Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (68)

Search Parameters:
Keywords = microbial transglutaminase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1380 KB  
Article
Transglutaminase Effects on Texture and Flow Behaviour of Fermented Milk During Storage Using Concentrated Kombucha Inoculum
by Mirela Iličić, Jovana Degenek, Vladimir Vukić, Ljubica Dokić, Katarina Kanurić, Rade Popović and Dajana Vukić
Processes 2025, 13(11), 3598; https://doi.org/10.3390/pr13113598 - 7 Nov 2025
Viewed by 131
Abstract
This study investigated the effect of a concentrated kombucha inoculum and transglutaminase (TG) on the rheological and textural properties of fermented milk products and compared their average production costs to commercial yoghurt. Semi-skimmed milk was used, to which microbial TG was added at [...] Read more.
This study investigated the effect of a concentrated kombucha inoculum and transglutaminase (TG) on the rheological and textural properties of fermented milk products and compared their average production costs to commercial yoghurt. Semi-skimmed milk was used, to which microbial TG was added at a level of 0.02% w/w. The kombucha inoculum, prepared from black tea, was concentrated to 55.6% total solids. Four samples were produced: two with TG and two without. The TG-containing samples showed significantly higher textural properties, including firmness and consistency, than the non-TG samples. They also exhibited the largest hysteresis loop area and the highest yield stress, indicating a stronger gel structure. The Herschel–Bulkley model successfully described the flow behaviour of all samples and confirmed their shear-thinning, non-Newtonian nature. Principal Component Analysis (PCA) showed that both TG addition and inoculum concentration significantly influenced the product properties. TG improved the rheological and textural properties and increased the stability during storage. However, the production costs for TG-treated samples were higher than those for non-TG-treated samples and commercial yoghurt. Nevertheless, the higher costs could be justified by the perceived additional nutritional benefits for consumers. Overall, the results show that the combination of concentrated kombucha inoculum with transglutaminase can improve the structural and rheological quality of fermented dairy products, which is potentially of commercial importance. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Graphical abstract

12 pages, 1033 KB  
Article
Influence of Using Microbial Transglutaminase on the Physicochemical Properties, Volatile Compounds and Free Amino Acid Composition of Pastırma
by Fatma Yağmur Hazar Suncak, Güzin Kaban and Mükerrem Kaya
Appl. Sci. 2025, 15(14), 7959; https://doi.org/10.3390/app15147959 - 17 Jul 2025
Viewed by 650
Abstract
The effects of different levels of microbial transglutaminase (MTGase) at 0% (control), 0.25%, 0.50% and 1% on the physicochemical properties, volatile compounds and free amino acid composition of pastırma, a Turkish dry-cured meat product, were investigated. The MTGase treatment had no significant effect [...] Read more.
The effects of different levels of microbial transglutaminase (MTGase) at 0% (control), 0.25%, 0.50% and 1% on the physicochemical properties, volatile compounds and free amino acid composition of pastırma, a Turkish dry-cured meat product, were investigated. The MTGase treatment had no significant effect on the aw, L* and b* values of pastırma. The thiobarbituric acid reactive substances value decreased as the MTGase level increased. The maximum cutting force was found to be higher in enzyme-treated pastırma groups compared with the control. Enzyme treatment increased the maximum stress–relaxation force, but no statistical difference was observed between the 0.50% and 1% enzyme treatments. No significant differences were observed between groups in the volatile compound profile. However, in the correlation analysis, the control group showed a close correlation with the 0.25% MTGase group. This was also the case for the 0.5% and 1% MTGase groups. In the samples, glutamic acid, arginine, alanine, cystine and valine were determined to be the dominant free amino acids, and glutamic acid showed a close correlation with valine; lysine with arginine; and cystine with serine. MTGase had no significant effect on the total free amino acid content. Full article
Show Figures

