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Abstract: Development of biobased aliphatic polyesters with better mechanical (tensile) properties
in film has attracted considerable attention. This report presents the synthesis of soluble network
biobased aliphatic polyesters by acyclic diene metathesis (ADMET) polymerization of bis(undec-10-
enyl)isosorbide diester [M1, dianhydro-D-glucityl bis(undec-10-enoate)] in the presence of a tri-arm
crosslinker [CL, glycerol tris(undec-10-enoate)] using a ruthenium–carbene catalyst, and subsequent
olefin hydrogenation using RhCl(PPh3)3. The resultant polymers, after hydrogenation (expressed as
HCP1) and prepared in the presence of 1.0 mol% CL, showed better tensile properties than the linear
polymer (HP1) with similar molecular weight [tensile strength (elongation at break): 20.8 MPa (282%)
in HP1 vs. 35.4 MPa (572%) in HCP1]. It turned out that the polymer films prepared by the addition
of CL during the polymerization (expressed as a 2-step approach) showed better tensile properties.
The resultant polymer film also shows better tensile properties than the conventional polyolefins
such as linear high density polyethylene, polypropylene, and low density polyethylene.

Keywords: olefin metathesis; polymerization; biobased; isosorbide; polyesters; network; tensile
property; chemical recycling

1. Introduction

Development of biobased semicrystalline aliphatic polyesters derived from non-edible
naturally abundant resources (plant oil, etc.) attracts considerable attention [1–8]. This
is not only because these are considered alternatives to petroleum-based polymers but
also because of their importance from the viewpoint of circular economy [9–11]. For
example, these polyesters (including conventional polyesters) can be depolymerized by
treating them with alcohols (via transesterification) in the presence of a catalyst to recover
monomers exclusively (facile chemical recycling) [12–15]; one-pot closed-loop chemical
recycling (depolymerization and repolymerization) was thus also demonstrated [13]. There
have been thus many reports on the synthesis of polyesters derived from plant oil through
polycondensation [7,15–19] and acyclic diene metathesis (ADMET) polymerization tech-
nique [7,17,20–36].

Recently, our laboratory demonstrated the synthesis of high molecular weight polyesters
(expressed as HP1 and HP2, Scheme 1) [14,36] exhibiting better tensile properties (ten-
sile strength, elongation at break) than conventional polyolefins, and the polymers (HP1)
reported previously [20,21,32]. These polymers were prepared by ADMET polymeriza-
tion [37–40] and subsequent hydrogenation. The effect of molecular weight on the tensile
property was demonstrated by exhibiting better tensile properties [36].
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polymerization. These polymers were prepared by conducting the polymerization in the 
presence of a crosslinker (CL) possessing three terminal olefins [31,41], as reported previ-
ously by us [31], and the resultant polymer should exhibit better tensile strength due to 
their network framework. We thus herein report the synthesis of network biobased ali-
phatic polyesters, which show better tensile properties (tensile strengths and elongation 
at breaks) than the linear one (HP1). These polymers were also depolymerized to afford 
the corresponding diesters and diols (and triols) through transesterification with ethanol 
in the presence of CpTiCl3 [12,14]. 

 
Scheme 1. Synthesis of high molecular weight aliphatic polyesters by acyclic diene metathesis (AD-
MET) polymerization [14,36]. 

2. Materials and Methods 
General Procedure. All synthetic experiments were conducted in a dry box or using 

standard Schlenk techniques under a nitrogen atmosphere. Anhydrous grade toluene, n-
hexane, and dichloromethane (>99.5%, Kanto Chemical Co., Inc., Tokyo, Japan) were 
transferred into a bottle containing molecular sieves (mixture of 3A 1/16, 4A 1/8, and 13X 
1/16) in a dry box. Isosorbide, 10-undecenoyl chloride, triethylamine, and glycerol of rea-
gent grades (Tokyo Chemical Industry, Co., Ltd., Tokyo, Japan) were used without further 
purification. RuCl2(IMesH2)(CH-2-OiPr-C6H4) [HG2; IMesH2 = 1,3-bis(2,4,6-trime-
thylphenyl)imidazolin-2-ylidene] obtained from Aldrich Chemical Co. (Milwaukee, WI, 
USA), was used as received. Monomer, dianhydro-D-glucityl bis(undec-10-enoate) (M1) 
was prepared according to the reported procedure [32]. 

