Influence of Deliverable Form of Dietary Vitamin D3 on the Immune Response in Late-Lactating Dairy Goats
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fleet, J.C. Vitamin D-mediated regulation of intestinal calcium absorption. Nutrients 2022, 14, 3351. [Google Scholar] [CrossRef]
- Nemeth, M.V.; Wilkens, M.R.; Liesegang, A. Vitamin D status in growing dairy goats and sheep: Influence of ultraviolet B radiation on bone metabolism and calcium homeostasis. J. Dairy Sci. 2017, 100, 8072–8086. [Google Scholar] [CrossRef]
- Ooninck, D.G.A.B.; Stevens, Y.; van den Borne, J.J.G.C.; van Leeuwen, J.P.T.M.; Hendriks, W.H. Effects of vitamin D3 supplementation and UVb exposure on the growth and plasma concentration of vitamin D3 metabolites in juvenile bearded dragons (Pogona vitticeps). Comp. Biochem. Physiol. B 2010, 156, 122–128. [Google Scholar] [CrossRef]
- Argano, C.; Mallaci Bocchio, R.; Natoli, G.; Scibetta, S.; Lo Monaco, M.; Corrao, S. Protective effect of vitamin D supplementation on COVID-19-related intensive care hospitalization and mortality: Definitive evidence from meta-analysis and trial sequential analysis. Pharmaceuticals 2023, 16, 130. [Google Scholar] [CrossRef]
- Papagni, R.; Pellegrino, C.; Di Gennaro, F.; Patti, G.; Ricciardi, A.; Novara, R.; Cotugno, S.; Musso, M.; Guido, G.; Ronga, L.; et al. Impact of vitamin D in prophylaxis and treatment in tuberculosis patients. Int. J. Mol. Sci. 2022, 23, 3860. [Google Scholar] [CrossRef] [PubMed]
- Zemanova, M.; Langova, L.; Novotná, I.; Dvorakova, P.; Vrtkova, I.; Havlicek, Z. Immune mechanisms, resistance genes, and their roles in the prevention of mastitis in dairy cows. Arch. Anim. Breed. 2022, 65, 371–384. [Google Scholar] [CrossRef] [PubMed]
- Banasaz, S.; Morozova, K.; Ferrentino, G.; Scampicchio, M. Encapsulation of lipid-soluble bioactives by nanoemulsions. Molecules 2020, 25, 3966. [Google Scholar] [CrossRef]
- Yan, C.; Kim, S.-R.; Ruiz, D.R.; Farmer, J.R. Microencapsulation for food applications: A review. ACS Appl. Bio Mater. 2022, 5, 5497–5512. [Google Scholar] [CrossRef] [PubMed]
- Devi, N.; Sarmah, M.; Khatun, B.; Maji, T.K. Encapsulation of active ingredients in polysaccharide-protein complex coacervates. Adv. Colloid Interface Sci. 2017, 239, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Fu, Y.; Xu, Y.; Niu, F.; Li, Z.; Ba, C.; Jin, B.; Chen, G.; Li, X. One-step assembly of zein/caseinate/alginate nanoparticles for encapsulation and improved bioaccessibility of propolis. Food Funct. 2019, 10, 635–645. [Google Scholar] [CrossRef]
- Sing, C.E.; Perry, S.L. Recent progress in the science of complex coacervation. Soft Matter 2020, 16, 2885–2914. [Google Scholar] [CrossRef]
- Bastos, L.P.H.; dos Santos, C.H.C.; de Carvalho, M.G.; Garcia-Rojas, E.E. Encapsulation of the black pepper (Piper nigrum L.) essential oil by lactoferrin-sodium alginate complex coacervates: Structural characterization and simulated gastrointestinal conditions. Food Chem. 2020, 316, 126345. [Google Scholar] [CrossRef]
- Rojas-Moreno, S.; Osorio-Revilla, G.; Gallardo-Velázquez, T.; Cárdenas-Bailón, F.; Meza-Márquez, G. Effect of the cross-linking agent and drying method on encapsulation efficiency of orange essential oil by complex coacervation using whey protein isolate with different polysaccharides. J. Microencapsul. 2018, 35, 165–180. [Google Scholar] [CrossRef]
- Mora-Gutierrez, A.; Attaie, R.; Kirven, J.M.; Farrell, H.M., Jr. Cross-linking of bovine and caprine caseins by microbial transglutaminase and their use as microencapsulating agents for n-3 fatty acids. Int. J. Food Sci. Technol. 2014, 49, 1530–1543. [Google Scholar] [CrossRef]