Figure 1

22 pages, 3129 KB  
Article
Characterizing the Impact of Fabrication Methods on Mechanically Tunable Gelatin Hydrogels for Cardiac Fibrosis Studies
by Jordyn Folh, Phan Linh Dan Tran and Renita E. Horton
Bioengineering 2025, 12(7), 759; https://doi.org/10.3390/bioengineering12070759 - 13 Jul 2025
Cited by 1 | Viewed by 1137
Abstract
The mechanical properties of the extracellular matrix critically influence cell behavior in both physiological and pathophysiological states, including cardiac fibrosis. In vitro models have played a critical role in assessing biological mechanisms. In this study, we characterized mechanically tunable enzymatically crosslinked gelatin-microbial transglutaminase [...] Read more.
The mechanical properties of the extracellular matrix critically influence cell behavior in both physiological and pathophysiological states, including cardiac fibrosis. In vitro models have played a critical role in assessing biological mechanisms. In this study, we characterized mechanically tunable enzymatically crosslinked gelatin-microbial transglutaminase (mTG) hydrogels for modeling cardiovascular diseases. Gelatin hydrogels were fabricated via direct mixing or immersion crosslinking methods. Hydrogel formulations were assessed using the Piuma nanoindenter and Instron systems. This study investigates the effects of fabrication methods, UV ozone (UVO) sterilization, crosslinking methods, and incubation media on hydrogel stiffness. Further, this study examined the response of murine cardiac fibroblasts to hydrogel stiffness. The hydrogels exhibited modulus ranges relevant to both healthy and fibrotic cardiac tissues. UVO exposure led to slight decreases in hydrogel modulus, while the fabrication method had a significant impact on the modulus. Hydrogels incubated in phosphate buffered saline (PBS) were stiffer than those incubated in Medium 199 (M199), which correlated with lower pH in PBS. Fibroblasts cultured on stiffer hydrogels display enhanced smooth muscle actin (SMA) expression, suggesting sensitivity to material stiffness. These findings highlight how fabrication parameters influence the modulus of gelatin-mTG hydrogels for cardiac tissue models. Full article
Show Figures

Graphical abstract

18 pages, 2225 KB  
Article
Promoting Effects of Different Organic Acids on the Formation of Transglutaminase-Induced Cross-Linked Soybean Protein Isolate Hydrogels
by Xiangquan Zeng, Linlin Peng, Sirong Liu, Haoluan Wang, He Li, Yu Xi and Jian Li
Foods 2025, 14(11), 1965; https://doi.org/10.3390/foods14111965 - 31 May 2025
Viewed by 998
Abstract
Microbial transglutaminase (mTG) is most frequently utilized in order to increase the gelling properties of soybean protein isolate (SPI), but there are still some limitations of mTG-based hydrogel fabrication technology. Therefore, we aimed to develop a dual modification technique based on enzyme plus [...] Read more.
Microbial transglutaminase (mTG) is most frequently utilized in order to increase the gelling properties of soybean protein isolate (SPI), but there are still some limitations of mTG-based hydrogel fabrication technology. Therefore, we aimed to develop a dual modification technique based on enzyme plus organic acid treatment to fabricate SPI hydrogels with high gel strength and stability. Our results showed that mTG plus glucose-δ-lactone (GDL), lactobionic acid (LBA) or maltobionic acid (MBA) treatment could significantly improve the gel strength, textural properties, and water-holding capacity of SPI hydrogels. Also, the addition of these organic acids remarkably reduced the surface hydrophobicity (H0) and intrinsic fluorescence as well as increased the storage modulus (G′), loss modulus (G″) values, average particle size, and the absolute value of zeta potential of samples. GDL, LBA, or MBA greatly increased the β-sheet level and decreased the α-helix level in hydrogels, as well as dissociated 11S subunits of SPI into 7S subunits. Notably, covalent interactions, hydrogen bonding, and hydrophobic interactions of three organic acids with SPI, as well as the effects of organic acids on the interactions among the intramolecular and intermolecular forces of SPI molecules, contributed to their promoting effects on the formation of hydrogels. The LF-NMR and SEM analyses confirmed the effects of GDL, LBA, and MBA on converting the free water into immobilized and bound water as well as forming a dense stacked aggregate structure. Therefore, GDL, LBA, and MBA are promising agents to be combined with mTG in the fabrication of SPI hydrogels with high gel strength and stability. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