All 1H and 13C NMR measurements were performed at 25 °C on a Bruker AV500 
spectrometer (500.13 MHz and 125.77 MHz, respectively) using CDCl3 as solvent. Chem-
ical shifts were reported as ppm with reference to SiMe4 at 0.00 ppm. Gel permeation chro-
matography (GPC) was used for the analysis of molecular weights and molecular weight 
distributions for the resultant polymer. The GPC measurements were carried out at 40 °C 
on a SCL-10A (Shimadzu Co., Ltd., Kyoto, Japan) connected columns (ShimPAC GPC-

Scheme 1. Synthesis of high molecular weight aliphatic polyesters by acyclic diene metathesis
(ADMET) polymerization [14,36].

In this paper, we focus on the synthesis of the soluble network polymers by ADMET
polymerization. These polymers were prepared by conducting the polymerization in
the presence of a crosslinker (CL) possessing three terminal olefins [31,41], as reported
previously by us [31], and the resultant polymer should exhibit better tensile strength due
to their network framework. We thus herein report the synthesis of network biobased
aliphatic polyesters, which show better tensile properties (tensile strengths and elongation
at breaks) than the linear one (HP1). These polymers were also depolymerized to afford
the corresponding diesters and diols (and triols) through transesterification with ethanol in
the presence of CpTiCl3 [12,14].

2. Materials and Methods

General Procedure. All synthetic experiments were conducted in a dry box or using
standard Schlenk techniques under a nitrogen atmosphere. Anhydrous grade toluene,
n-hexane, and dichloromethane (>99.5%, Kanto Chemical Co., Inc., Tokyo, Japan) were
transferred into a bottle containing molecular sieves (mixture of 3A 1/16, 4A 1/8, and
13X 1/16) in a dry box. Isosorbide, 10-undecenoyl chloride, triethylamine, and glycerol
of reagent grades (Tokyo Chemical Industry, Co., Ltd., Tokyo, Japan) were used with-
out further purification. RuCl2(IMesH2)(CH-2-OiPr-C6H4) [HG2; IMesH2 = 1,3-bis(2,4,6-
trimethylphenyl)imidazolin-2-ylidene] obtained from Aldrich Chemical Co. (Milwaukee,
WI, USA), was used as received. Monomer, dianhydro-D-glucityl bis(undec-10-enoate)
(M1) was prepared according to the reported procedure [32].