- Joye, I.J.; McClements, D.J. Biopolymer-based delivery systems: Challenges and opportunities. Curr. Top. Med. Chem. 2016, 16, 1026–1039. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Haque, M.A.; Adhikari, B. Encapsulation in the food industry: A brief historical overview to recent developments. Food Nutr. Sci. 2020, 11, 481–508. [Google Scholar] [CrossRef]
- Sarei, F.; Mohammadpour Dounighi, N.; Zolfagharian, H.; Khaki, P.; Moradi Bidhendi, S. Alginate nanoparticles as a promising adjuvant and vaccine delivery system. Indian J. Pharm. Sci. 2013, 75, 442–449. [Google Scholar] [CrossRef]
- Drago-Serrano, M.E.; Campos-Rodríguez, R.; Carrero, J.C.; de la Garza, M. Lactoferrin: Balancing ups and downs of inflammation due to microbial infections. Int. J. Mol. Sci. 2017, 18, 501. [Google Scholar] [CrossRef] [PubMed]
- Cutone, A.; Musci, G.; Bonaccorsi di Patti, M.C. Lactoferrin, the moonlighting protein of innate immunity. Int. J. Mol. Sci. 2023, 24, 15888. [Google Scholar] [CrossRef] [PubMed]
- Shankar, S.; Pangeni, R.; Park, J.W.; Rhim, J.W. Preparation of sulfur nanoparticles and their antibacterial activity and cytotoxic effect. Mater. Sci. Eng. C 2018, 92, 508–517. [Google Scholar] [CrossRef]
- Lacasse, P.; Lauzon, K.; Diarra, M.S.; Petitclerc, D. Utilization of lactoferrin to fight antibiotic-resistant mammary gland pathogens. J. Anim. Sci. 2008, 86, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Shou, H.; Huang, G.; Liu, N. Inhibition of HBV infection by bovine lactoferrin and iron-, zinc-saturated lactoferrin. Med. Microbiol. Immunol. 2009, 198, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Temova, Ž.; Roŝcar, R. Stability-indicating HPLC-UV method for vitamin D3 determination in solutions, nutritional supplements and pharmaceuticals. J. Chromatogr. Sci. 2016, 54, 1180–1186. [Google Scholar] [CrossRef] [PubMed]
- Basch, J.J.; Farrell, H.M., Jr.; Walsh, R.A.; Konstance, R.P.; Kumosinski, T.F. Development of a quantitative model for enzyme-catalyzed, time-dependent changes in protein composition of Cheddar cheese during storage. J. Dairy Sci. 1989, 72, 591–603. [Google Scholar] [CrossRef]
- Kiely, M.E.; Zhang, J.Y.; Kinsella, M.; Khashan, A.S.; Kenny, L.C. Vitamin D status is associated with uteroplacental dysfunction indicated by pre-eclampsia and small-for-gestational-age birth in a large prospective pregnancy cohort in Ireland with low vitamin D status. Am. J. Clin. Nutr. 2016, 104, 354–361. [Google Scholar] [CrossRef]
- Ismailova, A.; White, J.H. Vitamin D, infections and immunity. Rev. Endocr. Metab. Disord. 2022, 23, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Athanassiou, L.; Mavragani, C.P.; Koutsilieris, M. The immunomodulatory properties of vitamin D. Mediterr. J. Rheumatol. 2022, 33, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Bishop, E.L.; Ismailova, A.; Dimeloe, S.; Hwison, M.; White, J.H. Vitamin D and immune regulation: Antibacterial, antiviral, anti-Inflammatory. JBMR Plus 2020, 5, e10405. [Google Scholar] [CrossRef] [PubMed]
- Pilz, S.; Trummer, C.; Theiler-Schwetz, V.; Grübler, M.R.; Verheyen, N.D.; Odler, B.; Karras, S.N.; Zittermann, A.; März, W. Critical appraisal of large vitamin D randomized controlled trials. Nutrients 2022, 14, 303. [Google Scholar] [CrossRef]
- Charoenngam, N.; Holick, M.F. Immunologic effects of vitamin D on human health and disease. Nutrients 2020, 12, 2097. [Google Scholar] [CrossRef]
