Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (89)

Search Parameters:
Keywords = metathesis polymerization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2685 KB  
Article
Synthesis and Gas Permeability of Polynorbornene Dicarboximides Bearing Sulfonyl Moieties
by Alejandro Onchi, Lisandra Rubio-Rangel, Arlette A. Santiago, Brian Omar Marín-Méndez, Mar López-González and Joel Vargas
Polymers 2026, 18(1), 62; https://doi.org/10.3390/polym18010062 - 25 Dec 2025
Viewed by 533
Abstract
This work reports on the synthesis and ring-opening metathesis polymerization (ROMP) of two novel homologous sulfonyl-containing norbornene dicarboximide monomers, specifically, N-4-(trifluoromethylsulfonyl)phenyl-norbornene-5,6-dicarboximide (1a) and N-4-(trifluoromethylsulfonyl)phenyl-7-oxanorbornene-5,6-dicarboximide (1b) using the Grubbs 2nd generation catalyst (I). The polymers are [...] Read more.
This work reports on the synthesis and ring-opening metathesis polymerization (ROMP) of two novel homologous sulfonyl-containing norbornene dicarboximide monomers, specifically, N-4-(trifluoromethylsulfonyl)phenyl-norbornene-5,6-dicarboximide (1a) and N-4-(trifluoromethylsulfonyl)phenyl-7-oxanorbornene-5,6-dicarboximide (1b) using the Grubbs 2nd generation catalyst (I). The polymers are thoroughly characterized by nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR), thermomechanical analysis (TMA), thermogravimetric analysis (TGA), atomic force microscopy (AFM), and X-ray diffraction (XRD), among other techniques. A comparative study of gas transport in membranes based on these ROMP-prepared polymers is performed and the gases studied are hydrogen, oxygen, nitrogen, carbon dioxide, methane, ethylene and propylene. It is found that the presence of sulfonyl pendant groups in the polymer backbone increases the gas permselectivity in slight detriment of the gas permeability compared to a polynorbornene dicarboximide lacking sulfonyl groups. The membrane of the sulfonyl-containing polymer with an oxygen heteroatom in the cyclopentane ring, 2b, is also found to have one of the largest permselectivity coefficients reported to date for the separation of H2/C3H6 in glassy polynorbornene dicarboximides. Full article
(This article belongs to the Special Issue Advanced Polymeric Membranes: From Fabrication to Application)
Show Figures

Graphical abstract

19 pages, 2381 KB  
Article
Low-Temperature Performance and Tribological Properties of Poly(5-n-butyl-2-norbornene) Lubricating Oils: Effect of Molecular Weight and Hydrogenation on the Viscosity and Anti-Wear Activity
by Valeriia R. Nazemutdinova, Sergey O. Ilyin, Aleksandr A. Morontsev, Igor S. Makarov, Alyona I. Wozniak and Maxim V. Bermeshev
Polymers 2025, 17(24), 3333; https://doi.org/10.3390/polym17243333 - 17 Dec 2025
Viewed by 550
Abstract
A series of poly(5-n-butyl-2-norbornene) oils with controlled molecular weights was synthesized via metathesis polymerization, fully hydrogenated, and characterized in terms of viscosity and tribological performance. In contrast to established lubricant base stocks—such as poly(α-olefins) and multiply alkylated cyclopentanes—these novel norbornene-based polymers [...] Read more.
A series of poly(5-n-butyl-2-norbornene) oils with controlled molecular weights was synthesized via metathesis polymerization, fully hydrogenated, and characterized in terms of viscosity and tribological performance. In contrast to established lubricant base stocks—such as poly(α-olefins) and multiply alkylated cyclopentanes—these novel norbornene-based polymers remain underexplored, despite their promising anti-wear activity. Based on differential scanning calorimetry (DSC) data, all the synthesized products are amorphous compounds whose thermograms show a single glass transition temperature. The effect of molecular weight and temperature on the viscosity of poly(5-n-butyl-2-norbornene) oils was quantified over an extended temperature range, including extra-cold conditions down to −80 °C. The pour points of the oils were determined and can be as low as −66 °C, indicating excellent low-temperature fluidity. The tribological performance of the synthesized oils was evaluated using the four-ball test, with friction coefficient and wear scar diameter measured to assess anti-wear and antifriction properties. The tribological results were benchmarked against commercially available polyalphaolefin (PAO) oils (PAO-4, PAO-20, and PAO-80). Metathesis and hydrogenated poly(5-n-butyl-2-norbornene) oils outperform conventional PAOs by up to 67% in wear protection and 30% in friction reduction. These findings establish alicyclic molecular strain as a viable design parameter for next-generation lubricating oils, thereby expanding the toolbox for material development beyond conventional chemical functionalization. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