22 pages, 5559 KB  
Article
Effect of Enzymatic Glycosylation on Film-Processing Properties and Biological Activities of Black Soybean Protein
by Yinglei Zhang, Xue Gong, Jing Wang, Boxin Dou, Lida Hou, Wei Xiao, Jiang Chang and Danting Li
Coatings 2025, 15(2), 238; https://doi.org/10.3390/coatings15020238 - 17 Feb 2025
Viewed by 1052
Abstract
In this study, chitooligosaccharides (COS) were introduced into black soybean protein (BSP) using transglutaminase (TG) as a biocatalyst. The film-processing properties and physiological activities of the enzymatically glycosylated black soybean protein (EGBSP) were studied. The results showed that glycosylation decreased the surface hydrophobicity, [...] Read more.
In this study, chitooligosaccharides (COS) were introduced into black soybean protein (BSP) using transglutaminase (TG) as a biocatalyst. The film-processing properties and physiological activities of the enzymatically glycosylated black soybean protein (EGBSP) were studied. The results showed that glycosylation decreased the surface hydrophobicity, absolute value of the zeta potential, its minimum solubility, and film permeability of BSP by 69.86%, 6.04%, 36.68%, and 14.91%, respectively, while increasing the tensile strength and elongation at break of its protein film by 56.57% and 172.68%, respectively. The gel time was shortened, and the acid-induced gel properties of EGBSP were similar to those of BSP. The anticancer effect of EGBSP was evaluated by the tumor inhibition rate, flow cytometry, and morphology observation of an ascites tumor in H22 tumor-bearing mice. The immune organs (spleen, thymus), immune cells (lymphocytes, NK cells), and immune factors (IL-2, IL-12) of H22 tumor-bearing mice were detected to evaluate the immunomodulatory effects of EGBSP. The results showed that medium and high doses of BSP had positive effects on immune enhancement and anti-cancer activity of H22 tumor-bearing mice, while almost all doses of EGBSP showed significant effects. These results indicated that glycosylation significantly improved the anti-cancer effect and immunomodulatory activity of H22 tumor-bearing mice while prolonging their overall survival. In conclusion, the glycosylation method using microbial transglutaminase to catalyze the introduction of chitooligosaccharides into black bean protein can improve the film-processing properties and biological activities of BSP more effectively than the enzyme crosslinking method. Full article
Show Figures

Figure 1

15 pages, 2197 KB  
Article
Microbial Transglutaminase—The Food Additive, a Potential Inducing Factor in Primary Biliary Cholangitis
by Alicja Bauer, Paulina Rosiek and Tomasz Bauer
Molecules 2025, 30(4), 762; https://doi.org/10.3390/molecules30040762 - 7 Feb 2025
Cited by 4 | Viewed by 2553
Abstract
Microbial transglutaminase (mTG) is a bacterial survival factor, which is frequently used as a food additive. This results in the formation of immunogenic epitopes that may cause autoimmunity. Primary biliary cholangitis (PBC) is a cholestatic, autoimmune liver disease characterized by the presence of [...] Read more.
Microbial transglutaminase (mTG) is a bacterial survival factor, which is frequently used as a food additive. This results in the formation of immunogenic epitopes that may cause autoimmunity. Primary biliary cholangitis (PBC) is a cholestatic, autoimmune liver disease characterized by the presence of characteristic autoantibodies. The aim of this work was to determine epitope similarity and cross-reactivity between mTG- and PBC-specific antigens and to investigate whether the microbial enzyme may be associated with the induction of autoimmunity due to epitope similarity and cross-reactivity. Monoclonal and polyclonal antibodies against mTG were applied to nine different PBC-specific antigens using ELISA technique. They reacted significantly with four out of nine antigens. This reaction was most pronounced for gp210 and PML protein. We also performed in vitro studies on the impact of the mTG on the specific antigen–antibody binding using sera of PBC patients. We found four PBC-specific antigens that share homology with mTG sequences. We noticed inhibition of this specific binding by the mTG to the PDC M2, gp210, PML, and KLHL12 protein. Microbial mimics may be the major targets of cross-reactivity with human-specific antigens. Cross-reactivity may indicate a link between mTG and the development of autoimmune diseases. Full article
(This article belongs to the Special Issue Bioactive Compounds in Food: Analysis and Human Health)
Show Figures