All 1H and 13C NMR measurements were performed at 25 ◦C on a Bruker AV500
spectrometer (500.13 MHz and 125.77 MHz, respectively) using CDCl3 as solvent. Chemical
shifts were reported as ppm with reference to SiMe4 at 0.00 ppm. Gel permeation chro-
matography (GPC) was used for the analysis of molecular weights and molecular weight
distributions for the resultant polymer. The GPC measurements were carried out at 40 ◦C on
a SCL-10A (Shimadzu Co., Ltd., Kyoto, Japan) connected columns (ShimPAC GPC-806, 804
and 802, 30 cm × 8.0 mm diameter, spherical porous gel made of styrene/divinylbenzene
copolymer, ranging from <102 to 2 × 107 MW, Kyoto, Japan), using a Shimadzu RID-10A
detector in THF (>99.8%, Kanto Chemical Co., Inc., Tokyo, Japan) served as the eluent with
a flow rate 1.0 mL/min.
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Synthesis of crosslinker glycerol triundec-10-enoate (CL). In the dry box, glycerol
300 mg, 3.25 mmol) and triethylamine (2.0 g, 19.8 mmol, 2.0 eq.) were added to THF (30 mL)
and then cooled to 0 ◦C. 10-undecenoyl chloride (2.0 g, 9.9 mmol) was then added dropwise
to the cooled glycerol solution. The reaction was allowed to react at room temperature
overnight until completion by confirmation via TLC. The THF solvent was then removed
with a rotary evaporator and then diluted with chloroform and washed with 2M HCl, 5%
NaHCO3, deionized water, and brine. The washed product was then dried over MgSO4,
filtered through a filter paper, evaporated using a rotary evaporator, and further dried
under vacuum. The crude product was then purified using column chromatography (9:1,
n-hexane: ethyl acetate), collecting a colorless oil of CL (1.54 g, 80% yield). The resultant
product was further purified inside the dry box by dissolving the crosslinker in hexane
and passing through a short column of alumina and celite. 1H NMR (CDCl3): δ 1.28
(br s, 24H, -CH2-), 1.37 (t, J = 6.9 Hz, 6H, -CH2-), 1.60 (m, 6H, -CH2CH2COO-), 2.03 (dt,
J = 8.15, 7.4Hz, 6H, -CH2CH=CH2), 2.31 (t, J = 7.5 Hz, 6H, -CH2COO-), 4.14 (dd, J = 11.95,
5.97 Hz, 2H, -OCH2CHOCH2O-),4.29 (dd, J = 11.9, 4.31Hz, 2H, -OCH2CHOCH2O-), 4.92
(d, J = 10.21 Hz, 3H, CH2=CH-), 4.98 (d, J = 17.02 Hz, 3H, CH2=CH-), 5.26 (tt, J = 5.84,
4.35 Hz, 1H, -CH(CH2O)2-), 5.80 (ddt, J = 17.02, 10.26, 6.71 Hz, 3H, -CH=CH2) 13C{1H}
NMR (CDCl3): δ 25.0 (-CH2-), 29.0 (-CH2-), 29.2 (-CH2-), 29.4 (-CH2-), 29.5 (-CH2-), 33.9
(-CH2CH=CH2), 34.2 (-CH2COO-), 34.4 (-CH2COO-), 62.3 (-CH2-OCO-), 69.0 (-CH-OCO-),
114.3 (CH2=CH-), 139.3 (-CH=CH2), 173.0 (-COO-), 173.4 (-COO-). APCI-MS: calculated for
C36H62O6 m/z, 591.5 [M+H]+; found 591.4.

ADMET Polymerization. ADMET polymerizations were conducted by the analogous
procedure reported previously [14,32]. In the dry box, the monomer (M1), crosslinker
(CL), solvent, and ruthenium catalyst (HG2) were charged with the prescribed amounts
in Table 1 into a sealed Schlenk-type tube (25 mL volume), and the reaction mixture was
stirred for a specific time at 50 ◦C in an oil bath. The formed ethylene gas was removed
continuously by freezing the reaction medium using liquid nitrogen, and the tube was
shortly connected to the vacuum line with a certain time interval (each 15 min at the first
1 h, each 30 min in the following 2 h, and then each 1 h). The solvent exchange technique
was conducted by solvent replacement [35,42] with a fresh solvent two or three times
in the first two hours under N2 atmosphere. Two drops of EVE were used to quench
the ADMET polymerization and stirring for 1 h. The reaction mixture was diluted using
4 mL chloroform and precipitated in 100 mL cold methanol. The resultant polymers were
collected via filtration and dried in vacuo and were characterized using 1H (500.13 MHz)
and 13C{1H} (125.77 MHz) NMR spectra in CDCl3 at 25 ◦C, GPC (SEC), and DSC.

CP1. 1H NMR (CDCl3): δ 1.28 (br s, 20H, -CH2-), 1.61 (tt, J = 14.66, 7.42 Hz, 4H,
-CH2CH2COO-), 1.97 (m, 4H, -CH2CH=CH-), 2.30 (t, J = 7.46 Hz, 2H, -CH2COO-), 2.36
(t, J = 7.57 Hz, 2H, -CH2COO-), 3.79 (dd, J = 9.77, 5.45 Hz, 1H, -CH2CHO-), 3.93–4.00 (m,
3H, -CH2-CHO-, -CH2CHO-), 4.14 (dd, J = 12.01, 5.93 Hz, 2H, -CH2CHOCH2O-), 4.29 (dd,
J = 11.76 Hz, 3.97 Hz, 2H, -CH2CHOCH2O-), 4.47 (d, J = 4.54 Hz, 1H, -CH-CHO), 4.82 (t, J =
4.92 Hz, 1H, -CH-CHO), 5.14 (dt, J = 5.60, 5.60 Hz, 1H, -CHOCO-), 5.19 (d, J = 2.80 Hz, 1H,
-CHOCO-), 5.37 (m, 2H, -CH=CH-). 13C{1H} NMR (CDCl3): δ 25.0 (-CH2-), 29.2 (-CH2-), 29.6
(-CH2-), 29.4 (-CH2-), 29.8 (-CH2-), 32.7 (-CH2CH=CH-), 34.1 (-CH2COO-), 34.3 (-CH2COO-),
62.2 (-CH2-OCO-), 69.0 (-CH-OCO-), 70.5 (-CH2-CHO-), 73.6 (-CH2-CHO-), 73.9 (-CHOCO-),
78.0 (-CHOCO-), 80.9 (-CH-CHO-), 86.1 (-CH-CHO-), 130.0 (-CH=CH-), 130.5 (-CH=CH-),
173.0 (-COO-), 173.3 (-COO-).