21 pages, 2709 KB  
Article
New Generation Antibiotics Derived from DABCO-Based Cationic Polymers
by Betul Zehra Temur, Ilay Ceren Cetinkaya, Merve Acikel Elmas, Nihan Unubol, Serap Arbak, Tanil Kocagoz, Tarik Eren and Ozge Can
Antibiotics 2025, 14(9), 856; https://doi.org/10.3390/antibiotics14090856 - 25 Aug 2025
Viewed by 1461
Abstract
Background/Objectives: The growing threat of antibiotic resistance necessitates the development of novel antimicrobial agents that effectively target pathogenic microorganisms while minimizing toxicity. Methods: Two series DABCO-based cationic homopolymers (D-subs 1kDa, D-subs 5kDa, D-subs 15kDa) and DABCO–pyridinium-based copolymers (PyH-subs 5kDa_Dsubs 5kDa, PyH-subs [...] Read more.
Background/Objectives: The growing threat of antibiotic resistance necessitates the development of novel antimicrobial agents that effectively target pathogenic microorganisms while minimizing toxicity. Methods: Two series DABCO-based cationic homopolymers (D-subs 1kDa, D-subs 5kDa, D-subs 15kDa) and DABCO–pyridinium-based copolymers (PyH-subs 5kDa_Dsubs 5kDa, PyH-subs 7kDa_Dsubs 3kDa, PyH-subs 3kDa_Dsubs 7kDa) were synthesized to mimic to host-defense cationic peptides via ring-opening metathesis polymerization (ROMP). The antimicrobial activities of these polymers were determined by their minimum inhibitory concentrations (MICs) against E. coli (Gram-negative bacteria), P. aeruginosa (Gram-negative bacteria), S. aureus (Gram-positive bacteria), and C. albicans (fungus). In vitro cytotoxicity assays revealed selective toxicity towards bacterial cells, with high selectivity indices for several copolymers. To gain insight into the mechanism of action, morphological changes in S. aureus upon exposure to D-subs 1kDa were examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results: The D-subs 15kDa homopolymer demonstrated the highest overall antimicrobial activity, particularly against S. aureus (MIC: 8 µg/mL), with all polymers exhibiting minimal hemolytic activity (HC50 ≥ 1024 µg/mL). SEM and TEM results revealed membrane disruption indicative of polymer–bacteria interactions. Additionally, stability studies confirmed polymer integrity under physiological conditions for at least 28 days. Conclusions: These results support the potential of DABCO-based cationic polymers as a promising platform for next-generation antimicrobial therapeutics. Full article
(This article belongs to the Section Novel Antimicrobial Agents)
Show Figures