Figure 1

12 pages, 2211 KB  
Article
Microbial Transglutaminase-Mediated Modification of Heat-Denatured Whey Proteins for the Preparation of Bio-Based Materials
by Manar Abdalrazeq, Diaa Aref, Loredana Mariniello and Concetta Valeria Lucia Giosafatto
Coatings 2025, 15(1), 66; https://doi.org/10.3390/coatings15010066 - 9 Jan 2025
Cited by 2 | Viewed by 1573
Abstract
This study sheds light on the potential of microbial transglutaminase (mTG)-mediated modification to enhance the properties of heat-denatured whey protein-based films. In this study, we investigated the biochemical modification of heat-denatured whey proteins (WPs) using mTG, an enzyme known for the ability of [...] Read more.
This study sheds light on the potential of microbial transglutaminase (mTG)-mediated modification to enhance the properties of heat-denatured whey protein-based films. In this study, we investigated the biochemical modification of heat-denatured whey proteins (WPs) using mTG, an enzyme known for the ability of crosslinking reactions. By introducing ε-(γ-glutamyl)-lysine crosslinks via an acyl transfer reaction, mTG enhances the properties of bio-based materials. In this research, heated WPs were demonstrated to effectively serve as mTG substrates. The preparation of crosslinked bio-based material was achieved using a casting method under alkaline conditions (pH 12) in the presence of glycerol (40% w/w), which was added as a plasticizer to the film-forming solution (FFS). A comprehensive characterization of the FFSs and the resulting materials was carried out. The FFSs were quite stable as evidenced by Zeta potential values that were always around 30/40 mV regardless of the presence of the enzyme. The enzymatic modification increased the elongation at break of the materials from 10.4 ± 4.9 MPa to 27.6 ± 8.9 MPa, while decreasing both tensile strength and Young’s modulus, thereby making the resulting material more extensible. On the other hand, the enzyme affected both the CO2 and O2 barrier properties, with permeability values for these gases being 0.90 cm3 mm m−2 day−1 kPa and 0.26 cm3 mm m−2 day−1 kPa, respectively, when the films were cast without the enzymatic treatment, but decreasing to 0.14 ± 0.02 cm3 mm m−2 day−1 kPa (CO2) and 0.02 ± 0.02 cm3 mm m−2 day−1 kPa (O2) in the presence of 24 U/g of mTG. These novel materials, prepared from renewable sources, could potentially be used in the food packaging field to replace/reduce the highly pollutant petroleum-based ones. Full article
(This article belongs to the Special Issue Advances and Trends in Bio-Based Electrospun Nanofibers)
Show Figures

Figure 1

13 pages, 2283 KB  
Article
Influence of Microbial Transglutaminase on the Formation of Physico-Chemical Properties of Meat Analogs
by Anna Zimoch-Korzycka, Anna Krawczyk, Żaneta Król-Kilińska, Dominika Kulig, Łukasz Bobak and Andrzej Jarmoluk
Foods 2024, 13(24), 4085; https://doi.org/10.3390/foods13244085 - 17 Dec 2024
Viewed by 3009
Abstract
With growing environmental and health concerns surrounding meat consumption, meat analogs have emerged as sustainable and health-conscious alternatives. A major challenge in developing these products is replicating the fibrous, elastic texture of meat, where microbial transglutaminase (MTG) has shown significant potential. MTG catalyzes [...] Read more.
With growing environmental and health concerns surrounding meat consumption, meat analogs have emerged as sustainable and health-conscious alternatives. A major challenge in developing these products is replicating the fibrous, elastic texture of meat, where microbial transglutaminase (MTG) has shown significant potential. MTG catalyzes protein cross-linking, enhancing the structural integrity of meat analogs. This study aimed to evaluate the effects of MTG concentrations (0%, 0.5%, and 1%) and incubation times (0, 1.5, and 3 h) on the quality and rheological properties of meat analogs. Analogs were tested for pH, protein content, dry matter, fat retention, and thermal loss. Textural properties, including hardness, cohesiveness, gumminess, springiness, and chewiness, were determined using texture profile analysis, while leakage parameters were evaluated through water and fat content tests. Results revealed that higher MTG concentrations and longer incubation times improved protein content (14.34% to 15.55%), dry matter (29.61% to 32.53%), and reduced total leakage (1.262% to 0.634%). Textural properties, including hardness (57.08 N to 83.14 N), gumminess (19.40 N to 30.00 N), and chewiness (17.60 N × mm to 29.58 N × mm), also significantly improved with increasing MTG levels. Thermal loss ranged from 98.37% to 100.9%, showing enhanced retention at higher MTG concentrations. These results support the role of MTG in creating meat analogs with improved meat-like textures, achieved through enhanced protein cross-linking and moisture retention. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