Olefin Hydrogenation. The resultant polymers (200 mg), toluene (3.0 mL), and
RhCl(PPh3)3 (3 mg) were added into the autoclave (20 mL scale) [36]. The stainless steel
autoclave was then pressurized with hydrogen (1.0 MPa) and was placed into a heating
Al block preheated at 50 ◦C. The solution was magnetically stirred for 24 h. The reaction
mixture was then poured into a mixed solution of MeOH. The polymer precipitates were
collected on a filter paper, and the collected white precipitates were then dried in vacuo
for several hours. No significant differences in the Mn, Ð (Mw/Mn) were observed in the
polymer samples before/after the hydrogenation. The resultant polymers were identified
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by NMR spectra (shown in Supplementary Materials), and the molecular weights and the
distributions were analyzed by GPC.

HCP1. 1H NMR (CDCl3): δ 1.27 (br s, 28H, -CH2-), 1.61 (tt, J = 14.75, 7.12 Hz, 4H,
-CH2CH2COO-), 2.30 (t, J = 7.56 Hz, 2H, -CH2COO-), 2.36 (t, J = 7.51 Hz, 2H, -CH2COO-),
3.78 (dd, J = 9.95, 5.40 Hz, 1H, -CH2CHO-), 3.92–4.00 (m, 3H, -CH2-CHO-, -CH2CHO-),
4.14 (dd, J = 12.47, 5.92 Hz, 2H, -OCH2CHOCH2O-), 4.28 (dd, J = 11.77 Hz, 4.10 Hz, 2H,
-OCH2CHOCH2O-), 4.47 (d, J = 4.55 Hz, 1H, -CH-CHO), 4.82 (t, J = 4.93 Hz, 1H, -CH-CHO),
5.14 (dt, J = 5.62, 5.55 Hz, 1H, -CHOCO-), 5.19 (d, J = 2.78 Hz, 1H, -CHOCO-). 13C{1H} NMR
(CDCl3): δ 25.0 (-CH2-), 29.2 (-CH2-), 29.4 (-CH2-), 29.6 (-CH2-), 29.7 (-CH2-), 29.8 (-CH2-),
34.1 (-CH2COO-), 34.3 (-CH2COO-), 62.2 (-CH2-OCO-), 69.0 (-CH-OCO-), 70.5 (-CH2-CHO-),
73.6 (-CH2-CHO-), 73.9 (-CHOCO-), 78.0 (-CHOCO-), 80.9 (-CH-CHO-), 86.1 (-CH-CHO-),
173.0 (-COO-), 173.3 (-COO-).

Analysis of Tensile Properties. Stress/strain experiments were performed at 23 ◦C
(speed 10 mm/min, humidity 50 ± 10%) using a Shimadzu Universal Testing Instrument
(Autograph AGS-10kNX, Kyoto, Japan) equipped with load cell (cell capacity 500 N).
At least three specimens were tested for analysis of each polymer. The small dumbbell-
shaped test specimens [width of parallel portion of 3 mm, distance between grippers (or
grippering distance) of 10 mm, overall length of 25 mm and thickness of 0.1 mm] were
cut from the polymer sheets prepared by a hot press. A toluene solution (2.0 mL) of HP1
or HCP1 (200 mg) sonicated for 10 min was placed into a PTFE petri dish (φ50 mm) and
the sample films were prepared by removing the solvent upon heating (on a hot plate).
The resultant solvent casted films were partly placed into a compression molding press
machine (Shinto Metal Industries, Ltd., Osaka, Japan), and steel plates were heated up to
100 ◦C under 5.0 MPa for 2 min. The films were then obtained after cooling the steel plates
to room temperature.

