API, with an average of 86.85 API. |
Layer No. | Sr/Cu | Sr/Cr | Sr/Ba | V/Ni | Cu/Zn | V/(V + Ni) | Ni/Co | Babio |
---|---|---|---|---|---|---|---|---|
Layer 8 | 3.39~14.71 9.05 | 2.61~3.33 2.97 | 0.26~0.81 0.53 | 2.15~2.39 2.27 | 0.27~0.50 0.39 | 0.68~0.71 0.69 | 1.96~2.38 2.17 | −10.16~345.32 167.58 |
Layer 7 | 2.55~6.93 4.99 | 1.87~2.74 2.43 | 0.23~0.39 0.30 | 2.61~3.16 2.86 | 0.30~0.54 0.38 | 0.72~0.76 0.74 | 2.54~3.36 2.82 | 48.70~143.59 78.23 |
Layer 6 | 3.23~6.99 4.89 | 2.20~3.162.51 | 0.29~0.37 0.32 | 2.84~3.15 3.02 | 0.29~0.49 0.38 | 0.74~0.76 0.75 | 2.62~3.11 2.84 | 30.51~131.99 111.55 |
Layer 5 | 5.55~6.54 6.04 | 1.64~2.28 1.96 | 0.40~0.44 0.42 | 2.60~3.59 3.10 | 0.31~0.33 0.32 | 0.72~0.78 0.75 | 2.35~3.24 2.79 | −142.11~−44.98 −93.71 |
Layer 4 | 3.68~4.69 4.20 | 1.67~2.24 1.92 | 0.28~0.40 0.31 | 2.59~3.29 3.10 | 0.31~0.39 0.35 | 0.72~0.77 0.76 | 2.50~2.87 2.69 | −155.58~123.07 −23.95 |
Layer 3 | 4.52~7.97 6.24 | 1.11~1.681.39 | 0.17~0.45 0.31 | 2.98~3.05 3.02 | 0.26~0.33 0.30 | 0.74~0.75 0.75 | 2.44~2.82 2.63 | −210.77~399.16 94.20 |
Layer 2 | 3.92~9.25 4.93 | 1.13~2.17 1.70 | 0.26~0.47 0.34 | 1.87~3.80 2.98 | 0.19~0.38 0.31 | 0.65~0.79 0.74 | 1.72~2.98 2.51 | −237.62~30.71 −81.03 |
Layer 1 | 3.89 | 0.74 | 0.27 | 2.72 | 0.37 | 0.73 | 2.22 | −14.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Q.; Chen, Q.; Lu, Y.; Li, Y.; Tu, J.; Yang, G.; Gao, L. Lithofacies Characteristics and Sedimentary Evolution of the Lianggaoshan Formation in the Southeastern Sichuan Basin. Minerals 2025, 15, 1003. https://doi.org/10.3390/min15091003
Liang Q, Chen Q, Lu Y, Li Y, Tu J, Yang G, Gao L. Lithofacies Characteristics and Sedimentary Evolution of the Lianggaoshan Formation in the Southeastern Sichuan Basin. Minerals. 2025; 15(9):1003. https://doi.org/10.3390/min15091003
Chicago/Turabian StyleLiang, Qingshao, Qianglu Chen, Yunfei Lu, Yanji Li, Jianxin Tu, Guang Yang, and Longhui Gao. 2025. "Lithofacies Characteristics and Sedimentary Evolution of the Lianggaoshan Formation in the Southeastern Sichuan Basin" Minerals 15, no. 9: 1003. https://doi.org/10.3390/min15091003
APA StyleLiang, Q., Chen, Q., Lu, Y., Li, Y., Tu, J., Yang, G., & Gao, L. (2025). Lithofacies Characteristics and Sedimentary Evolution of the Lianggaoshan Formation in the Southeastern Sichuan Basin. Minerals, 15(9), 1003. https://doi.org/10.3390/min15091003