Figure 1

12 pages, 2466 KB  
Article
ROMP and Vinyl Polynorbornenes with Vanadium(III) and Nickel(II) diNHC Complexes
by Katarzyna Halikowska-Tarasek, Elwira Bisz, Dawid Siodłak, Błażej Dziuk and Wioletta Ochędzan-Siodłak
Int. J. Mol. Sci. 2025, 26(14), 6691; https://doi.org/10.3390/ijms26146691 - 12 Jul 2025
Viewed by 960
Abstract
The polymerization of norbornene can occur via ring-opening metathesis polymerization (ROMP) or vinyl-addition pathways, each yielding polynorbornene with distinct structures and properties. This study reports on the synthesis and catalytic application of a new class of vanadium(III) and nickel(II) complexes bearing N-heterocyclic [...] Read more.
The polymerization of norbornene can occur via ring-opening metathesis polymerization (ROMP) or vinyl-addition pathways, each yielding polynorbornene with distinct structures and properties. This study reports on the synthesis and catalytic application of a new class of vanadium(III) and nickel(II) complexes bearing N-heterocyclic carbene ligands, based on the IPr* framework, for the polymerization of norbornene. The vanadium(III) complexes, activated by diethylaluminum chloride and in the presence of ethyl trichloroacetate, showed activity in ROMP. In contrast, the nickel(II) complexes, activated by methylaluminoxane, exhibited catalytic activity toward vinyl-addition polymerization. Characterization by GPC, NMR, and FTIR confirmed the formation of both ring-opening metathesis polymerization and vinyl-type-derived polynorbornenes, with vinyl-type polymers showing significantly higher molecular weights. Structural variations in the N-heterocyclic carbene ligands, particularly the linker length between imidazole donors, were found to strongly influence polymer molecular weight and the morphology of polynorbornenes. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

19 pages, 2636 KB  
Article
Poly(pyridinium salt)s Containing 9,9-Bis(4-aminophenyl)fluorene Moieties with Various Organic Counterions Exhibiting Both Lyotropic Liquid-Crystalline and Light-Emitting Properties
by Pradip K. Bhowmik, David King, Haesook Han, András F. Wacha and Matti Knaapila
Polymers 2025, 17(13), 1785; https://doi.org/10.3390/polym17131785 - 27 Jun 2025
Viewed by 806
Abstract
Main-chain conjugated and non-conjugated polyelectrolytes are an important class of materials that have many technological applications ranging from fire-retardant materials to carbon-nanotube composites, nonlinear optical materials, electrochromic materials for smart windows, and optical sensors for biomolecules. Here, we describe a series of poly(pyridinium [...] Read more.
Main-chain conjugated and non-conjugated polyelectrolytes are an important class of materials that have many technological applications ranging from fire-retardant materials to carbon-nanotube composites, nonlinear optical materials, electrochromic materials for smart windows, and optical sensors for biomolecules. Here, we describe a series of poly(pyridinium salt)s-fluorene containing 9,9-bis(4-aminophenyl)fluorene moieties with various organic counterions that were synthesized using ring-transmutation polymerization and metathesis reactions, which are non-conjugated polyelectrolytes. Their chemical structures were characterized by Fourier transform infrared (FTIR), proton (1H) and fluorine 19 (19F) nuclear magnetic resonance (NMR) spectrometers, and elemental analysis. They exhibited polyelectrolytic behavior in dimethyl sulfoxide. Their lyotropic liquid-crystalline phases were examined by polarizing optical microscopy (POM) and small angle X-ray scattering (SAXS) studies. Their emission spectra exhibited a positive solvatochromism on changing the polarity of solvents. They emitted greenish-yellow lights in polar organic solvents. They formed aggregates in polar aprotic and protic solvents with the addition of water (v/v, 0–90%), whose λem peaks were blue shifted. Full article
(This article belongs to the Special Issue Smart Polymers for Stimuli-Responsive Devices)
Show Figures