Table 1. ADMET polymerization of M1 by HG2 in the presence of the crosslinker (CL) 1.

Run

Solvent Polymerization CP1

(Times of Solvent
Replacement) 2

CL Time (2) 4 Mn
5

×
10−3

Mw/Mn
5

Yield
6

/mol% Time (1) 3/h /h /%

1 chloroform (1) -- -- 24 30.3 2.11 96
2 chloroform (1) 0.5 0 24 36.5 2.20 92
3 chloroform (1) 1.0 0 24 36.6 3.00 97
4 chloroform (1) 1.0 0 24 34.8 3.11 92
5 chloroform (1) 1.0 0 24 32.2 2.64 91
6 toluene (1) 1.0 0 24 19.3 2.04 89
7 toluene (2) 1.0 0 24 26.0 2.82 94
8 tetrachloroethane (1) 1.0 0 24 20.1 1.99 98
9 chloroform (1) 2.5 0 24 29.6 4.11 98
10 chloroform (1) 2.5 0 24 29.6 4.14 91
11 toluene (1) 2.5 0 24 23.0 3.66 87
12 tetrachloroethane (1) 2.5 0 24 23.1 2.59 96
13 toluene (1) 5.0 0 24 20.0 4.63 * 89
14 chloroform (1) 5.0 0 6 19.7 8.63 * 77
15 chloroform (0) 5.0 0 6 6.70 1.67 75
16 chloroform (0) 5.0 0 12 7.50 1.83 89
17 chloroform (0) 5.0 0 24 20.0 4.64 * 84
18 chloroform (1) 1.0 1 24 26.8 2.53 94
19 toluene (1) 1.0 1 24 21.0 2.18 88
20 tetrachloroethane (1) 1.0 1 24 17.6 1.95 97
21 chloroform (5) 1.0 1 24 36.6 2.79 91
22 chloroform (5) 1.0 1 24 35.8 3.00 90
23 chloroform (5) 2.5 1 24 31.1 4.13 90
24 chloroform (5) 2.5 1 24 32.0 4.48 91
25 chloroform (1) 2.5 1 24 25.0 5.94 * 99
26 toluene (1) 2.5 1 24 19.5 2.61 90
27 chloroform (1) 5.0 1 24 16.4 5.45 * 89
28 chloroform (5) 1.0 3 24 31.2 2.54 89
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Table 1. Cont.

Run

Solvent Polymerization CP1

(Times of Solvent
Replacement) 2

CL Time (2) 4 Mn
5

×
10−3

Mw/Mn
5

Yield
6

/mol% Time (1) 3/h /h /%

29 chloroform (1) 1.0 3 24 26.7 3.04 94
30 toluene (1) 1.0 3 24 19.4 2.00 88
31 chloroform (1) 2.5 3 24 25.7 3.90 97
32 toluene (1) 2.5 3 21 15.1 2.60 92
33 toluene (2) 2.5 3 21 20.6 2.46 89

1 Conditions: M1 300 mg (initial conc. 0.94 mmol/mL), 2.0 mol % HG2, 50 ◦C. 2 Number of solvent replacements
during the polymerization runs for every 30 min from the beginning. 3 Time (h) of addition of crosslinker
(CL, Scheme 2). 4 Total polymerization time. 5 GPC data in THF vs. polystyrene standards. 6 Isolated yields as the
methanol insoluble fraction. * Formation of gel.Polymers 2024, 16, x FOR PEER REVIEW 6 of 13 
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3. Results and Discussion
3.1. Synthesis of Network Polymers (CP1 and HCP1) by ADMET Polymerization and Subsequent
Hydrogenation

