Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (97)

Search Parameters:
Keywords = metallic sub-wavelength structure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2010 KiB  
Article
Metasurface-Enhanced Infrared Photodetection Using Layered van der Waals MoSe2
by Jinchun Li, Zhixiang Xie, Tianxiang Zhao, Hongliang Li, Di Wu and Xuechao Yu
Nanomaterials 2025, 15(12), 913; https://doi.org/10.3390/nano15120913 - 12 Jun 2025
Viewed by 453
Abstract
Transition metal dichalcogenide (TMD) materials have demonstrated promising potential for applications in photodetection due to their tunable bandgaps, high carrier mobility, and strong light absorption capabilities. However, limited by their intrinsic bandgaps, TMDs are unable to efficiently absorb photons with energies below the [...] Read more.
Transition metal dichalcogenide (TMD) materials have demonstrated promising potential for applications in photodetection due to their tunable bandgaps, high carrier mobility, and strong light absorption capabilities. However, limited by their intrinsic bandgaps, TMDs are unable to efficiently absorb photons with energies below the bandgap, resulting in a significant attenuation of photoresponse in spectral regions beyond the bandgap. This inherently restricts their broadband photodetection performance. By introducing metasurface structures consisting of subwavelength optical elements, localized plasmon resonance effects can be exploited to overcome this absorption limitation, significantly enhancing the light absorption of TMD films. Additionally, the heterogeneous integration process between the metasurface and two-dimensional materials offers low-temperature compatibility advantages, effectively avoiding the limitations imposed by high-temperature doping processes in traditional semiconductor devices. Here, we systematically investigate metasurface-enhanced two-dimensional MoSe2 photodetectors, demonstrating broadband responsivity extension into the mid-infrared spectrum via precise control of metasurface structural dimensions. The optimized device possesses a wide spectrum response ranging from 808 nm to 10 μm, and the responsivity (R) and specific detection rate (D*) under 4 μm illumination achieve 7.1 mA/W and 1.12 × 108 Jones, respectively. Distinct metasurface configurations exhibit varying impacts on optical absorption characteristics and detection spectral ranges, providing experimental foundations for optimizing high-performance photodetectors. This work establishes a practical pathway for developing broadband optoelectronic devices through nanophotonic structure engineering. Full article
Show Figures

Figure 1

12 pages, 1925 KiB  
Article
Large-Area Nanogap Platforms for Surface-Enhanced Raman Spectroscopy Toward Sensing Applications: Comparison Between Ag and Au
by Arunkumar Alagurasu, Satyabrat Behera, Joon-Mo Yang, Dai-Sik Kim and Seon Namgung
Biosensors 2025, 15(6), 369; https://doi.org/10.3390/bios15060369 - 9 Jun 2025
Viewed by 619
Abstract
Sub-wavelength metallic nanostructures allow the squeezing of light within nanoscale regions, called plasmonic hotspots. Squeezed near-field light has been demonstrated to detect, modulate, and generate light in more effective ways. The enhanced electric field in the plasmonic hotspots are also utilized for identifying [...] Read more.
Sub-wavelength metallic nanostructures allow the squeezing of light within nanoscale regions, called plasmonic hotspots. Squeezed near-field light has been demonstrated to detect, modulate, and generate light in more effective ways. The enhanced electric field in the plasmonic hotspots are also utilized for identifying molecular fingerprints in a more sensitive manner, i.e., surface-enhanced Raman spectroscopy (SERS). SERS is a versatile tool used to characterize chemicals and biomolecules with the advantages of label-free detection, specificity, and high sensitivity compared to fluorescence and colorimetric sensing methods. With its practical and diverse applications such as biomedical sensing, the evaluation of SERS on diverse nano-structure platforms and materials is highly in demand. Nanogap structures are promising SERS platforms which can be fabricated over a large area with uniform nanoscale gap size. Here, we demonstrate the fabrication of large-area metal–insulator–metal nanogap structures with different metals (i.e., Au and Ag) and analyze material dependence on SERS. While both nanometer-sized gap structures exhibit a large enhancement factor for Raman spectroscopy, Ag-based structures exhibit 58- and 15-times-larger enhancement factors for bottom and top plasmonic hotspots, respectively. The enhanced detection on a silver nanogap platform is attributed to enhanced electric field in the gap, as confirmed by simulation. Our findings provide not only a way to better understand SERS in different metallic nano platforms but also insights for designing highly sensitive nanoscale chemical and biomedical sensors. Full article
(This article belongs to the Special Issue Surface-Enhanced Raman Scattering in Biosensing Applications)
Show Figures