Graphical abstract

48 pages, 6314 KB  
Review
Unsaturated Macrolactones from Renewable Feedstocks: Synthesis, Ring-Opening Polymerization and Application Prospects
by Ilya Nifant’ev, Anna Afanaseva, Alexander Vinogradov and Pavel Ivchenko
Int. J. Mol. Sci. 2025, 26(11), 5039; https://doi.org/10.3390/ijms26115039 - 23 May 2025
Cited by 1 | Viewed by 2075
Abstract
Unsaturated macrolactones (UMs) have long attracted researchers’ attention due to a combination of a reactive ester fragment and C=C bond in their structures. UMs of natural origin are comparatively few in number, and the task of developing synthetic approaches to new UMs is [...] Read more.
Unsaturated macrolactones (UMs) have long attracted researchers’ attention due to a combination of a reactive ester fragment and C=C bond in their structures. UMs of natural origin are comparatively few in number, and the task of developing synthetic approaches to new UMs is relevant. Recent advances in the synthesis of UMs cannot be dissociated from the progress in design of metathesis catalysts, since this catalytic approach is an atom-economy alternative to conventional organochemical methods. In the present review, we summarized and discussed the use of ring-closing metathesis, catalyzed by Ru and Group 6 metal complexes, in the synthesis of Ums and the advantages and shortcomings of the catalytic approach to UMs in comparison with organochemical methods. In a separate section, the use of UMs in the synthesis of unsaturated polyesters, the functionalization of these (co)polymers, and the prospects for practical use of the material obtained are also presented. It is essential that the actual approaches to UMs are often based on the use of renewable feedstocks, thereby meeting Green Chemistry principles. Full article
(This article belongs to the Special Issue Synthesis of Advanced Polymer Materials, 3rd Edition)
Show Figures

Figure 1

20 pages, 5663 KB  
Article
Cross-Linked Metathesis Polynorbornenes Based on Nadimides Bearing Hydrocarbon Substituents: Synthesis and Physicochemical Properties
by Kirill S. Sadovnikov, Ivan V. Nazarov, Vsevolod A. Zhigarev, Anastasia A. Danshina, Igor S. Makarov and Maxim V. Bermeshev
Polymers 2024, 16(18), 2671; https://doi.org/10.3390/polym16182671 - 22 Sep 2024
Cited by 5 | Viewed by 1909
Abstract
Metathesis homo- and copolymerization of bifunctional monomers bearing two norbornene moieties was studied. The monomers were synthesized from cis-5-norbornene-exo-2,3-dicarboxylic anhydride and various diamines (hexamethylenediamine, decamethylenediamine, 1R,3S-isophoronediamine). The metathesis homopolymerization of these bis(nadimides) in the presence of the second-generation Grubbs catalyst afforded glassy cross-linked [...] Read more.
Metathesis homo- and copolymerization of bifunctional monomers bearing two norbornene moieties was studied. The monomers were synthesized from cis-5-norbornene-exo-2,3-dicarboxylic anhydride and various diamines (hexamethylenediamine, decamethylenediamine, 1R,3S-isophoronediamine). The metathesis homopolymerization of these bis(nadimides) in the presence of the second-generation Grubbs catalyst afforded glassy cross-linked polymers in more than 90% yields. The metathesis copolymerization of the bis(nadimides) and a monofunctional norbornene derivative containing the β-pinene fragment also resulted in insoluble cross-linked polymers in nearly quantitative yields. The structures and purity of the synthesized polymers were confirmed via IR spectroscopy and CP/MAS NMR spectroscopy. Conditions for the fabrication of mechanically strong solution-cast thin films based on copolymers synthesized from the comonomers mentioned above were determined by varying the content of the cross-linking agent. It was shown that the films made in this way are stable in a range of organic solvents and could be useful as semipermeable or membrane materials for use in liquid organic media. The permeability of the polymer films in question to 1-phenylethanol and mandelic acid was studied. The results obtained are discussed along with the data from the DSC, TGA, and powder X-ray diffraction studies of the properties of the synthesized metathesis homo- and copolymers. Full article
(This article belongs to the Special Issue Preparation and Application of Functional Polymer Materials)
Show Figures