ADMET polymerization of bis(undec-10-enyl)isosorbide diester [M1, bis(undec-10-
enoate) with isosorbide] in the presence of glycerol tris(undec-10-enoate) (CL) was chosen
because the resultant polymer film prepared by M1 (expressed as HP1, Scheme 1) exhibited
good tensile strength and elongation at break [36]. As shown in Scheme 2, two approaches
involving adding CL from the beginning (1-step approach) or after 1 or 3 h (2-step approach)
have been chosen for the synthesis since the approach might affect the network density
or average polymer chain length between CLs (crosslinking point). The polymerizations
of M1 by the ruthenium–carbene catalyst (HG2, 2.0 mol%) were conducted in solvent
(toluene, chloroform, or tetrachloroethane, initial M1 conc. 0.94 mmol/mL) in the presence
of CL (0.5–5.0 mol%), which were prepared by glycerol with 3.0 equiv of 1-undecenoyl
chloride (see Materials and Methods). The selected results conducted under the various
conditions are summarized in Table 1. For the obtainment of high molecular weight
polymers under these conditions (300 mg M1 scale), the solvent in the reaction mixture
was removed in vacuo to replace the fresh one (called solvent replacement) every 30 min
in certain experimental runs [42]. The method is effective for the purpose (removal of
ethylene remained) of condensation polymerization [42], although the method would not
be appropriate in terms of a green sustainable process, and alternative methods (conducted
in IL [14] or a molybdenum catalyst [36]) should be studied.

It was revealed that the ADMET polymerizations of M1 in the presence of 0.5–2.5 mol%
CL (added at the beginning, called a 1-step approach) gave the highest molecular weight
polymers (expressed as CP1s), and the Mn values became higher upon presence of CL
(0.5 or 1.0 mol%, runs 1–5) compared to that in the absence of CL (run 1). The Mn value
decreased upon further CL addition (2.5 mol%, runs 9 and 10), and the resultant polymers
became swelled gels with stop stirring when the polymerizations were conducted in the
presence of 5.0 mol% of CL (run 14). The results are highly reproducible, as demonstrated
in runs 3–5, although the dispersity (PDI, Mw/Mn) values are somewhat large, probably
due to the difficulty of stirring the reaction mixture owing to high viscosity (run 14) [14].
Indeed, the polymerizations in the presence of 5.0 mol% CL eventually afforded polymer
gels irrespective of the kind of solvent employed (runs 13–17). It seems that the polymer-
ization conducted in toluene and tetrachloroethane afforded polymers possessing rather
low molecular weights compared to those conducted in chloroform, whereas the solvent
replacement improved the Mn value in CP1 [Mn = 19,300 (run 6) vs. 26,000 (run 7)].

In contrast, the Mn values in the resultant polymers (CP1s) were low when CL
(1.0 mol%) was added after 1 h of the ADMET polymerization (expressed as a 2-step
approach) irrespective of solvents (Mn = 17,600–26,800, runs 18–20); the polymerization in
chloroform gave CP1 with the highest molecular weight (run 18). Although the Mw/Mn
values in the resultant polymers in the presence of 2.5 mol% CL conducted in chloroform
were rather large [Mw/Mn = 4.13–5.45 (runs 23–25)], the Mw/Mn values in CP1 became
rather low (unimodal) when CL was added after 3 h of the ADMET polymerization (runs
29–32). As observed above, an increase in the number of solvent replacements led to an
increase in the Mn values because the ethylene that remained in the polymerization solution
was removed in vacuo with the removal of solvent, which led to condensation polymer-
ization [42]. Polymer samples with different molecular weights for the analysis of tensile
properties (shown below, Figures 1 and 2) were thus prepared by adopting this method.
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According to the reported procedure [14], olefinic double bonds in the resultant poly-
mers (CP1s) were hydrogenated by RhCl(PPh3)3 catalysts in toluene (Scheme 2, H2 1.0 MPa,
50 ◦C, 24 h). The results are summarized in Table 2. It was revealed that, as reported
previously [36], no significant changes in the Mn (as well as Mw/Mn) values were seen
before/after hydrogenation, and resonances ascribed to the internal olefins disappeared in
the polymer samples (HCP1s) after hydrogenation. Their uniform compositions (comple-
tion of hydrogenation) were also confirmed by DSC thermograms observed as sole melting
temperatures [32]. As shown in Figure S20 (and Table S4), no significant differences in
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the melting temperature were observed between linear and network polymers, whereas
the Tm values in HCP1 are higher than CP1, as reported previously by P1 and HP1 [32].
The resultant polymers are soluble in chloroform, THF, and toluene, regardless of their
network structure.

Table 2. Olefin hydrogenation of the prepared polyesters (CP1s) by RhCl(PPh3)3
1.

