Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (517)

Search Parameters:
Keywords = microbial respiration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2656 KiB  
Article
Plastic Film Mulching Regulates Soil Respiration and Temperature Sensitivity in Maize Farming Across Diverse Hydrothermal Conditions
by Jianjun Yang, Rui Wang, Xiaopeng Shi, Yufei Li, Rafi Ullah and Feng Zhang
Agriculture 2025, 15(15), 1667; https://doi.org/10.3390/agriculture15151667 - 1 Aug 2025
Viewed by 155
Abstract
Soil respiration (Rt), consisting of heterotrophic (Rh) and autotrophic respiration (Ra), plays a vital role in terrestrial carbon cycling and is sensitive to soil temperature and moisture. In dryland agriculture, plastic film mulching (PM) is widely used to regulate soil hydrothermal conditions, but [...] Read more.
Soil respiration (Rt), consisting of heterotrophic (Rh) and autotrophic respiration (Ra), plays a vital role in terrestrial carbon cycling and is sensitive to soil temperature and moisture. In dryland agriculture, plastic film mulching (PM) is widely used to regulate soil hydrothermal conditions, but its effects on Rt components and their temperature sensitivity (Q10) across regions remain unclear. A two-year field study was conducted at two rain-fed maize sites: Anding (warmer, semi-arid) and Yuzhong (colder, drier). PM significantly increased Rt, Rh, and Ra, especially Ra, due to enhanced root biomass and improved microclimate. Yield increased by 33.6–165%. Peak respiration occurred earlier in Anding, aligned with maize growth and soil temperature. PM reduced Q10 of Rt and Ra in Anding, but only Ra in Yuzhong. Rh Q10 remained stable, indicating microbial respiration was less sensitive to temperature changes. Structural equation modeling revealed that Rt and Ra were mainly driven by soil temperature and root biomass, while Rh was more influenced by microbial biomass carbon (MBC) and dissolved organic carbon (DOC). Despite increased CO2 emissions, PM improved carbon emission efficiency (CEE), particularly in Yuzhong (+67%). The application of PM is recommended to enhance yield while optimizing carbon efficiency in dryland farming systems. Full article
Show Figures

Figure 1

21 pages, 1538 KiB  
Article
Soil Fungal Activity and Microbial Response to Wildfire in a Dry Tropical Forest of Northern Colombia
by Eliana Martínez Mera, Ana Carolina Torregroza-Espinosa, Ana Cristina De la Parra-Guerra, Marielena Durán-Castiblanco, William Zapata-Herazo, Juan Sebastián Rodríguez-Rebolledo, Fernán Zabala-Sierra and David Alejandro Blanco Alvarez
Diversity 2025, 17(8), 546; https://doi.org/10.3390/d17080546 - 1 Aug 2025
Viewed by 161
Abstract
Wildfires can significantly alter soil physicochemical conditions and microbial communities in forest ecosystems. This study aimed to characterize the culturable soil fungal community and evaluate biological activity in Banco Totumo Bijibana, a protected dry tropical forest in Atlántico, Colombia, affected by a wildfire [...] Read more.
Wildfires can significantly alter soil physicochemical conditions and microbial communities in forest ecosystems. This study aimed to characterize the culturable soil fungal community and evaluate biological activity in Banco Totumo Bijibana, a protected dry tropical forest in Atlántico, Colombia, affected by a wildfire in 2014. Twenty soil samples were collected for microbiological (10 cm depth) and physicochemical (30 cm) analysis. Basal respiration was measured using Stotzky’s method, nitrogen mineralization via Rawls’ method, and fungal diversity through culture-based identification and colony-forming unit (CFU) counts. Diversity was assessed using Simpson, Shannon–Weaver, and ACE indices. The soils presented low organic matter (0.70%) and nitrogen content (0.035%), with reduced biological activity as indicated by basal respiration (0.12 kg C ha−1 d−1) and mineralized nitrogen (5.61 kg ha−1). Four fungal morphotypes, likely from the genus Aspergillus, were identified. Simpson index indicated moderate dominance, while Shannon–Weaver values reflected low diversity. Correlation analysis showed Aspergillus-3 was positively associated with moisture, whereas Aspergillus-4 correlated negatively with pH and sand content. The species accumulation curve reached an asymptote, suggesting an adequate sampling effort. Although no control site was included, the findings provide a baseline characterization of post-fire soil microbial structure and function in a dry tropical ecosystem. Full article
(This article belongs to the Section Microbial Diversity and Culture Collections)
Show Figures