Figure 1

34 pages, 6501 KiB  
Review
Integrated Photonic Biosensors: Enabling Next-Generation Lab-on-a-Chip Platforms
by Muhammad A. Butt, B. Imran Akca and Xavier Mateos
Nanomaterials 2025, 15(10), 731; https://doi.org/10.3390/nano15100731 - 13 May 2025
Cited by 2 | Viewed by 1807
Abstract
Integrated photonic biosensors are revolutionizing lab-on-a-chip technologies by providing highly sensitive, miniaturized, and label-free detection solutions for a wide range of biological and chemical targets. This review explores the foundational principles behind their operation, including the use of resonant photonic structures such as [...] Read more.
Integrated photonic biosensors are revolutionizing lab-on-a-chip technologies by providing highly sensitive, miniaturized, and label-free detection solutions for a wide range of biological and chemical targets. This review explores the foundational principles behind their operation, including the use of resonant photonic structures such as microring and whispering gallery mode resonators, as well as interferometric and photonic crystal-based designs. Special focus is given to the design strategies that optimize light–matter interaction, enhance sensitivity, and enable multiplexed detection. We detail state-of-the-art fabrication approaches compatible with complementary metal-oxide-semiconductor processes, including the use of silicon, silicon nitride, and hybrid material platforms, which facilitate scalable production and seamless integration with microfluidic systems. Recent advancements are highlighted, including the implementation of optofluidic photonic crystal cavities, cascaded microring arrays with subwavelength gratings, and on-chip detector arrays capable of parallel biosensing. These innovations have achieved exceptional performance, with detection limits reaching the parts-per-billion level and real-time operation across various applications such as clinical diagnostics, environmental surveillance, and food quality assessment. Although challenges persist in handling complex biological samples and achieving consistent large-scale fabrication, the emergence of novel materials, advanced nanofabrication methods, and artificial intelligence-driven data analysis is accelerating the development of next-generation photonic biosensing platforms. These technologies are poised to deliver powerful, accessible, and cost-effective diagnostic tools for practical deployment across diverse settings. Full article
Show Figures

Figure 1

17 pages, 127269 KiB  
Article
A Novel 28-GHz Meta-Window for Millimeter-Wave Indoor Coverage
by Chun Yang, Chuanchuan Yang, Cheng Zhang and Hongbin Li
Electronics 2025, 14(9), 1893; https://doi.org/10.3390/electronics14091893 - 7 May 2025
Viewed by 642
Abstract
Millimeter-wave signals experience substantial path loss when penetrating common building materials, hindering seamless indoor coverage from outdoor networks. To address this limitation, we present the 28-GHz “Meta-Window”, a mass-producible, visible transparent device designed to enhance millimeter-wave signal focusing. Fabricated via metal sputtering and [...] Read more.
Millimeter-wave signals experience substantial path loss when penetrating common building materials, hindering seamless indoor coverage from outdoor networks. To address this limitation, we present the 28-GHz “Meta-Window”, a mass-producible, visible transparent device designed to enhance millimeter-wave signal focusing. Fabricated via metal sputtering and etching on a standard soda-lime glass substrate, the meta-window incorporates subwavelength metallic structures arranged in a rotating pattern based on the Pancharatnam–Berry phase principle, enabling 0–360° phase control within the 25–32 GHz frequency band. A 210 mm × 210 mm prototype operating at 28 GHz was constructed using a 69 × 69 array of metasurface unit cells, leveraging planar electromagnetic lens principles. Experimental results demonstrate that the meta-window achieves greater than 20 dB signal focusing gain between 26 and 30 GHz, consistent with full-wave electromagnetic simulations, while maintaining up to 74.93% visible transmittance. This dual transparency—for both visible light and millimeter-wave frequencies—was further validated by a communication prototype system exhibiting a greater than 20 dB signal-to-noise ratio improvement and successful demodulation of a 64-QAM single-carrier signal (1 GHz bandwidth, 28 GHz) with an error vector magnitude of 4.11%. Moreover, cascading the meta-window with a reconfigurable reflecting metasurface antenna array facilitates large-angle beam steering; stable demodulation (error vector magnitude within 6.32%) was achieved within a ±40° range using the same signal parameters. Compared to conventional transmissive metasurfaces, this approach leverages established glass manufacturing techniques and offers potential for direct building integration, providing a promising solution for improving millimeter-wave indoor penetration and coverage. Full article
Show Figures