Run
Before Hydrogenation After Hydrogenation

Sample No. 2 Mn
3 × 10−4 Mw/Mn

3 Mn
3 × 10−4 Mw/Mn

3 Yield 4/%

34 run 1 3.03 2.11 3.07 2.22 99
35 run 4 3.48 3.11 3.48 3.10 98
36 run 5 3.22 2.64 3.26 2.47 >99
37 run 10 2.96 4.11 2.83 4.05 98
38 run 21 3.66 2.79 3.73 2.92 96
39 run 22 3.58 3.00 3.53 2.98 97
40 run 23 3.11 4.13 3.05 3.91 >99
41 run 24 3.20 4.48 3.22 4.39 95
42 run 28 3.12 2.54 3.14 2.46 >99

1 Conditions: 200 mg ADMET polymer, 3 mg RhCl(PPh3)3, toluene 5.0 mL, 1.0 MPa H2, 50 ◦C, 24 h. 2 Run number
in Table 1. 3 GPC data in THF vs. polystyrene standards. 4 Isolated yields by precipitation as the methanol
insoluble fraction.

3.2. Tensile Properties in the Polymer Films (CP1s, HCP1s)

Small dumbbell-shaped test specimens in the resultant polymer samples were pre-
pared by cutting the polymer sheet for measurement of their tensile properties. The
polymer sheets were prepared using a hot press method according to the reported proce-
dure [36]. The stress/strain experiments were conducted using a universal testing machine
at 23 ◦C (speed of 10 mm/min, humidity 50 ± 10%). The selected results are shown in
Figures 1 and 2, and the data are summarized in Table 3.

Table 3. Summary of the tensile properties of network polyesters (CP1, HCP1) at a speed of
10 mm/min (23 ◦C, humidity 50 ± 10%) 1.

Sample Run
No. 2

CL
/mol% Method 3 Mn

4 Mw/
Mn

4
Tensile

Strength/MPa
Elongation at

Break/%

HP1 ref 5 -- -- 40.9 2.41 33.7 (±2.2) 413 (±13)
HP1 34 -- -- 30.7 2.22 20.8 (±1.3) 282 (±14)

HCP1 36 1.0 1 step 32.6 2.47 34.7 (±0.6) 537 (±7)
HCP1 42 1.0 2 step 31.4 2.46 35.4 (±0.6) 572 (±1)
HCP1 38 1.0 2 step 37.3 2.92 36.9 (±3.8) 555 (±21)
HCP1 40 2.5 2 step 30.5 3.91 31.9 (±1.6) 457 (±65)

P1 1 -- -- 30.3 2.11 15.4 (±1.2) 444 (±28)
P1 ref 5 -- -- 39.6 1.89 17.3 (±2.2) 506 (±44)

CP1 4 1.0 1 step 34.8 3.11 18.6 (±0.5) 807 (±5)
CP1 21 1.0 2 step 36.6 2.79 24.6 (±1.1) 798 (±47)
CP1 22 1.0 2 step 35.8 3.00 21.3 (±2.0) 816 (±48)
CP1 23 2.5 2 step 31.1 4.13 19.7 (±1.5) 704 (±59)

1 Experimental Details: see Supplementary Materials. 2 Sample number in Tables 1 and 2. 3 Method in Scheme 2.
4 GPC data in THF vs. polystyrene standards. 5 Data cited from reference [16].

It should be noted that, as shown in Figure 1a, the tensile strength (stress) in the
resultant network polymer films after hydrogenation (HCP1) became higher than that
prepared in the absence of CL (HP1, linear polymer). The elongation at break (strain) was
affected by the method prepared, whereas no significant effects toward the stress were
observed; the polymer film prepared by the 2-step approach (addition of CL after 1 h
polymerization) showed higher strain compared to that prepared by the 1-step approach.
This might be probably due to the difference in the average length of each polymer chain
between CL units, although we do not have clear evidence at this moment. Increased CL
(from 1.0 mol to 2.5 mol%) led to a decrease in the strain, probably due to increased network
density. As reported previously [36], both the tensile strength and the elongation break
in the linear polymer (HP1) are affected by the Mn value [HP1, Mn = 30,700 vs. 40,900.
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Figure 1b]. In contrast, in the network polymer (HCP1), an increase in the tensile strength
(strain) was observed upon an increase in the Mn value [HCP1, Mn = 31,400 vs. 37,300.
Figure 1b].