Graphical abstract

13 pages, 1482 KiB  
Article
Effect of Surrounding Detritus on Phragmites australis Litter Decomposition: Evidence from Laboratory Aquatic Microcosms
by Franca Sangiorgio, Daniela Santagata, Fabio Vignes, Maurizio Pinna and Alberto Basset
Limnol. Rev. 2025, 25(3), 34; https://doi.org/10.3390/limnolrev25030034 - 1 Aug 2025
Viewed by 86
Abstract
The availability of detritus is a key factor influencing aquatic biota and can significantly affect decomposition processes. In this study, we investigated how varying quantities of surrounding detritus impact leaf litter decay rates. It was tested in flowing and still-water microcosms to highlight [...] Read more.
The availability of detritus is a key factor influencing aquatic biota and can significantly affect decomposition processes. In this study, we investigated how varying quantities of surrounding detritus impact leaf litter decay rates. It was tested in flowing and still-water microcosms to highlight context-dependent effects of surrounding detritus on leaf litter decomposition. To isolate the effect of detritus amount, experiments were conducted in laboratory microcosms simulating lotic and lentic ecosystems, each containing leaf fragments for decomposition assessments. Four detritus quantities were tested, with invertebrates either allowed or restricted from moving among detritus patches. Leaf decomposition rates were influenced by the amount of surrounding detritus, with slower decay observed at higher detritus conditions, regardless of invertebrate mobility. Detritivore distribution responded to both detritus quantity and oxygen availability, showing a preference for high detritus conditions. Additionally, detritus quantity affected microbial activity with a quadratic response, as indicated by leaf respiration rates. Overall, our findings indicate that the amount of surrounding detritus modulates leaf litter decomposition independently of invertebrate density, by influencing oxygen dynamics and, consequently, the activity of biological decomposers. Full article
Show Figures

Graphical abstract

16 pages, 2047 KiB  
Article
Caseinate–Carboxymethyl Chitosan Composite Edible Coating with Soybean Oil for Extending the Shelf Life of Blueberry Fruit
by Amal M. A. Mohamed and Hosahalli S. Ramaswamy
Foods 2025, 14(15), 2598; https://doi.org/10.3390/foods14152598 - 24 Jul 2025
Viewed by 352
Abstract
Utilizing edible films/coatings promises to extend the shelf life of fruits by controlling various physiological parameters (e.g., respiration and transpiration rates), maintaining firmness, and delaying fruit senescence. The influence of composite-based edible coatings made from sodium or calcium caseinate: carboxymethyl chitosan (75:25) on [...] Read more.
Utilizing edible films/coatings promises to extend the shelf life of fruits by controlling various physiological parameters (e.g., respiration and transpiration rates), maintaining firmness, and delaying fruit senescence. The influence of composite-based edible coatings made from sodium or calcium caseinate: carboxymethyl chitosan (75:25) on the postharvest quality of fresh blueberries was assessed over a 28-day storage period, on the basis of weight loss and changes in pH, firmness, color, titratable acidity, soluble solids content, mold and yeast count, and respiration rate. The pH of the blueberries increased over the period of storage, with significant differences observed between uncoated and coated (e.g., pH was 3.89, 3.17, and 3.62 at the end of the storage time for uncoated, Ca 75-1% SO, and Na 75-1% SO, respectively. Desirable lower pH values at the end of storage were obtained with the calcium caseinate formulations. Over the duration of storage, other quality parameters (e.g., firmness) were better retained in coated fruits compared to the uncoated (control) one. At the last storage day, the firmness of the uncoated sample was 0.67 N·mm−1 while the sodium and calcium caseinate was 0.63 and 0.81 N.mm−1, respectively. Moreover, the microbial growth was reduced in coated fruits, indicating the effectiveness of coatings in preserving fruit quality. The mold /yeast count was 1.4 and 2.3 log CFU/g for CaCa 75-1% SO and NaCa 75-1% SO compared with uncoated with 4.2 log CFU/g. Adding soybean oil to the caseinate–carboxymethyl chitosan composite edible coating has the potential to positively influence retention of various quality parameters of blueberries, thereby extending their shelf life and maintaining overall quality. Further research could explore the optimization of coating formulations and application methods to enhance their effectiveness in preserving fruit quality during storage. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