Figure 1

16 pages, 23150 KB  
Article
Amphiphilic Dendronized Copolymer-Encapsulated Au, Ag and Pd Nanoparticles for Catalysis in the 4-Nitrophenol Reduction and Suzuki–Miyaura Reactions
by Fangfei Liu and Xiong Liu
Polymers 2024, 16(8), 1080; https://doi.org/10.3390/polym16081080 - 12 Apr 2024
Cited by 6 | Viewed by 1986
Abstract
The branched structures of dendronized polymers can provide good steric stabilization for metal nanoparticle catalysts. In this work, an amphiphilic dendronized copolymer containing hydrophilic branched triethylene glycol moieties and hydrophobic branched ferrocenyl moieties is designed and prepared by one-pot ring-opening metathesis polymerization, and [...] Read more.
The branched structures of dendronized polymers can provide good steric stabilization for metal nanoparticle catalysts. In this work, an amphiphilic dendronized copolymer containing hydrophilic branched triethylene glycol moieties and hydrophobic branched ferrocenyl moieties is designed and prepared by one-pot ring-opening metathesis polymerization, and is used as the stabilizer for metal (Au, Ag and Pd) nanoparticles. These metal nanoparticles (Au nanoparticles: 3.5 ± 3.0 nm; Ag nanoparticles: 7.2 ± 4.0 nm; Pd nanoparticles: 2.5 ± 1.0 nm) are found to be highly active in both the 4-nitrophenol reduction and Suzuki–Miyaura reactions. In the 4-nitrophenol reduction, Pd nanoparticles have the highest catalytic ability (TOF: 2060 h−1). In addition, Pd nanoparticles are also an efficient catalyst for Suzuki–Miyaura reactions (TOF: 1980 h−1) and possess good applicability for diverse substrates. The amphiphilic dendronized copolymer will open a new door for the development of efficient metal nanoparticle catalysts. Full article
(This article belongs to the Special Issue Polymer-Based Materials for Catalysis and Flexible Electronics)
Show Figures

Figure 1

12 pages, 2347 KB  
Article
Synthesis of Network Biobased Aliphatic Polyesters Exhibiting Better Tensile Properties than the Linear Polymers by ADMET Polymerization in the Presence of Glycerol Tris(undec-10-enoate)
by Lance O’Hari P. Go, Mohamed Mehawed Abdellatif, Ryoji Makino, Daisuke Shimoyama, Seiji Higashi, Hiroshi Hirano and Kotohiro Nomura
Polymers 2024, 16(4), 468; https://doi.org/10.3390/polym16040468 - 7 Feb 2024
Cited by 3 | Viewed by 2658
Abstract
Development of biobased aliphatic polyesters with better mechanical (tensile) properties in film has attracted considerable attention. This report presents the synthesis of soluble network biobased aliphatic polyesters by acyclic diene metathesis (ADMET) polymerization of bis(undec-10-enyl)isosorbide diester [M1, dianhydro-D-glucityl bis(undec-10-enoate)] [...] Read more.
Development of biobased aliphatic polyesters with better mechanical (tensile) properties in film has attracted considerable attention. This report presents the synthesis of soluble network biobased aliphatic polyesters by acyclic diene metathesis (ADMET) polymerization of bis(undec-10-enyl)isosorbide diester [M1, dianhydro-D-glucityl bis(undec-10-enoate)] in the presence of a tri-arm crosslinker [CL, glycerol tris(undec-10-enoate)] using a ruthenium–carbene catalyst, and subsequent olefin hydrogenation using RhCl(PPh3)3. The resultant polymers, after hydrogenation (expressed as HCP1) and prepared in the presence of 1.0 mol% CL, showed better tensile properties than the linear polymer (HP1) with similar molecular weight [tensile strength (elongation at break): 20.8 MPa (282%) in HP1 vs. 35.4 MPa (572%) in HCP1]. It turned out that the polymer films prepared by the addition of CL during the polymerization (expressed as a 2-step approach) showed better tensile properties. The resultant polymer film also shows better tensile properties than the conventional polyolefins such as linear high density polyethylene, polypropylene, and low density polyethylene. Full article
(This article belongs to the Special Issue Catalytic Olefin Polymerization and Polyolefin Materials)
Show Figures