Figure 2 shows tensile properties in the resultant unsaturated polyester films (CP1,
before hydrogenation) prepared by the ADMET polymerization. It was also noted that both
the tensile strength (stress) and the elongation at break in the resultant network polymer
films (CP1) became higher than that prepared in the absence of CL (P1, linear polymer). As
reported previously in HP1 [36], the resultant polymer films (CP1) showed higher stress
(elongation at break) than the saturated ones (HCP1), although the tensile strengths (strain)
were somewhat low. In contrast to the results in the saturated polymer films (HCP1), it
seems that the tensile properties were not affected by the method employed (1-step or
2-step), whereas the strain (elongation at break) in CP1 decreased upon increasing the CL
(from 1.0 mol to 2.5 mol%).

Figure 3 summarizes plots of tensile (fracture) strengths and strains (elongation at
breaks) of HP1 and CHP1 for comparison with the conventional polymers such as linear
high density polyethylene (HDPE), polypropylene (PP) and low density polyethylene
(LDPE) [43]. It is clear that the resultant polymer film shows better tensile properties
(tensile strength, elongation at break) than the conventional polyolefins as well as the other
conventional polymers.
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Figure 3. Plots of tensile (fracture) strengths and strains (elongation at breaks) of HP1 and CHP1 in
this study. The plots of high density polyethylene (HDPE), low density polyethylene (LDPE), and
polypropylene (PP) [43]. Tensile strength (MPa) and the elongation at break of the reference polymers
are as follows: HDPE (15, 500), LDPE (10.0, 312), and PP (30, 150), respectively.

Figure 4 shows temperature dependence in the storage module (E′), loss module (E′′),
and loss factor, tan δ, for HP1 and HCP1s measured by dynamic mechanical analyses
(DMA, 1.0 Hz). The resultant polymers possessed tan d values with relatively narrow
widths, suggesting that the resultant polymer possessed uniform composition, and the
results may also suggest that the crosslinking distributions in HCP1 were uniform [44].
However, no significant differences in their temperature dependences toward E′, E′′, and
tan δ were observed between linear (HP1) and network polymers (HCP1). It seems likely
that the resultant polymers possessed relatively low crosslinking density, and polymer
units between the crosslinking points are relatively long (reflect the polymer property
measured by DMA analysis).
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4. Conclusions

The present report demonstrates synthesis of soluble network biobased aliphatic
polyesters by ADMET polymerization of bis(undec-10-enoate) with isosorbide [M1,
bis(undec-10-enyl)isosorbide diester] in the presence of tri-arm crosslinker (CL), glyc-
erol tris(undec-10-enoate). The resultant polymers, after hydrogenation (expressed as
HCP1) and prepared in the presence of 1.0 mol% CL, showed better tensile properties
than the linear polymer (HP1) with similar molecular weight. The addition of CL during
the polymerization (expressed as a 2-step approach) was effective for the preparation of
polymer films with better tensile properties. As shown in Figure 3, the resultant polymer
film shows better tensile properties than the conventional polyolefins such as linear high
density polyethylene (HDPE), polypropylene (PP), and low density polyethylene (LDPE) as
well as the other conventional polymers. The approach should be effective for the synthesis
of other biobased polyesters to improve especially the elongation at break.

Moreover, as demonstrated in HP1 [14], the resultant polymers (HCP1s) could be
depolymerized with ethanol in the presence of CpTiCl3 (1.0 mol%, 150 ◦C, 24 h) to af-
ford isosorbide and the dicarboxylic acids confirmed by NMR spectra (details are shown
in the Supplementary Materials, Figures S18 and S19, and Table S3). Therefore, these
polyesters could demonstrate a promising possibility of chemical recyclable, biobased
aliphatic polyesters not only as alternatives to conventional polyolefins but also as func-
tional polymers suited to a circular economy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym16040468/s1, (1) Selected NMR spectra of the prepared
monomer, crosslinker, and polymers. (2) Selected GPC traces of the prepared polymers. (3) Ad-
ditional results for the mechanical properties of the prepared polymers. (4) Depolymerization of
the prepared polyesters by catalytic transesterification using CpTiCl3. (5) Thermal properties of the
prepared polyesters.
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