17 pages, 3246 KiB  
Article
Rosemary Extract Reduces Odor in Cats Through Nitrogen and Sulfur Metabolism by Gut Microbiota–Host Co-Modulation
by Ziming Huang, Miao Li, Zhiqin He, Xiliang Yan, Yinbao Wu, Peiqiang Mu, Jun Jiang, Xu Wang and Yan Wang
Animals 2025, 15(14), 2101; https://doi.org/10.3390/ani15142101 - 16 Jul 2025
Viewed by 680
Abstract
Odors from pet cats can negatively affect the quality of life of cat owners. The diverse bioactive compounds in plant extracts make them a promising candidate for effective odor reduction. This study evaluated twelve plant extracts for deodorizing efficacy via in vitro fermentation [...] Read more.
Odors from pet cats can negatively affect the quality of life of cat owners. The diverse bioactive compounds in plant extracts make them a promising candidate for effective odor reduction. This study evaluated twelve plant extracts for deodorizing efficacy via in vitro fermentation tests. Rosemary extract and licorice extract exhibited better deodorizing effects, with fractions of rosemary extract below 100 Da demonstrating the most effective deodorizing performance. Based on these findings, subsequent feeding trials were conducted using rosemary extract and its fractions below 100 Da. In the feeding trial, adult British Shorthair cats were divided into three groups (Control Check, RE, and RE100) and housed in a controlled-environment respiration chamber for 30 days. Measurements included odor emissions, fecal and blood physicochemical parameters, immune parameters, microbiota composition based on 16S rRNA sequencing, and metabolome analysis. The results of the feeding trial indicated that rosemary extract significantly reduced ammonia and hydrogen sulfide emissions (46.84%, 41.64%), while fractions below 100 Da of rosemary extract achieved even greater reductions (55.62%, 53.87%). Rosemary extract regulated the intestinal microbial community, significantly increasing the relative abundance of the intestinal probiotic Bifidobacterium (p < 0.05) and reducing the population of sulfate-reducing bacteria (p < 0.05). It also significantly reduced urease and uricase activities (p < 0.05) to reduce ammonia production and inhibited the degradation of sulfur-containing proteins and sulfate reduction to reduce hydrogen sulfide emissions. Furthermore, rosemary extract significantly enhanced the immune function of British Shorthair cats (p < 0.05). This study suggests that rosemary extract, particularly its fractions below 100 Da, is a highly promising pet deodorizer. Full article
(This article belongs to the Section Companion Animals)
Show Figures