Figure 1

11 pages, 3230 KiB  
Article
Weyl Semimetal-Based Terahertz Chips for the Determination of Nickel Metal Particle Concentration in Sewage
by Chao Lin, Hao Xu and Yang Ping
Photonics 2025, 12(3), 255; https://doi.org/10.3390/photonics12030255 - 13 Mar 2025
Cited by 3 | Viewed by 675
Abstract
A novel terahertz-responsive chip was developed for rapid, non-contact detection of nickel metal particle concentrations in aqueous solutions. The chip integrates a Weyl semimetal thin film as the active layer and a sub-wavelength metallic structure as the substrate. Upon terahertz wave irradiation, distinct [...] Read more.
A novel terahertz-responsive chip was developed for rapid, non-contact detection of nickel metal particle concentrations in aqueous solutions. The chip integrates a Weyl semimetal thin film as the active layer and a sub-wavelength metallic structure as the substrate. Upon terahertz wave irradiation, distinct responses were observed in liquids containing varying nickel concentrations, enabling the establishment of a robust correlation between concentration and terahertz signal. Experimental results demonstrate the chip’s capability to quantify nickel particles (10–30 μm), with a detection limit below 0.01 mg/L and a relative standard deviation of <3% across repeatability tests. This technology offers a high-speed, precise, and low-limit solution for water quality monitoring, with significant potential for environmental applications. Full article
(This article belongs to the Special Issue Optical Fiber Lasers and Laser Technology)
Show Figures

Figure 1

31 pages, 4126 KiB  
Article
Optimizing Controlled-Resonance Acoustic Metamaterials with Perforated Plexiglass Disks, Honeycomb Structures, and Embedded Metallic Masses
by Giuseppe Ciaburro, Gino Iannace and Virginia Puyana Romero
Fibers 2025, 13(2), 11; https://doi.org/10.3390/fib13020011 - 22 Jan 2025
Cited by 2 | Viewed by 1628
Abstract
Acoustic metamaterials offer new opportunities for controlling sound waves through engineered material configurations at the sub-wavelength scale. In this research, we present the optimization of a resonance-controlled acoustic metamaterial based on a sandwich structure composed of perforated plexiglass disks, honeycomb structures, and added [...] Read more.
Acoustic metamaterials offer new opportunities for controlling sound waves through engineered material configurations at the sub-wavelength scale. In this research, we present the optimization of a resonance-controlled acoustic metamaterial based on a sandwich structure composed of perforated plexiglass disks, honeycomb structures, and added metal masses. The innovative approach consists of integrating perforated plexiglass disks interspersed with honeycomb structures, which act as multiple and complex Helmholtz resonators, and adding metal masses to introduce resonances at specific frequencies. The metamaterial’s acoustic properties were experimentally characterized using an impedance tube (Kundt tube), allowing the measurement of the Sound Absorption Coefficient (SAC) over an expansive frequency selection. The results demonstrate a substantial enhancement in sound absorption at the target frequencies, demonstrating the effectiveness of the introduced resonances. Numerical simulations using an Artificial Neural Network (ANN) model in MATLAB environment were used to analyze the distribution of resonances and optimize the structural configuration. To effectively evaluate the acoustic properties of the metamaterial, various configurations were analyzed using perforated plexiglass disks combined with different layers of honeycombs arranged in a sandwich structure with a thickness ranging from 41 to 45 mm. A comparison of these configurations revealed a notable increase in the Sound Absorption Coefficient (SAC) when employing three layers of perforated plexiglass disks and adding masses to the first disk (about 14%). This study highlights the potential of resonance-controlled metamaterials for advanced applications in noise control and acoustic engineering. Full article
Show Figures

