Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,627)

Search Parameters:
Keywords = metallic element determination

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2436 KiB  
Review
The Role of Genomic Islands in the Pathogenicity and Evolution of Plant-Pathogenic Gammaproteobacteria
by Yuta Watanabe, Yasuhiro Ishiga and Nanami Sakata
Microorganisms 2025, 13(8), 1803; https://doi.org/10.3390/microorganisms13081803 (registering DOI) - 1 Aug 2025
Viewed by 18
Abstract
Genomic islands (GIs) including integrative and conjugative elements (ICEs), prophages, and integrative plasmids are central drivers of horizontal gene transfer in bacterial plant pathogens. These elements often carry cargo genes encoding virulence factors, antibiotic and metal resistance determinants, and metabolic functions that enhance [...] Read more.
Genomic islands (GIs) including integrative and conjugative elements (ICEs), prophages, and integrative plasmids are central drivers of horizontal gene transfer in bacterial plant pathogens. These elements often carry cargo genes encoding virulence factors, antibiotic and metal resistance determinants, and metabolic functions that enhance environmental adaptability. In plant-pathogenic species such as Pseudomonas syringae, GIs contribute to host specificity, immune evasion, and the emergence of novel pathogenic variants. ICEclc and its homologs represent integrative and mobilizable elements whose tightly regulated excision and transfer are driven by a specialized transcriptional cascade, while ICEs in P. syringae highlight the ecological impact of cargo genes on pathogen virulence and fitness. Pathogenicity islands further modulate virulence gene expression in response to in planta stimuli. Beyond P. syringae, GIs in genera such as Erwinia, Pectobacterium, and Ralstonia underpin critical traits like toxin biosynthesis, secretion system acquisition, and topoisomerase-mediated stability. Leveraging high-throughput genomics and structural biology will be essential to dissect GI regulation and develop targeted interventions to curb disease spread. This review synthesizes the current understanding of GIs in plant-pathogenic gammaproteobacteria and outlines future research priorities for translating mechanistic insights into sustainable disease control strategies. Full article
19 pages, 1627 KiB  
Article
Separation of Rare Earth Elements by Ion Exchange Resin: pH Effect and the Use of Fractionation Column
by Clauson Souza, Pedro A. P. V. S. Ferreira and Ana Claudia Q. Ladeira
Minerals 2025, 15(8), 821; https://doi.org/10.3390/min15080821 (registering DOI) - 1 Aug 2025
Viewed by 93
Abstract
This work investigated the ion exchange technique for selective separation of rare earth elements (REE) from acid mine drainage (AMD), using different column systems, pH values, and eluent concentrations. Systematic analysis of pH and eluent concentration showed that an initial pH of 6.0 [...] Read more.
This work investigated the ion exchange technique for selective separation of rare earth elements (REE) from acid mine drainage (AMD), using different column systems, pH values, and eluent concentrations. Systematic analysis of pH and eluent concentration showed that an initial pH of 6.0 and 0.02 mol L−1 NH4EDTA are the optimal conditions, achieving 98.4% heavy REE purity in the initial stage (0 to 10 bed volumes). This represents a 32-fold increase compared to the original AMD (6.7% heavy REE). The speciation of REE and impurities was determined by Visual Minteq 4.0 software using pH 2.0, which corresponds to the pH at the inlet of the fractionation column. Under this condition, La and Nd and the impurities (Ca, Mg, and Mn) remained in the fractionation column, while Al was partially retained. In addition, the heavy REE (Y and Dy) were mainly in the form of REE-EDTA complexes and not as free cations, which made fractionation more feasible. The fractionation column minimized impurities, retaining 100% of Ca and 67% of Al, generating a liquor concentrated in heavy REE. This sustainable approach adopted herein meets the critical needs for scalable recovery of REE from diluted effluents, representing a circular economy strategy for critical metals. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