Figure 1

15 pages, 5342 KiB  
Systematic Review
Bibliometrics and Visualization Analysis of Three Obligate Organohalide Respiring Bacteria Genera: A Systematic Review
by Lisi Jiang, Zirui Yu, Jiaqi Qu, Xiaohan Xu, Zirui Liu, Wenyuan Li and Yang Zhang
Microorganisms 2025, 13(7), 1668; https://doi.org/10.3390/microorganisms13071668 - 16 Jul 2025
Viewed by 293
Abstract
Organohalide-respiring bacteria (OHRB) facilitate the reductive dehalogenation of toxic halogenated compounds in the environment, which supports their growth and proliferation. Research conducted on OHRB has achieved notable advancements. However, given the intricacy of the ecosystem and the methodologies employed for microbial isolation, numerous [...] Read more.
Organohalide-respiring bacteria (OHRB) facilitate the reductive dehalogenation of toxic halogenated compounds in the environment, which supports their growth and proliferation. Research conducted on OHRB has achieved notable advancements. However, given the intricacy of the ecosystem and the methodologies employed for microbial isolation, numerous constraints persist. Further exploration is imperative to elucidate the physiological characteristics, ecological functions, and technological applications of OHRB. This study aimed to evaluate the outcomes and insights of prior research via a bibliometric analysis of three obligate OHRB genera—Dehalococcoides, Dehalobacter, and Dehalogenimonas—over a three-decade period from 1994 to 2024, based on the Web of Science (WOS) database. The results show that research on these three bacterial genera has advanced in sequence since the initiation of studies in this field. The research area encompasses the identification and isolation of novel OHRB species, the gene sequencing of related enzymes, and the role of microorganisms in the remediation of environmental pollutants, reflecting a gradual transition from individual investigations of OHRB to the applications of microorganisms in remediating complex environmental pollution. This study systematically reviewed the past research history of this field and conducted an in-depth analysis of research hotspots. The integration of this analysis with technological development trends and practical application requirements provides a theoretical basis and innovative concepts for future research directions in the field of ecological environment restoration. Full article
Show Figures

Figure 1

21 pages, 2431 KiB  
Article
Up-Cycling Broccoli Stalks into Fresh-Cut Sticks: Postharvest Strategies for Quality and Shelf-Life Enhancement
by Nieves García-Lorca, José Ángel Salas-Millán and Encarna Aguayo
Foods 2025, 14(14), 2476; https://doi.org/10.3390/foods14142476 - 15 Jul 2025
Viewed by 254
Abstract
Broccoli stalks are considered an agro-industrial by-product that, in the context of fresh consumption, is undervalued, as only broccoli florets are typically marketed. This study evaluated the up-cycling of broccoli stalks into a value-added fresh-cut product through postharvest preservation strategies. Stalks were peeled, [...] Read more.
Broccoli stalks are considered an agro-industrial by-product that, in the context of fresh consumption, is undervalued, as only broccoli florets are typically marketed. This study evaluated the up-cycling of broccoli stalks into a value-added fresh-cut product through postharvest preservation strategies. Stalks were peeled, cut into sticks (8 × 8 mm × 50–100 mm), sanitised, packaged under modified atmosphere conditions, and stored at 5 °C. Treatments included (a) calcium ascorbate (CaAsc, 1% w/v), (b) trehalose (TREH, 5% w/v), (c) hot water treatment (HWT, 55 °C, 1 min), and several combinations of them. HWT alone was highly effective in reducing browning, a key factor for achieving an extended shelf-life, controlling microbial growth and respiration, and obtaining the highest sensory scores (appearance = 7.3 on day 11). However, it was less effective in preserving bioactive compounds. The HWT + CaAsc treatment proved to be the most effective at optimising quality and retaining health-promoting compounds. It increased vitamin C retention by 78%, antioxidant capacity by 68%, and total phenolic content by 65% compared to the control on day 11. This synergistic effect was attributed to the antioxidant action of ascorbic acid in CaAsc. TREH alone showed no preservative effect, inducing browning, elevated respiration, and microbial proliferation. Overall, combining mild thermal and antioxidant treatments offers a promising strategy to valorise broccoli stalks as fresh-cut snacks. An 11-day shelf-life at 5 °C was achieved, with increased content of health-promoting bioactive compounds, while supporting circular economy principles and contributing to food loss mitigation. Full article
Show Figures