- Merriman, K.; Powell, J.L.; Santos, J.E.P.; Nelson, C.D. Intramammary 25-hydroxyvitamin D3 treatment modulates innate immune responses to endotoxin-induced mastitis. J. Dairy Sci. 2018, 101, 7593–7607. [Google Scholar] [CrossRef] [PubMed]
- Poindexter, M.B.; Kweh, M.F.; Zimpel, R.; Zuniga, J.; Lopera, C.; Zenobi, M.G.; Jiang, Y.; Engstrom, M.; Celi, P.; Santos, J.E.P.; et al. Feeding supplemental 25-hydroxyvitamin D3 increases serum mineral concentrations and alters mammary immunity of lactating dairy cows. J. Dairy Sci. 2020, 103, 805–822. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Zhang, X.; Zhang, H.; Tian, B.; Weng, Y.; Huang, J.; Lu, C.D.; Shi, H. Effects of dietary supplementation of bovine lactoferricin on rumen microbiota, lactation, and health in dairy goats. Front. Nutr. 2021, 8, 722303. [Google Scholar] [CrossRef] [PubMed]
- Metha, R.; Petrova, A. Biologically active breast milk proteins in association with very preterm delivery and stage of lactation. J. Perinatol. 2011, 31, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Szymczak, I.; Pawliczak, R. The active metabolite of vitamin D3 as a potential immunomodulator. Scand. J. Immunol. 2016, 83, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Cipriano, M.; Ruberti, E.; Tovani-Palone, M.R. Combined use of lactoferrin and vitamin D as a preventive and therapeutic supplement for SARS-CoV-2 infection: Current evidence. World J. Clin. Cases 2022, 10, 11665–11670. [Google Scholar] [CrossRef]
- Kak, G.; Raza, M.; Tiwari, B.K. Interferon-gamma (IFN-γ): Exploring its implications in infectious diseases. Biomol. Concepts 2018, 9, 64–79. [Google Scholar] [CrossRef]
Item | Baseline (0 Weeks) | Feeding Period (6 Weeks) | p-Value |
---|---|---|---|
25-(OH)-D3 (ng/mL) | |||
Treatment U | 25.92 ± 1.63 | 39.10 ± 1.53 | <0.0001 |
Treatment E | 27.30 ± 0.93 | 51.37 ± 1.27 | <0.0001 |
Control | 23.53 ± 0.78 | 24.35 ± 1.29 | 0.500 |
Lactoferrin (μg/mL) | |||
Treatment U | 148.28 ± 1.03 | 149.60 ± 3.51 | 0.728 |
Treatment E | 146.90 ± 1.32 | 228.40 ± 4.54 | <0.0001 |
Control | 147.08 ± 1.27 | 146.60 ± 0.75 | 0.723 |
IgA (μg/mL) | |||
Treatment U | 430.12 ± 3.57 | 425.27 ± 5.10 | 0.547 |
Treatment E | 427.72 ± 5.70 | 576.62 ± 2.01 | <0.0001 |
Control | 428.15 ± 4.75 | 426.61 ± 1.83 | 0.763 |
INF-γ (pg/mL) | |||
Treatment U | 36.33 ± 3.48 | 39.23 ± 4.13 | 0.701 |
Treatment E | 35.17 ± 2.49 | 62.08 ± 2.00 | <0.0001 |
Control | 32.27 ± 2.40 | 36.81 ± 2.16 | 0.807 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mora-Gutierrez, A.; Núñez de González, M.T.; Woldesenbet, S.; Attaie, R.; Jung, Y. Influence of Deliverable Form of Dietary Vitamin D3 on the Immune Response in Late-Lactating Dairy Goats. Dairy 2024, 5, 308-315. https://doi.org/10.3390/dairy5020025
Mora-Gutierrez A, Núñez de González MT, Woldesenbet S, Attaie R, Jung Y. Influence of Deliverable Form of Dietary Vitamin D3 on the Immune Response in Late-Lactating Dairy Goats. Dairy. 2024; 5(2):308-315. https://doi.org/10.3390/dairy5020025
Chicago/Turabian StyleMora-Gutierrez, Adela, Maryuri T. Núñez de González, Selamawit Woldesenbet, Rahmat Attaie, and Yoonsung Jung. 2024. "Influence of Deliverable Form of Dietary Vitamin D3 on the Immune Response in Late-Lactating Dairy Goats" Dairy 5, no. 2: 308-315. https://doi.org/10.3390/dairy5020025
APA StyleMora-Gutierrez, A., Núñez de González, M. T., Woldesenbet, S., Attaie, R., & Jung, Y. (2024). Influence of Deliverable Form of Dietary Vitamin D3 on the Immune Response in Late-Lactating Dairy Goats. Dairy, 5(2), 308-315. https://doi.org/10.3390/dairy5020025