31 pages, 4702 KB  
Article
Branched Linkers for Homogeneous Antibody-Drug Conjugates: How Long Is Long Enough?
by Evgeny L. Gulyak, Olga A. Komarova, Yury A. Prokopenko, Elina A. Faizullina, Diana M. Malabuiok, Aigul R. Ibragimova, Yuliana A. Mokrushina, Oxana V. Serova, Galina P. Popova, Mikhail Y. Zhitlov, Timofei D. Nikitin, Vladimir A. Brylev, Alexey V. Ustinov, Vera A. Alferova, Vladimir A. Korshun, Ivan V. Smirnov, Stanislav S. Terekhov and Ksenia A. Sapozhnikova
Int. J. Mol. Sci. 2024, 25(24), 13356; https://doi.org/10.3390/ijms252413356 - 12 Dec 2024
Cited by 2 | Viewed by 5571
Abstract
Homogeneous antibody–drug conjugates (ADCs) exhibit significantly improved pharmacological properties compared to their heterogeneous counterparts. Site-specific conjugation of the payload to the IgG required for homogeneity can be achieved using enzymes. One example is microbial transglutaminase (MTGase), which can selectively perform transamidation on the [...] Read more.
Homogeneous antibody–drug conjugates (ADCs) exhibit significantly improved pharmacological properties compared to their heterogeneous counterparts. Site-specific conjugation of the payload to the IgG required for homogeneity can be achieved using enzymes. One example is microbial transglutaminase (MTGase), which can selectively perform transamidation on the Q295 residue of human Fc when N297 glycans are removed. As a result, two modifications can be introduced per IgG molecule; however, achieving higher drug-to-antibody ratios (DARs) requires the use of branched linkers. While several such linkers have been reported, little information is available on the relationship between linker structure and ADC properties. To address this gap, we synthesized two branched amino triazide linkers, differing by a PEG4 fragment inserted after the branching point, which were used to prepare two homogeneous trastuzumab-based DAR 6 ADCs (a “short” and a “long” one). This was achieved by a two-step process consisting of enzymatic linker conjugation followed by bioorthogonal coupling with a cleavable linker bearing monomethyl auristatin E (MMAE). Two other trastuzumab–MMAE conjugates were used as controls: a heterogeneous DAR 6 ADC, made using conventional thiol–maleimide chemistry, and a homogeneous DAR 2 ADC. We found that, while the four conjugates had identical affinity for HER2, their cytotoxicity differed significantly: the “long” homogeneous DAR 6 ADC was just as active as its heterogeneous counterpart, but the “short” DAR 6 ADC was an order of magnitude less potent, inferior even to the DAR 2 conjugate. Our findings indicate that the length of the branched linker critically affects the cytotoxic activity of ADCs, possibly due to steric hindrance influencing the rate of linker cleavage by lysosomal enzymes. Full article
(This article belongs to the Special Issue Advances in Antibody–Drug Conjugates)
Show Figures

Figure 1

23 pages, 2764 KB  
Review
Enzymes from Fishery and Aquaculture Waste: Research Trends in the Era of Artificial Intelligence and Circular Bio-Economy
by Zied Khiari
Mar. Drugs 2024, 22(9), 411; https://doi.org/10.3390/md22090411 - 10 Sep 2024
Cited by 9 | Viewed by 6868
Abstract
In the era of the blue bio-economy, which promotes the sustainable utilization and exploitation of marine resources for economic growth and development, the fisheries and aquaculture industries still face huge sustainability issues. One of the major challenges of these industries is associated with [...] Read more.
In the era of the blue bio-economy, which promotes the sustainable utilization and exploitation of marine resources for economic growth and development, the fisheries and aquaculture industries still face huge sustainability issues. One of the major challenges of these industries is associated with the generation and management of wastes, which pose a serious threat to human health and the environment if not properly treated. In the best-case scenario, fishery and aquaculture waste is processed into low-value commodities such as fishmeal and fish oil. However, this renewable organic biomass contains a number of highly valuable bioproducts, including enzymes, bioactive peptides, as well as functional proteins and polysaccharides. Marine-derived enzymes are known to have unique physical, chemical and catalytic characteristics and are reported to be superior to those from plant and animal origins. Moreover, it has been established that enzymes from marine species possess cold-adapted properties, which makes them interesting from technological, economic and sustainability points of view. Therefore, this review centers around enzymes from fishery and aquaculture waste, with a special focus on proteases, lipases, carbohydrases, chitinases and transglutaminases. Additionally, the use of fishery and aquaculture waste as a substrate for the production of industrially relevant microbial enzymes is discussed. The application of emerging technologies (i.e., artificial intelligence and machine learning) in microbial enzyme production is also presented. Full article
(This article belongs to the Special Issue Enzymes from Marine By-Products and Wastes)
Show Figures