Graphical abstract

8 pages, 830 KiB  
Communication
Differential N2O-Producing Activity of Soil Fungi Across Agricultural Systems: High in Vegetable Fields and Vineyards, Low in Paddies
by Shutan Ma, Jintao Zhang, Ting Wu, Yuqing Miao, Hua Fang, Haitao Wang, Huayuan Niu and Lan Ma
Nitrogen 2025, 6(3), 57; https://doi.org/10.3390/nitrogen6030057 - 11 Jul 2025
Viewed by 196
Abstract
The substrate-induced respiration-inhibition (SIRIN) method has been used to estimate fungi-derived N2O emissions, but its contribution to soil N2O emissions remains unclear. There is a need to quantify the fungal fraction of N2O production more precisely. Here, [...] Read more.
The substrate-induced respiration-inhibition (SIRIN) method has been used to estimate fungi-derived N2O emissions, but its contribution to soil N2O emissions remains unclear. There is a need to quantify the fungal fraction of N2O production more precisely. Here, using isotopocule analysis, we assessed the relative contribution of fungi to soil N2O production potential under denitrifying conditions, where key limiting factors of denitrification (soil moisture, soil NO3, and electron donor) were removed. The result showed that the ratio of fungi-derived N2O emissions (RF) was 0.83~4.28% in paddy soils, 13.80~23.21% in vineyard soils, and 15.34~65.94% in vegetable field soils, respectively. This indicated that the bacteria were the dominator of soil N2O production potential in most cases, but fungal pathways could be significant in vegetable field soils. The experiment with bactericide addition showed that inhibitors could affect non-target microorganisms in the SIRIN method. Our further analyses suggest that it is worth to explore the effect of soil organic carbon and microbial synergies on fungi-derived N2O emissions. Full article
Show Figures

Figure 1

20 pages, 2296 KiB  
Article
Enhancing Soil Health and Corn Productivity with a Co-Fermented Microbial Inoculant (CFMI-8): A Field-Based Evaluation
by Raul De Jesus Cano, Judith M. Daniels, Martha Carlin and Don Huber
Microorganisms 2025, 13(7), 1638; https://doi.org/10.3390/microorganisms13071638 - 11 Jul 2025
Viewed by 398
Abstract
Soil degradation and declining fertility threaten sustainable agriculture and crop productivity. This study evaluates the effects of CFMI-8, a co-fermented microbial inoculant comprising eight bacterial strains selected through genomic and metabolic modeling, on soil health, nutrient availability, and corn performance. Conducted in a [...] Read more.
Soil degradation and declining fertility threaten sustainable agriculture and crop productivity. This study evaluates the effects of CFMI-8, a co-fermented microbial inoculant comprising eight bacterial strains selected through genomic and metabolic modeling, on soil health, nutrient availability, and corn performance. Conducted in a randomized complete block design at Findlay Farm, Wisconsin, the field trial assessed soil biological activity, nutrient cycling, and crop yield responses to CFMI-8 treatment. Treated soils exhibited significant increases in microbial organic carbon (+224.1%) and CO2 respiration (+167.1%), indicating enhanced microbial activity and organic matter decomposition. Improvements in nitrate nitrogen (+20.2%), cation exchange capacity (+23.1%), and potassium (+27.3%) were also observed. Corn yield increased by 28.6%, with corresponding gains in silage yield (+9.6%) and nutritional quality. Leaf micronutrient concentrations, particularly iron, manganese, boron, and zinc, were significantly higher in treated plants. Correlation and Random Forest analyses identified microbial activity and nitrogen availability as key predictors of yield and nutrient uptake. These results demonstrate CFMI-8’s potential to enhance soil fertility, promote nutrient cycling, and improve crop productivity under field conditions. The findings support microbial inoculants as viable tools for regenerative agriculture and emphasize the need for long-term studies to assess sustainability impacts. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