Figure 1

13 pages, 7674 KiB  
Article
Multilayer Metamaterials with Vertical Cavities for High-Efficiency Transmittance with Metallic Components in the Visible Spectrum
by Huiyu Li, Lin Zhao, Guangwei Chen, Guoqing Hu and Zhehai Zhou
Photonics 2024, 11(10), 956; https://doi.org/10.3390/photonics11100956 - 11 Oct 2024
Cited by 1 | Viewed by 1514
Abstract
Metasurfaces are opening promising flexibilities to reshape the wavefront of electromagnetic waves. Notable optical phenomena are observed with the tailored surface plasmon, which is excited by metallic components in the visible spectrum. However, metamaterial or metasurface devices utilizing metallic materials encounter the challenge [...] Read more.
Metasurfaces are opening promising flexibilities to reshape the wavefront of electromagnetic waves. Notable optical phenomena are observed with the tailored surface plasmon, which is excited by metallic components in the visible spectrum. However, metamaterial or metasurface devices utilizing metallic materials encounter the challenge of low transmission efficiency, particularly within the visible spectrum. This study proposes a multilayer design strategy to enhance their transmission efficiency. By incorporating additional metal layers for improvements in the transmission efficiency and dielectric layers as spacers, cavities are formed along the propagation direction, enabling the modulation of transmittance and reflection through a process mimicking destructive interference. An analytical model simplified with the assumption of deep-subwavelength-thick metal layers is proposed to predict the structural parameters with optimized transmittance. Numerical studies employing the rigorous coupled wave analysis method confirmed that the additional metal layers significantly improve the transmittance. The introduction of the extra metal and dielectric layers enhances the transmission efficiency in specific spectral regions, maintaining a controllable passband and transmittance. The results indicate that the precise control over the layers’ thicknesses facilitates the modulation of peak-to-valley ratios and the creation of comb-like filters, which can be further refined through controlled random variation in the thickness. Furthermore, when the thickness of the silver layer followed an arithmetic sequence, a multilayer structure with a transmittance of approximately 80% covering the entire visible spectrum could be achieved. Significantly, the polarization extinction ratio and the phase delay of the incident beams could still be modulated by adjusting the geometrical structure and parameters of the multilayer metamaterial for diversified functionalities. Full article
(This article belongs to the Special Issue Advances in Near-Field Optics: Fundamentals and Applications)
Show Figures

Figure 1

9 pages, 5581 KiB  
Article
ITO-Based Electrically Tunable Metasurface for Active Control of Light Transmission
by Ruize Ma, Yu Mao, Peiyang Li, Dong Li and Dandan Wen
Nanomaterials 2024, 14(19), 1606; https://doi.org/10.3390/nano14191606 - 5 Oct 2024
Cited by 2 | Viewed by 2143
Abstract
In recent years, the rapid development of dynamically tunable metasurfaces has provided a new avenue for flexible control of optical properties. This paper introduces a transmission-type electrically tunable metasurface, employing a series of subwavelength-scale silicon (Si) nanoring structures with an intermediate layer of [...] Read more.
In recent years, the rapid development of dynamically tunable metasurfaces has provided a new avenue for flexible control of optical properties. This paper introduces a transmission-type electrically tunable metasurface, employing a series of subwavelength-scale silicon (Si) nanoring structures with an intermediate layer of Al2O3-ITO-Al2O3. This design allows the metasurface to induce strong Mie resonance when transverse electric (TE) waves are normally incident. When a bias voltage is applied, the interaction between light and matter is enhanced due to the formation of an electron accumulation layer at the ITO-Al2O3 interface, thereby altering the resonance characteristics of the metasurface. This design not only avoids the absorption loss of metal nanostructures and has a large modulation depth, but also shows compatibility with complementary metal oxide semiconductor (CMOS) technology. Full article
(This article belongs to the Special Issue Physical Properties of Semiconductor Nanostructures and Devices)
Show Figures