Figure 1

17 pages, 766 KB  
Systematic Review
Mechanisms of Degradation of Collagen or Gelatin Materials (Hemostatic Sponges) in Oral Surgery: A Systematic Review
by Maria Catarino, Filipe Castro, José Paulo Macedo, Otília Lopes, Jorge Pereira, Pedro Lopes and Gustavo Vicentis Oliveira Fernandes
Surgeries 2024, 5(3), 532-548; https://doi.org/10.3390/surgeries5030043 - 15 Jul 2024
Cited by 16 | Viewed by 7298
Abstract
Objective: The goal of this systematic review was to identify the mechanisms associated with the enzymatic degradation of collagen and gelatin biomaterials and the possible associated flaws. Methods: Four databases (PubMed, B-On, Cochrane Library, and ResearchGate) were used for the bibliographic search of [...] Read more.
Objective: The goal of this systematic review was to identify the mechanisms associated with the enzymatic degradation of collagen and gelatin biomaterials and the possible associated flaws. Methods: Four databases (PubMed, B-On, Cochrane Library, and ResearchGate) were used for the bibliographic search of articles. The research question was formulated using the PCC method, (P): collagen or gelatin sponges, hydrogels, and scaffolds; concept (C): enzymatic degradation of collagen or gelatin sponges, hydrogels, and scaffolds; and context (C): effect of enzymatic action on degradation time of collagen or gelatin sponges, hydrogels, and scaffolds. The search was contextualized according to PRISMA recommendations. The identification and exclusion of evidence followed the PRISMA criteria, with specific inclusion and exclusion factors being stipulated for the selection of articles. The risk of bias assessment was performed using the QUIN Scale. Results: The initial search was composed of 13,830 articles after removing duplicates; 56 articles followed for the full-text reading; 45 were excluded; then, 11 articles were obtained, constituting the results of this systematic review. All studies evaluated the materials using gravimetric analysis, and collagenases were the proteases used for the degradation solution. The materials tested were as follows: human-like collagen (HLC) hydrogel with microbial transglutaminase (MTGase), gelatin sponges subjected to different types of crosslinking, and collagen scaffolds with different types of crosslinking. The period of analysis varied between 0.25 h and 35 days. It was possible to highlight the lack of uniformity in the protocols used, which varied largely, thus influencing the degradation times. The risk of bias was low in nine studies and medium in two studies. Conclusions: This systematic review identified a gap in the literature, highlighting the absence of in vitro studies using human saliva and a collagenase concentration close to the physiological levels to simulate oral dynamics. However, based on existing literature, the mechanisms associated with collagen enzymatic degradation in collagen and gelatin biomaterials were comprehensively understood, answering the first research question postulated. In response to the second research question, the main shortcomings identified in the laboratory evaluation of mechanisms associated with collagen enzymatic degradation in collagen and gelatin biomaterials included the lack of standardization in degradation test protocols; this limited inter-study comparisons, which increased heterogeneity. Additionally, variations in collagenase concentrations and types influenced collagen degradation rates, and inappropriate evaluation intervals hindered the identification of total degradation time. Full article
Show Figures