27 pages, 1696 KiB  
Article
Soil–Plant Biochemical Interactions Under Agricultural Byproduct Amendments and Potassium Humate: Enhancing Soil Function and Bioactive Compounds in Sunflower Sprouts
by Thidarat Rupngam, Patchimaporn Udomkun, Thirasant Boonupara and Puangrat Kaewlom
Agronomy 2025, 15(7), 1651; https://doi.org/10.3390/agronomy15071651 - 7 Jul 2025
Viewed by 607
Abstract
This study presents an integrated approach to sustainable soil and crop management by evaluating the individual and combined effects of cow manure (CM), rice husk biochar (RHB), and potassium humate (KH)—three underutilized, low-cost organic amendments derived from agricultural byproducts. Uniquely, it investigates how [...] Read more.
This study presents an integrated approach to sustainable soil and crop management by evaluating the individual and combined effects of cow manure (CM), rice husk biochar (RHB), and potassium humate (KH)—three underutilized, low-cost organic amendments derived from agricultural byproducts. Uniquely, it investigates how these amendments simultaneously affect soil physical and chemical properties, plant growth, and the accumulation of bioactive compounds in sunflower sprouts, thereby linking soil health to crop nutritional quality. The application of 2% w/w KH alone resulted in the greatest increases in macroaggregation (+0.51), soil pH (from 6.8 to 8.6), and electrical conductivity (+298%). The combination of 1% w/w CM and 2% KH led to the highest increases in soil organic carbon (OC, +62.9%) and soil respiration (+56.4%). Nitrate and available phosphorus (P) peaked with 3% w/w RHB + 2% KH (+120%) and 1% w/w CM + 0.5% KH (+35.5%), respectively. For plant traits, 0.5% w/w KH increased the total leaf area by 61.9%, while 1% w/w CM enhanced shoot and root biomass by 60.8% and 79.0%, respectively. In contrast, 2% w/w KH reduced chlorophyll content (−43.6%). Regarding bioactive compounds, the highest total phenolic content (TPC) was observed with 1% w/w KH (+21.9%), while the strongest DPPH antioxidant activity was found under 1% w/w CM + 1% w/w KH (+72.6%). A correlation analysis revealed that biomass production and secondary metabolite accumulation are shaped by trade-offs arising from resource allocation under stress or nutrient limitations. Potassium, P, soil microbial respiration, and OC emerged as key integrators connecting soil structure, fertility, and plant metabolic responses. Overall, the combination of 1% w/w CM with 0.5–1% w/w KH proved to be the most effective strategy under the tested conditions. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

29 pages, 11618 KiB  
Article
Improving Soil Health Using Date Palm Residues in Southern Tunisian Olive Orchards
by Najoua Chniguir, Abdelhakim Bouajila, Ángeles Prieto-Fernández, Zohra Omar, Salah Mahmoudi and Carmen Trasar-Cepeda
Land 2025, 14(7), 1414; https://doi.org/10.3390/land14071414 - 5 Jul 2025
Viewed by 425
Abstract
This study evaluated the effects of different types and rates of locally produced organic residues on soil organic matter (SOM) and soil health in highly degraded loamy soils of olive orchards in arid southern Tunisia. Three residues were tested: poultry manure, raw date [...] Read more.
This study evaluated the effects of different types and rates of locally produced organic residues on soil organic matter (SOM) and soil health in highly degraded loamy soils of olive orchards in arid southern Tunisia. Three residues were tested: poultry manure, raw date palm waste, and composted date palm waste mixed with manure. A randomised field trial was conducted over three years. Two years after application, soil samples were analysed for physical and chemical properties, basal respiration, nitrogen mineralisation, microbial biomass, enzyme activities (dehydrogenase, phosphomonoesterase, β-glucosidase, urease, arylsulphatase), and community-level physiological profiles. All residues increased SOM and available phosphorus (Pi), with dose-dependent effects sustained over time, though significant increases were only observed at the highest application rates. The most notable improvements occurred in soils amended with composted date palm waste. In contrast, biological and biochemical parameters showed little response, even after remoistening to stimulate microbial activity. This limited response was attributed to the absence of vegetation and, consequently, of root exudates and plant residues. This will be further investigated by assessing changes in the same biological and biochemical properties following the implementation of an intercropping system, which is expected to enhance both SOM content and microbial activity in these soils. Full article
Show Figures