Figure 1

17 pages, 4191 KB  
Review
Acyclic Diene Metathesis (ADMET) Polymerization for the Synthesis of Chemically Recyclable Bio-Based Aliphatic Polyesters
by Kotohiro Nomura and Xiuxiu Wang
Catalysts 2024, 14(2), 97; https://doi.org/10.3390/catal14020097 - 24 Jan 2024
Cited by 14 | Viewed by 3768
Abstract
The recent developments of the synthesis of bio-based long-chain aliphatic polyesters by the acyclic diene metathesis (ADMET) polymerization of α,ω-dienes, derived from plant oils and bio-based chemicals, like bis(10-undecenoate) with isosorbide, using ruthenium-carbene catalysts are reviewed. The development of subsequent (one-pot) tandem hydrogenation [...] Read more.
The recent developments of the synthesis of bio-based long-chain aliphatic polyesters by the acyclic diene metathesis (ADMET) polymerization of α,ω-dienes, derived from plant oils and bio-based chemicals, like bis(10-undecenoate) with isosorbide, using ruthenium-carbene catalysts are reviewed. The development of subsequent (one-pot) tandem hydrogenation produced saturated polyesters under mild conditions. The polymerizations under bulk (without solvent, 80–90 °C) or in ionic liquids (50 °C) under vacuum conditions enabled the synthesis of high molar mass polymers (Mn > 30,000 g/mol). The polymerization performed by the molybdenum-alkylidene catalyst afforded the highest-molecular-weight polyesters (44,000–49,400 g/mol, in toluene at 25 °C) exhibiting promising tensile properties (strength and elongation at break) compared to polyethylene and polypropylene. Depolymerizations of these polyesters, including closed-loop chemical recycling, were also demonstrated. Catalyst developments (more active, under mild conditions) play a key role in the efficient synthesis of these materials. Full article
Show Figures

Graphical abstract

19 pages, 4858 KB  
Article
Polyhydroxyurethane and Poly(ethylene oxide) Multiblock Copolymer Networks: Crosslinking with Polysilsesquioxane, Reprocessing and Solid Polyelectrolyte Properties
by Lei Li, Bingjie Zhao, Guohua Hang, Yuan Gao, Jiawei Hu, Tao Zhang and Sixun Zheng
Polymers 2023, 15(24), 4634; https://doi.org/10.3390/polym15244634 - 7 Dec 2023
Cited by 3 | Viewed by 2836
Abstract
This contribution reports the synthesis of polyhydroxyurethane (PHU)-poly(ethylene oxide) (PEO) multiblock copolymer networks crosslinked with polysilsesquioxane (PSSQ). First, the linear PHU-PEO multiblock copolymers were synthesized via the step-growth polymerization of bis(6-membered cyclic carbonate) (B6CC) with α,ω-diamino-terminated PEOs with variable molecular weights. Thereafter, the [...] Read more.
This contribution reports the synthesis of polyhydroxyurethane (PHU)-poly(ethylene oxide) (PEO) multiblock copolymer networks crosslinked with polysilsesquioxane (PSSQ). First, the linear PHU-PEO multiblock copolymers were synthesized via the step-growth polymerization of bis(6-membered cyclic carbonate) (B6CC) with α,ω-diamino-terminated PEOs with variable molecular weights. Thereafter, the PHU-PEO copolymers were allowed to react with 3-isocyanatopropyltriethoxysilane (IPTS) to afford the derivatives bearing triethoxysilane moieties, the hydrolysis and condensation of which afforded the PHU-PEO networks crosslinked with PSSQ. It was found that the PHU-PEO networks displayed excellent reprocessing properties in the presence of trifluoromethanesulfonate [Zn(OTf)2]. Compared to the PHU networks crosslinked via the reaction of difunctional cyclic carbonate with multifunctional amines, the organic–inorganic PHU networks displayed the decreased reprocessing temperature. The metathesis of silyl ether bonds is responsible for the improved reprocessing behavior. By adding lithium trifluoromethanesulfonate (LiOTf), the PHU-PEO networks were further transformed into the solid polymer electrolytes. It was found that the crystallization of PEO chains in the crosslinked networks was significantly suppressed. The solid polymer electrolytes had the ionic conductivity as high as 7.64 × 10−5 S × cm−1 at 300 K. More importantly, the solid polymer electrolytes were recyclable; the reprocessing did not affect the ionic conductivity. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Graphical abstract