Figure 1

13 pages, 1022 KiB  
Article
Unveiling the Terahertz Nano-Fingerprint Spectrum of Single Artificial Metallic Resonator
by Xingxing Xu, Fu Tang, Xiaoqiuyan Zhang and Shenggang Liu
Sensors 2024, 24(18), 5866; https://doi.org/10.3390/s24185866 - 10 Sep 2024
Cited by 1 | Viewed by 1274
Abstract
As artificially engineered subwavelength periodic structures, terahertz (THz) metasurface devices exhibit an equivalent dielectric constant and dispersion relation akin to those of natural materials with specific THz absorption peaks, describable using the Lorentz model. Traditional verification methods typically involve testing structural arrays using [...] Read more.
As artificially engineered subwavelength periodic structures, terahertz (THz) metasurface devices exhibit an equivalent dielectric constant and dispersion relation akin to those of natural materials with specific THz absorption peaks, describable using the Lorentz model. Traditional verification methods typically involve testing structural arrays using reflected and transmitted optical paths. However, directly detecting the dielectric constant of individual units has remained a significant challenge. In this study, we employed a THz time-domain spectrometer-based scattering-type scanning near-field optical microscope (THz-TDS s-SNOM) to investigate the near-field nanoscale spectrum and resonant mode distribution of a single-metal double-gap split-ring resonator (DSRR) and rectangular antenna. The findings reveal that they exhibit a dispersion relation similar to that of natural materials in specific polarization directions, indicating that units of THz metasurface can be analogous to those of molecular structures in materials. This microscopic analysis of the dispersion relation of artificial structures offers new insights into the working mechanisms of THz metasurfaces. Full article
(This article belongs to the Special Issue Millimeter Wave and Terahertz Source, Sensing and Imaging)
Show Figures

Figure 1

13 pages, 4947 KiB  
Article
Ultra-Compact Reflective Waveguide Mode Converter Based on Slanted-Surface and Subwavelength Metamaterials
by Yanxia Zhang, Rui Feng, Bojian Shi, Xiaoxin Li, Yanyu Gao, Wenya Gao, Qi Jia, Fangkui Sun, Yongyin Cao and Weiqiang Ding
Photonics 2024, 11(9), 838; https://doi.org/10.3390/photonics11090838 - 4 Sep 2024
Cited by 1 | Viewed by 1604
Abstract
Mode converter (MC) is an indispensable element in the mode multiplexing and demultiplexing system. Most previously reported mode converters have been of the transmission type, while reflective mode converters are significantly lacking. In this paper, we propose an ultra-compact reflective mode converter (RMC) [...] Read more.
Mode converter (MC) is an indispensable element in the mode multiplexing and demultiplexing system. Most previously reported mode converters have been of the transmission type, while reflective mode converters are significantly lacking. In this paper, we propose an ultra-compact reflective mode converter (RMC) structure, which comprises a slanted waveguide surface coated with a metallic film and a subwavelength metamaterial refractive index modulation region. The results demonstrate that this RMC can achieve high-performance mode conversion within an extremely short conversion length. In the two-dimensional (2D) case, the conversion length for TE0–TE1 is only 810 nm, and the conversion efficiency reaches to 94.1% at the center wavelength of 1.55 μm. In a three-dimensional (3D) case, the TE0–TE1 mode converter is only 1.14 μm, with a conversion efficiency of 92.5%. Additionally, for TE0–TE2 mode conversion, the conversion size slightly increases to 1.4 μm, while the efficiency reaches 94.2%. The proposed RMC demonstrates excellent performance and holds great potential for application in various integrated photonic devices. Full article
Show Figures