Figure 1

21 pages, 2314 KiB  
Article
Urea Fertilization Buffered Acid-Inhibiting Effect on Litter Decomposition in Subtropical Plantation Forests of Southern China
by Yonghui Lin, Xiangshi Kong, Zaihua He and Xingbing He
Forests 2025, 16(7), 1110; https://doi.org/10.3390/f16071110 - 4 Jul 2025
Viewed by 210
Abstract
Acid deposition, a major environmental issue causing soil acidification and microbial suppression, impacts forest nutrient cycling. Meanwhile, nitrogen (N) fertilization is widely applied in subtropical forests, yet its interaction with acid deposition on litter decomposition is unclear. We conducted a field experiment using [...] Read more.
Acid deposition, a major environmental issue causing soil acidification and microbial suppression, impacts forest nutrient cycling. Meanwhile, nitrogen (N) fertilization is widely applied in subtropical forests, yet its interaction with acid deposition on litter decomposition is unclear. We conducted a field experiment using two common tree species, Cunninghamia lanceolata and Cinnamomum camphora, and applied three acid deposition levels (0, 0.25, and 0.50 g H+ m−2 month−1) and four N fertilization levels (0, 3, 6, and 9 g N m−2 year−1) in a factorial design. Our results showed that acid deposition alone significantly reduced litter decomposition rates, with maximum mass loss decreasing by 23.6% for Cunninghamia and 36.3% for Cinnamomum (p < 0.05). Urea fertilization alone also suppressed decomposition, reducing maximum mass loss by 27.3% for Cunninghamia and 37.3% for Cinnamomum (p < 0.05). However, when combined, urea fertilization mitigated the suppressive effect of acid deposition, particularly under severe acid conditions, where maximum mass loss increased by 18.5% for Cunninghamia and 43.1% for Cinnamomum (p < 0.05). Acid deposition reduced microbial respiration and enzyme activities related to carbon cycling, while urea fertilization showed both positive and negative effects depending on the acid levels (p < 0.05). Urea can enhance the litter layer’s acid-buffering capacity, offering potential management insights for acid deposition-affected forests. Further research on microbial mechanisms across ecosystems is recommended. Full article
Show Figures

Figure 1

14 pages, 1465 KiB  
Article
Free-Range Chickens Reared Within an Olive Grove Influenced the Soil Microbial Community and Carbon Sequestration
by Luisa Massaccesi, Rosita Marabottini, Chiara Poesio, Simona Mattioli, Cesare Castellini and Alberto Agnelli
Soil Syst. 2025, 9(3), 69; https://doi.org/10.3390/soilsystems9030069 - 3 Jul 2025
Viewed by 275
Abstract
Although the benefits of rational grazing by polygastric animals are well known, little is understood about how chicken grazing affects soil biological health and its capacity to store organic matter. This study aimed to assess the impact of long-term free-range chicken grazing in [...] Read more.
Although the benefits of rational grazing by polygastric animals are well known, little is understood about how chicken grazing affects soil biological health and its capacity to store organic matter. This study aimed to assess the impact of long-term free-range chicken grazing in an olive grove on the soil chemical and biochemical properties, including the total organic carbon (TOC), total nitrogen (TN), microbial biomass (Cmic), basal respiration, and microbial community structure, as well as the soil’s capability to stock organic carbon and total nitrogen. A field experiment was conducted in an olive grove grazed by chickens for over 20 years, with the animal load decreasing with distance from the poultry houses. At 20 m, where the chicken density was highest, the soils showed reduced OC and TN contents and a decline in fungal biomass. This was mainly due to the loss of both aboveground vegetation and root biomass from intensive grazing. At 50 m, where grazing pressure was lower, the soil OC, TN, and microbial community size and activity were similar to those in a control, ungrazed area. These findings suggest that high chicken density can negatively affect soil health, while moderate grazing allows for the recovery of vegetation and soil organic matter. Rational management of free-range chicken grazing, particularly through the control of chicken density or managing grazing time and frequency, is therefore recommended to preserve soil functions and fertility. Full article
Show Figures