Graphical abstract

8 pages, 258 KB  
Communication
Influence of Deliverable Form of Dietary Vitamin D3 on the Immune Response in Late-Lactating Dairy Goats
by Adela Mora-Gutierrez, Maryuri T. Núñez de González, Selamawit Woldesenbet, Rahmat Attaie and Yoonsung Jung
Dairy 2024, 5(2), 308-315; https://doi.org/10.3390/dairy5020025 - 22 May 2024
Cited by 5 | Viewed by 2388
Abstract
Mastitis-causing bacteria can establish persistent infections in the mammary glands of commercially important dairy animals despite the presence of strong specific humoral and cellular immune mechanisms. We investigated the effect of vitamin D3 in the diet at a set level, but in [...] Read more.
Mastitis-causing bacteria can establish persistent infections in the mammary glands of commercially important dairy animals despite the presence of strong specific humoral and cellular immune mechanisms. We investigated the effect of vitamin D3 in the diet at a set level, but in two different forms (i.e., unencapsulated and encapsulated by complex coacervation with sulfur-saturated bovine lactoferrin-alginate using microbial transglutaminase-catalyzed crosslinking) on the immune response in late-lactating dairy goats. Dairy goats (n = 18) were randomly assigned to three experimental groups (n = 6). Dairy goats were orally administered 0.35 mg of vitamin D3/day in the unencapsulated form and 0.35 mg of vitamin D3/day in the encapsulated powder form. Another group received the basal diet. The experimental period lasted 6 weeks. The blood serum concentrations of 25-hydroxyvitamin D3 [25-(OH)-D3], lactoferrin, immunoglobulin A (IgA), and interferon-gamma (INF-γ) were measured. There were major differences in these parameters between dietary groups. However, the delivery of vitamin D3 in the encapsulated powder form to dairy goats resulted in a marked increase in 25-(OH)-D3 concentration in serum, while the serum level of lactoferrin also increased. Alternatively, the serum levels of IgA and the immunomodulatory cytokine INF-γ were elevated following supplementation with the encapsulated vitamin D3. The observed effects suggest that the deliverable form of dietary vitamin D3 results in differences in the immune response in late-lactating dairy goats. Full article
14 pages, 2293 KB  
Article
Investigating the Effect of Processing and Material Parameters of Alginate Dialdehyde-Gelatin (ADA-GEL)-Based Hydrogels on Stiffness by XGB Machine Learning Model
by Duygu Ege and Aldo R. Boccaccini
Bioengineering 2024, 11(5), 415; https://doi.org/10.3390/bioengineering11050415 - 24 Apr 2024
Cited by 13 | Viewed by 2950
Abstract
To address the limitations of alginate and gelatin as separate hydrogels, partially oxidized alginate, alginate dialdehyde (ADA), is usually combined with gelatin to prepare ADA-GEL hydrogels. These hydrogels offer tunable properties, controllable degradation, and suitable stiffness for 3D bioprinting and tissue engineering applications. [...] Read more.
To address the limitations of alginate and gelatin as separate hydrogels, partially oxidized alginate, alginate dialdehyde (ADA), is usually combined with gelatin to prepare ADA-GEL hydrogels. These hydrogels offer tunable properties, controllable degradation, and suitable stiffness for 3D bioprinting and tissue engineering applications. Several processing variables affect the final properties of the hydrogel, including degree of oxidation, gelatin content and type of crosslinking agent. In addition, in 3D-printed structures, pore size and the possible addition of a filler to make a hydrogel composite also affect the final physical and biological properties. This study utilized datasets from 13 research papers, encompassing 33 unique combinations of ADA concentration, gelatin concentration, CaCl2 and microbial transglutaminase (mTG) concentrations (as crosslinkers), pore size, bioactive glass (BG) filler content, and one identified target property of the hydrogels, stiffness, utilizing the Extreme Boost (XGB) machine learning algorithm to create a predictive model for understanding the combined influence of these parameters on hydrogel stiffness. The stiffness of ADA-GEL hydrogels is notably affected by the ADA to GEL ratio, and higher gelatin content for different ADA gel concentrations weakens the scaffold, likely due to the presence of unbound gelatin. Pore size and the inclusion of a BG particulate filler also have a significant impact on stiffness; smaller pore sizes and higher BG content lead to increased stiffness. The optimization of ADA-GEL composition and the inclusion of BG fillers are key determinants to tailor the stiffness of these 3D printed hydrogels, as found by the analysis of the available data. Full article
(This article belongs to the Section Regenerative Engineering)
Show Figures