Figure 1

9 pages, 1732 KiB  
Article
Broadband Spin-Selective Wavefront Manipulations with Generalized Pancharatnam–Berry Phase Metasurface
by Shiming Gan, Tianci Zhao, Xiuzhuang Mei, Tingting Zhang, Zhiqi Wang, Hongyu Gao, Gensen Yang, Jixiang Cai and Fuzhong Bai
Photonics 2024, 11(8), 690; https://doi.org/10.3390/photonics11080690 - 24 Jul 2024
Viewed by 957
Abstract
Metasurfaces can flexibly manipulate electromagnetic waves by engineering subwavelength structures, which have attracted enormous attention in holography, cloaking, and functional multiplexing. For structures with n-fold (n > 2) rotational symmetry, they have been utilized to realize broadband and high-efficiency wavefront manipulation [...] Read more.
Metasurfaces can flexibly manipulate electromagnetic waves by engineering subwavelength structures, which have attracted enormous attention in holography, cloaking, and functional multiplexing. For structures with n-fold (n > 2) rotational symmetry, they have been utilized to realize broadband and high-efficiency wavefront manipulation with generalized Pancharatnam–Berry phase, whereas spin-selective wavefront manipulation is still a challenge limited by their symmetrical spin–orbit interactions. Here, we demonstrate the spin-selective wavefront manipulations with generalized Pancharatnam–Berry phase in the range of 560–660 nm with a metal–insulator–metal metasurface consisting of the chiral C3 logarithmic spiral nanostructures. As a proof of concept, two deflectors and a bifocal metalens are designed. This configuration may provide a platform for various applications in polarimetry, polarization-selective images, and nonlinear optical responses. Full article
(This article belongs to the Special Issue Multifunctional Metasurfaces: Design Strategies and Applications)
Show Figures

Figure 1

13 pages, 17755 KiB  
Article
Spatially Resolved, Real-Time Polarization Measurement Using Artificial Birefringent Metallic Elements
by Stefan Belle, Stefan Kefer and Ralf Hellmann
Photonics 2024, 11(5), 397; https://doi.org/10.3390/photonics11050397 - 24 Apr 2024
Viewed by 2124
Abstract
Polarization states define a fundamental property in optics. Consequently, polarization state characterization is essential in many areas of both field industrial applications and scientific research. However, a full identification of space-variant Stokes parameters faces great challenges, like multiple power measurements. In this contribution, [...] Read more.
Polarization states define a fundamental property in optics. Consequently, polarization state characterization is essential in many areas of both field industrial applications and scientific research. However, a full identification of space-variant Stokes parameters faces great challenges, like multiple power measurements. In this contribution, we present a spatially resolved polarization measurement using artificial birefringent metallic elements, the so-called hollow waveguides. Differently oriented and space-variant hollow waveguide arrays, a stationary analyzer and a CMOS camera form the basis of the experimental setup for one single spatially resolved power measurement. From this power measurement, the Stokes parameters can be calculated in quasi-real-time, with a spatial resolution down to 50 μm in square. The dimensions of the individual hollow waveguides, which are less than or equal to the employed wavelength, determine the spectral range, here in the near infrared around λ = 1550 nm. This method allows for the rapid and compact determination of spatially resolved Stokes parameters, which is experimentally confirmed using defined wave plates, as well as an undefined injection-molded polymer substrate. Full article
(This article belongs to the Special Issue Polarization Optics)
Show Figures

Figure 1

33 pages, 13700 KiB  
Review
Review of Biosensors Based on Plasmonic-Enhanced Processes in the Metallic and Meta-Material-Supported Nanostructures
by Sneha Verma, Akhilesh Kumar Pathak and B. M. Azizur Rahman
Micromachines 2024, 15(4), 502; https://doi.org/10.3390/mi15040502 - 6 Apr 2024
Cited by 13 | Viewed by 2543
Abstract
Surface plasmons, continuous and cumulative electron vibrations confined to metal-dielectric interfaces, play a pivotal role in aggregating optical fields and energies on nanostructures. This confinement exploits the intrinsic subwavelength nature of their spatial profile, significantly enhancing light–matter interactions. Metals, semiconductors, and 2D materials [...] Read more.
Surface plasmons, continuous and cumulative electron vibrations confined to metal-dielectric interfaces, play a pivotal role in aggregating optical fields and energies on nanostructures. This confinement exploits the intrinsic subwavelength nature of their spatial profile, significantly enhancing light–matter interactions. Metals, semiconductors, and 2D materials exhibit plasmonic resonances at diverse wavelengths, spanning from ultraviolet (UV) to far infrared, dictated by their unique properties and structures. Surface plasmons offer a platform for various light–matter interaction mechanisms, capitalizing on the orders-of-magnitude enhancement of the electromagnetic field within plasmonic structures. This enhancement has been substantiated through theoretical, computational, and experimental studies. In this comprehensive review, we delve into the plasmon-enhanced processes on metallic and metamaterial-based sensors, considering factors such as geometrical influences, resonating wavelengths, chemical properties, and computational methods. Our exploration extends to practical applications, encompassing localized surface plasmon resonance (LSPR)-based planar waveguides, polymer-based biochip sensors, and LSPR-based fiber sensors. Ultimately, we aim to provide insights and guidelines for the development of next-generation, high-performance plasmonic technological devices. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