Figure 1

18 pages, 2642 KiB  
Review
Postbiotics as Mitochondrial Modulators in Inflammatory Bowel Disease: Mechanistic Insights and Therapeutic Potential
by Santosh Kumar Prajapati, Dhananjay Yadav, Shweta Katiyar, Shalini Jain and Hariom Yadav
Biomolecules 2025, 15(7), 954; https://doi.org/10.3390/biom15070954 - 1 Jul 2025
Viewed by 602
Abstract
Postbiotics, which are non-viable microbial derivatives including short-chain fatty acids (SCFAs), microbial peptides, and cell wall components, are emerging as novel therapeutic agents for Inflammatory Bowel Disease (IBD). Unlike probiotics, postbiotics offer a safer, more stable alternative while retaining potent bioactivity. IBD, encompassing [...] Read more.
Postbiotics, which are non-viable microbial derivatives including short-chain fatty acids (SCFAs), microbial peptides, and cell wall components, are emerging as novel therapeutic agents for Inflammatory Bowel Disease (IBD). Unlike probiotics, postbiotics offer a safer, more stable alternative while retaining potent bioactivity. IBD, encompassing Crohn’s disease and ulcerative colitis, is characterized by chronic gastrointestinal inflammation, epithelial barrier dysfunction, and immune dysregulation. Recent evidence links mitochondrial dysfunction marked by impaired energy metabolism, oxidative stress, and apoptosis with the pathogenesis and persistence of IBD. Postbiotics have shown the ability to modulate mitochondrial health through multiple mechanisms. SCFAs such as butyrate serve as primary energy substrates for colonocytes, enhancing mitochondrial respiration and promoting biogenesis. They improve mitochondrial function and boost ATP production. Moreover, postbiotics reduce oxidative damage by regulating antioxidant defenses. These antioxidant actions limit epithelial apoptosis and preserve cellular integrity. In addition, postbiotics regulate mitophagy and help maintain mitochondrial quality and reduce inflammation. Structural components such as lipoteichoic acid and peptidoglycan have been shown to interact with mitochondrial pathways and modulate inflammatory responses. Collectively, this review explores the interplay between mitochondrial dysfunction, IBD, and preventive approach using postbiotics. Understanding the connections with postbiotics could open up new avenues for therapeutic interventions aimed at mitigating IBD severity in people with IBD. Full article
(This article belongs to the Special Issue Mitochondrial ROS in Health and Disease)
Show Figures

Figure 1

20 pages, 1845 KiB  
Article
Meta-Transcriptomic Response to Copper Corrosion in Drinking Water Biofilms
by Jingrang Lu, Ian Struewing and Nicholas J. Ashbolt
Microorganisms 2025, 13(7), 1528; https://doi.org/10.3390/microorganisms13071528 - 30 Jun 2025
Viewed by 460
Abstract
Drinking water biofilm ecosystems harbor complex and dynamic prokaryotic and eukaryotic microbial communities. However, little is known about the impact of copper corrosion on microbial community functions in metabolisms and resistance. This study was conducted to evaluate the impact of upstream Cu pipe [...] Read more.
Drinking water biofilm ecosystems harbor complex and dynamic prokaryotic and eukaryotic microbial communities. However, little is known about the impact of copper corrosion on microbial community functions in metabolisms and resistance. This study was conducted to evaluate the impact of upstream Cu pipe materials on downstream viable community structures, pathogen populations, and metatranscriptomic responses of the microbial communities in drinking water biofilms. Randomly transcribed cDNA was generated and sequenced from downstream biofilm samples of either unplasticized polyvinylchloride (PVC) or Cu coupons. Diverse viable microbial organisms with enriched pathogen-like organisms and opportunistic pathogens were active in those biofilm samples. Cu-influenced tubing biofilms had a greater upregulation of genes associated with potassium (K) metabolic pathways (i.e., K-homeostasis, K-transporting ATPase, and transcriptional attenuator), and a major component of the cell wall of mycobacteria (mycolic acids) compared to tubing biofilms downstream of PVC. Other upregulated genes on Cu influenced biofilms included those associated with stress responses (various oxidative resistance genes), biofilm formation, and resistance to toxic compounds. Downregulated genes included those associated with membrane proteins responsible for ion interactions with potassium; respiration–electron-donating reactions; RNA metabolism in eukaryotes; nitrogen metabolism; virulence, disease, and defense; and antibiotic resistance genes. When combined with our previous identification of biofilm community differences, our studies reveal how microbial biofilms adapt to Cu plumbing conditions by fine-tuning gene expression, altering metabolic pathways, and optimizing their structural organization. This study offers new insights into how copper pipe materials affect the development and composition of biofilms in premise plumbing. Specifically, it highlights copper’s role in inhibiting the growth of many microbes while also contributing to the resistance of some microbes within the drinking water biofilm community. Full article
Show Figures

Graphical abstract

Back to TopTop