Graphical abstract

14 pages, 1947 KB  
Article
Influence of High-Pressure Processing and Microbial Transglutaminase on the Properties of Pea Protein Isolates
by Rui P. Queirós, Nicole Moreira, Carlos A. Pinto, Liliana G. Fidalgo, Jorge A. Saraiva and José A. Lopes-da-Silva
Macromol 2024, 4(2), 213-226; https://doi.org/10.3390/macromol4020011 - 8 Apr 2024
Cited by 1 | Viewed by 2123
Abstract
This study investigated the effects of high-pressure processing (HPP; 600 MPa/15 min) and microbial transglutaminase-catalyzed (MTG; 30 U·g of protein−1) crosslinking on the concentration of dissolved proteins (SOL), free sulfhydryl groups (SH), surface hydrophobicity (H0), and viscosity of [...] Read more.
This study investigated the effects of high-pressure processing (HPP; 600 MPa/15 min) and microbial transglutaminase-catalyzed (MTG; 30 U·g of protein−1) crosslinking on the concentration of dissolved proteins (SOL), free sulfhydryl groups (SH), surface hydrophobicity (H0), and viscosity of pea protein isolates (PPI) at different concentrations (1–13%; w/v). The SOL increased by increasing protein concentration (max. 29%). MTG slightly affected SOL. HPP decreased SOL with increasing protein concentration, and the combination MTG + HPP resulted in a lower SOL than HPP alone. The concentration of SH in untreated PPI increased with increasing protein concentration, reaching a maximum of 8.3 μmol·mg prot−1. MTG increased SH at higher protein concentrations. HPP lowered SH, but its concentration increased by increasing protein concentration. HPP + MTG offset the effect of MTG, yielding lower SH. MTG did not affect H0 at 1% concentration but increased it for concentrations from 3–5%, and there was a decrease with 7–9%. HPP increased H0 up to 37% for intermediate protein concentrations but did not affect it at higher concentrations. MTG + HPP decreased H0 at all protein concentrations. The viscosity of the dispersions increased with protein concentration. HPP increased the viscosity of the dispersions for concentrations above 7%, while MTG only caused changes above 9%. Combined MTG + HPP resulted in viscosity increase. The results underscore the opportunity for innovative development of high-protein products with improved properties or textures for industrial application. Full article
Show Figures

Figure 1

16 pages, 6175 KB  
Article
Mechanically Tough and Conductive Hydrogels Based on Gelatin and Z–Gln–Gly Generated by Microbial Transglutaminase
by Zhiwei Chen, Ruxin Zhang, Shouwei Zhao, Bing Li, Shuo Wang, Wenhui Lu and Deyi Zhu
Polymers 2024, 16(7), 999; https://doi.org/10.3390/polym16070999 - 5 Apr 2024
Cited by 2 | Viewed by 2827
Abstract
Gelatin-based hydrogels with excellent mechanical properties and conductivities are desirable, but their fabrication is challenging. In this work, an innovative approach for the preparation of gelatin-based conductive hydrogels is presented that improves the mechanical and conductive properties of hydrogels by integrating Z–Gln–Gly into [...] Read more.
Gelatin-based hydrogels with excellent mechanical properties and conductivities are desirable, but their fabrication is challenging. In this work, an innovative approach for the preparation of gelatin-based conductive hydrogels is presented that improves the mechanical and conductive properties of hydrogels by integrating Z–Gln–Gly into gelatin polymers via enzymatic crosslinking. In these hydrogels (Gel–TG–ZQG), dynamic π–π stacking interactions are created by the introduction of carbobenzoxy groups, which can increase the elasticity and toughness of the hydrogel and improve the conductivity sensitivity by forming effective electronic pathways. Moreover, the mechanical properties and conductivity of the obtained hydrogel can be controlled by tuning the molar ratio of Z–Gln–Gly to the primary amino groups in gelatin. The hydrogel with the optimal mechanical properties (Gel–TG–ZQG (0.25)) exhibits a high storage modulus, compressive strength, tensile strength, and elongation at break of 7.8 MPa at 10 °C, 0.15 MPa at 80% strain, 0.343 MPa, and 218.30%, respectively. The obtained Gel–TG–ZQG (0.25) strain sensor exhibits a short response/recovery time (260.37 ms/130.02 ms) and high sensitivity (0.138 kPa−1) in small pressure ranges (0–2.3 kPa). The Gel–TG–ZQG (0.25) hydrogel-based sensors can detect full-range human activities, such as swallowing, fist clenching, knee bending and finger pressing, with high sensitivity and stability, yielding highly reproducible and repeatable sensor responses. Additionally, the Gel–TG–ZQG hydrogels are noncytotoxic. All the results demonstrate that the Gel–TG–ZQG hydrogel has potential as a biosensor for wearable devices and health-monitoring systems. Full article
Show Figures

Figure 1

Back to TopTop