10 pages, 2752 KiB  
Communication
Dual Coupled Long-Range Hybrid Surface Plasmon Polariton Waveguide for Sub-Wavelength Confinement
by Yindi Wang, Shulong Wang, Juanning Zhao and Mingyuan Xue
Micromachines 2023, 14(12), 2167; https://doi.org/10.3390/mi14122167 - 29 Nov 2023
Cited by 3 | Viewed by 1907
Abstract
In this paper, a long-range hybrid waveguide for subwavelength confinement based on double SPP coupling is proposed. The hybrid waveguide consists of a metal-based cylindrical hybrid waveguide and a silver nanowire. There are two coupling regions in the waveguide structure that enhance mode [...] Read more.
In this paper, a long-range hybrid waveguide for subwavelength confinement based on double SPP coupling is proposed. The hybrid waveguide consists of a metal-based cylindrical hybrid waveguide and a silver nanowire. There are two coupling regions in the waveguide structure that enhance mode coupling. Strong mode coupling enables the waveguide to exhibit both a small effective mode area (0.01) and an extremely long transmission length (700 μm). The figure of merit (FOM) of the waveguide can be as high as 4000. In addition, the cross-sectional area of the waveguide is only 500 nm × 500 nm, allowing optical operation in the subwavelength range, which helps enhance the miniaturization of optoelectronic devices. The excellent characteristics of the hybrid waveguide make it have potential applications in photoelectric integrated systems. Full article
(This article belongs to the Special Issue Advances in Optoelectronic Devices, 2nd Edition)
Show Figures

Figure 1

13 pages, 1498 KiB  
Article
Controlled Dispersion and Transmission-Absorption of Optical Energy through Scaled Metallic Plate Structures
by Hammou Oubeniz, Abdelhaq Belkacem, Hicham Mangach, Muamer Kadic, Abdenbi Bouzid and Younes Achaoui
Materials 2023, 16(18), 6146; https://doi.org/10.3390/ma16186146 - 10 Sep 2023
Viewed by 1201
Abstract
The dispersive feature of metals at higher frequencies has opened up a plethora of applications in plasmonics. Besides, Extraordinary Optical Transmission (EOT) reported by Ebbesen et al. in the late 90’s has sparked particular interest among the scientific community through the unprecedented and [...] Read more.
The dispersive feature of metals at higher frequencies has opened up a plethora of applications in plasmonics. Besides, Extraordinary Optical Transmission (EOT) reported by Ebbesen et al. in the late 90’s has sparked particular interest among the scientific community through the unprecedented and singular way to steer and enhance optical energies. The purpose of the present paper is to shed light on the effect of the scaling parameter over the whole structure, to cover the range from the near-infrared to the visible, on the transmission and the absorption properties. We further bring specific attention to the dispersive properties, easily extractable from the resonance frequency of the drilled tiny slits within the structure. A perfect matching between the analytical Rigorous Coupled Wave Analysis (RCWA), and the numerical Finite Elements Method (FEM) to describe the underlying mechanisms is obtained. Full article
(This article belongs to the Topic Optical and Optoelectronic Materials and Applications)
Show Figures

Figure 1

Back to TopTop