13 pages, 4656 KB  
Article
Tuning the Latency by Anionic Ligand Exchange in Ruthenium Benzylidene Phosphite Complexes
by Nebal Alassad, Ravindra S. Phatake, Mark Baranov, Ofer Reany and N. Gabriel Lemcoff
Catalysts 2023, 13(11), 1411; https://doi.org/10.3390/catal13111411 - 2 Nov 2023
Cited by 1 | Viewed by 3384
Abstract
Recently discovered cis-dichloro benzylidene phosphite complexes are latent catalysts at room temperature and exhibit exceptional thermal and photochemical activation behavior in olefin metathesis reactions. Most importantly, the study of these catalysts has allowed their introduction in efficient 3-D printing applications of ring-opening [...] Read more.
Recently discovered cis-dichloro benzylidene phosphite complexes are latent catalysts at room temperature and exhibit exceptional thermal and photochemical activation behavior in olefin metathesis reactions. Most importantly, the study of these catalysts has allowed their introduction in efficient 3-D printing applications of ring-opening metathesis derived polymers and the control of chromatically orthogonal chemical processes. Moreover, their combination with plasmonic Au-nanoparticles has given rise to novel smart materials that are responsive to light. Given the importance of the ligand shell in the initiation and reactivity behavior of this family of complexes, we set out to investigate the effect of anionic ligand exchange. Thus, we report herein two new ruthenium benzylidene benzylphosphite complexes where the chloride anionic ligands have been replaced by bromide and iodide anions (cis-Ru-Phos-Br2 & cis-Ru-Phos-I2). The thermal and photochemical activations of these dormant catalysts in a variety of ring-closing and ring-opening metathesis polymerization (RCM and ROMP) reactions were thoroughly studied and compared with the previously known chloride precatalyst. Photochemical RCM studies provided similar results, especially in non-hindered reactions, with the UV-A wavelength being the best in all cases. On the other hand, the thermal activation profile exposed that the anionic ligand significantly affects reactivity. Notably, cis-Ru-Phos-I2 disclosed particularly impressive initiation efficiency compared to the other members of the family. Full article
Show Figures

Graphical abstract

15 pages, 2711 KB  
Article
Mono-Alkyl-Substituted Phosphinoboranes (HRP–BH2–NMe3) as Precursors for Poly(alkylphosphinoborane)s: Improved Synthesis and Comparative Study
by Felix Lehnfeld, Tim Oswald, Rüdiger Beckhaus and Manfred Scheer
Inorganics 2023, 11(10), 377; https://doi.org/10.3390/inorganics11100377 - 23 Sep 2023
Cited by 2 | Viewed by 2277
Abstract
A new synthetic pathway to various mono-alkyl-substituted phosphinoboranes HRP–BH2–NMe3 has been developed. The new synthetic route starting from alkyl halides and NaPH2 followed by metalation and salt metathesis is performed in a one-pot procedure and leads to higher yields [...] Read more.
A new synthetic pathway to various mono-alkyl-substituted phosphinoboranes HRP–BH2–NMe3 has been developed. The new synthetic route starting from alkyl halides and NaPH2 followed by metalation and salt metathesis is performed in a one-pot procedure and leads to higher yields and purity of the resulting phosphinoboranes, as compared to previously reported routes. Additionally, the scope of accessible compounds could be expanded from short-chained linear alkyl substituents to longer-chained linear alkyl substituents as well as secondary or functionalized alkyl substituents. The reported examples include primary alkyl-substituted phosphinoboranes RHP-BH2-NMe3 (R = n-butyl, n-pentyl, n-hexyl; 1ac), the secondary alkyl-substituted derivatives iPrPH-BH2-NMe3 (2), and the functionalized alkyl-substituted 4-bromo-butyl-phosphinoborane (BrC4H8)PH-BH2-NMe3 (3). Compounds 1a, 1c, and 2 were additionally used for preliminary polymerization reactions via a thermal and a transition metal-catalyzed pathway, revealing the formation of high-molecular-weight polymers under certain conditions. Detailed investigations on the influence of temperature, concentration, substituents and reaction time on the respective polymerization reactions were performed. Full article
(This article belongs to the Special Issue 10th Anniversary of Inorganics: Organometallic Chemistry)
Show Figures

Graphical abstract

17 pages, 3434 KB  
Article
One-Pot Synthesis of Stable Poly([c2]Daisy–chain Rotaxane) with Pseudo-Stopper via Metathesis Reaction and Thiol-Ene Reaction
by Risako Kamoto, Kenjiro Onimura and Kazuhiro Yamabuki
Reactions 2023, 4(3), 448-464; https://doi.org/10.3390/reactions4030027 - 23 Aug 2023
Cited by 4 | Viewed by 3276
Abstract
Rotaxanes, known as supramolecular compounds, are expected to find applications in functional materials due to their high degree of freedom. However, their synthesis requires multistep reactions, and there is a demand for more convenient methods to synthesize rotaxane materials. In this study, we [...] Read more.
Rotaxanes, known as supramolecular compounds, are expected to find applications in functional materials due to their high degree of freedom. However, their synthesis requires multistep reactions, and there is a demand for more convenient methods to synthesize rotaxane materials. In this study, we aimed to investigate a simpler method for synthesizing highly functional rotaxane materials and explore the diversity of molecular designs. To achieve this, we successfully synthesized a host–guest conjugated compound that incorporates both crown ether as the host unit and secondary ammonium salts as the guest unit within the same molecule. Subsequently, the metathesis reaction of these compounds, which construct [c2]daisy-chain rotaxanes, enabled the one-pot synthesis of a topological polymer called “poly([c2]daisy-chain rotaxane)” with a pseudo-stopper. This methodology achieves the stabilization and polymerization of rotaxanes simultaneously, contributing to the easy materialization of rotaxanes. Furthermore, the thiol-ene reaction achieved the extension of the distance between rotaxane units and provided a useful approach to diversify the design of functional materials with rotaxane structures. Full article
Show Figures

Figure 1

11 pages, 2124 KB  
Article
Synthesis of Degradable Polyolefins Bearing Disulfide Units via Metathesis Copolymerization
by Yu Xia, Fulin Zhou, Wenyan Hao and Shan Tang
Polymers 2023, 15(14), 3101; https://doi.org/10.3390/polym15143101 - 20 Jul 2023
Cited by 7 | Viewed by 3752
Abstract
Disulfide bonds are dynamic covalent bonds, which are easy to cleave and reform upon chemical stimulus. Various methods including the oxidative coupling of thiols and polymerization of disulfide-containing monomers have been developed for the synthesis of poly(disulfide)s. However, installing small amounts of disulfide [...] Read more.
Disulfide bonds are dynamic covalent bonds, which are easy to cleave and reform upon chemical stimulus. Various methods including the oxidative coupling of thiols and polymerization of disulfide-containing monomers have been developed for the synthesis of poly(disulfide)s. However, installing small amounts of disulfide units in the main chain of polyolefins has received much less attention. Herein, we report a novel strategy for incorporating cleavable disulfide units into the backbone of polyolefins using commercially available diallyl disulfide (DADS) as a comonomer via metathesis copolymerization. The copolymerization of diallyl disulfide with cyclooctene occurred using the second-generation Grubbs catalyst under mild conditions, allowing for the synthesis of copolymers with adjustable disulfide content ranging from 0.7 to 8.5 mol%, and the molecular weight of the obtained copolymers ranged from 5.8 kg·mol−1 to 42.8 kg·mol−1. The resulting polyolefins with disulfide insertion retained excellent thermal processability and exhibited degradability. Treatment of the copolymer (8.5 mol% disulfide content) with tri-n-butylphosphine resulted in a significant reduction in molecular weight from 5.8 kg·mol−1 to 1.6 kg·mol−1. Successful copolymerization with diallyl disulfide provides a convenient and effective method for obtaining degradable polyolefins. Full article
(This article belongs to the Special Issue Catalytic Olefin Polymerization and Polyolefin Materials)
Show Figures

Figure 1

Back to TopTop