21 pages, 3814 KiB  
Article
Features of the Structure of Layered Epoxy Composite Coatings Formed on a Metal-Ceramic-Coated Aluminum Base
by Volodymyr Korzhyk, Volodymyr Kopei, Petro Stukhliak, Olena Berdnikova, Olga Kushnarova, Oleg Kolisnichenko, Oleg Totosko, Danylo Stukhliak and Liubomyr Ropyak
Materials 2025, 18(15), 3620; https://doi.org/10.3390/ma18153620 (registering DOI) - 1 Aug 2025
Viewed by 176
Abstract
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer [...] Read more.
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer of basalt fabric, which allows for effective heating of the antenna, and to study the properties of this coating. The multilayer coating was formed on an aluminum base that was subjected to abrasive jet processing. The first and second metal-ceramic layers, Al2O3 + 5% Al, which were applied by high-speed multi-chamber cumulative detonation spraying (CDS), respectively, provide maximum adhesion strength to the aluminum base and high adhesion strength to the third layer of the epoxy composite containing Al2O3. On this not-yet-polymerized layer of epoxy composite containing Al2O3, a layer of carbon fabric (impregnated with epoxy resin) was formed, which serves as a resistive heating element. On top of this carbon fabric, a layer of epoxy composite containing Cr2O3 and SiO2 was applied. Next, basalt fabric was applied to this still-not-yet-polymerized layer. Then, the resulting layered coating was compacted and dried. To study this multilayer coating, X-ray analysis, light and raster scanning microscopy, and transmission electron microscopy were used. The thickness of the coating layers and microhardness were measured on transverse microsections. The adhesion strength of the metal-ceramic coating layers to the aluminum base was determined by both bending testing and peeling using the adhesive method. It was established that CDS provides the formation of metal-ceramic layers with a maximum fraction of lamellae and a microhardness of 7900–10,520 MPa. In these metal-ceramic layers, a dispersed subgrain structure, a uniform distribution of nanoparticles, and a gradient-free level of dislocation density are observed. Such a structure prevents the formation of local concentrators of internal stresses, thereby increasing the level of dispersion and substructural strengthening of the metal-ceramic layers’ material. The formation of materials with a nanostructure increases their strength and crack resistance. The effectiveness of using aluminum, chromium, and silicon oxides as nanofillers in epoxy composite layers was demonstrated. The presence of structures near the surface of these nanofillers, which differ from the properties of the epoxy matrix in the coating, was established. Such zones, specifically the outer surface layers (OSL), significantly affect the properties of the epoxy composite. The results of industrial tests showed the high performance of the multilayer coating during antenna heating. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

30 pages, 7246 KiB  
Article
Linear Dependence of Sublimation Enthalpy on Young’s Elastic Modulus: Implications for Thermodynamics of Solids
by Anne M. Hofmeister
Materials 2025, 18(15), 3535; https://doi.org/10.3390/ma18153535 - 28 Jul 2025
Viewed by 330
Abstract
Classical thermodynamics omits rigidity, which property distinguishes solids from gases and liquids. By accounting for rigidity (i.e., Young’s elastic modulus, ϒ), we recently amended historical formulae and moreover linked heat capacity, thermal expansivity, and ϒ. Further exploration is motivation by the importance of [...] Read more.
Classical thermodynamics omits rigidity, which property distinguishes solids from gases and liquids. By accounting for rigidity (i.e., Young’s elastic modulus, ϒ), we recently amended historical formulae and moreover linked heat capacity, thermal expansivity, and ϒ. Further exploration is motivation by the importance of classical thermodynamics to various applied sciences. Based on heat performing work, we show here, theoretically, that density times sublimation enthalpy divided by the molar mass (ρΔHsub/M, energy per volume), depends linearly on ϒ (1 GPa = 109 J m−3). Data on diverse metals, non-metallic elements, chalcogenides, simple oxides, alkali halides, and fluorides with cubic structures validate this relationship at ambient conditions. Furthermore, data on hcp metals and molecular solids show that ρΔHsub/M is proportional to ϒ for anisotropic materials. Proportionality constants vary only from 0.1 to 0.7 among these different material types (>100 substances), which shows that the elastic energy reservoir of solids is large. Proportionality constants depend on whether molecules or atoms are sublimated and are somewhat affected by structure. We show that ductility of refractory, high-ϒ metals affect high-temperature determinations of their ΔHsub. Our results provide information on sublimation processes and subsequent gas phase reactions, while showing that elasticity of solids is the key parameter needed to assessing their energetics. Implications are highlighted. Full article
Show Figures

Graphical abstract

18 pages, 7202 KiB  
Article
Functionalized Polymeric Nanoparticles for Yttrium Recovery by Chelating Effect
by Pedro Adrián Martínez-Montoya, Hugo Martínez-Gutiérrez, Ángel de Jesús Morales-Ramírez and Mónica Corea
Polymers 2025, 17(15), 2011; https://doi.org/10.3390/polym17152011 - 23 Jul 2025
Viewed by 274
Abstract
Polymethyl methacrylate nanoparticles functionalized with three different compounds, acrylic acid (AA), curcumin (CUR), and fumaramide (FA), were tested in a two-step solid–liquid extraction process (extraction and stripping) for yttrium recovery. In both stages, the best conditions were determined: pH, solid–liquid ratio and the [...] Read more.
Polymethyl methacrylate nanoparticles functionalized with three different compounds, acrylic acid (AA), curcumin (CUR), and fumaramide (FA), were tested in a two-step solid–liquid extraction process (extraction and stripping) for yttrium recovery. In both stages, the best conditions were determined: pH, solid–liquid ratio and the compound with the highest affinity for yttrium recovery, obtaining 90% of efficiency for both stages in a single work cycle. The results obtained by SEM ruled out the growing of nanoparticles by swelling and confirmed the formation of structural arrangements by the addition of the metal to the system. In addition, there is evidence that the recovery process can be selective considering the mixing of rare earth elements through changes in pH. Using isothermal titration calorimetry (ITC), the thermodynamic properties of the extraction process were calculated, understanding the system as the union of a macromolecule and a ligand. The results showed that the extraction process was spontaneous and highly entropic. Full article
Show Figures

Graphical abstract

22 pages, 3727 KiB  
Article
Johnson–Cook Constitutive Model Parameters Estimation of 22MnB5 Hot Stamping Steel for Automotive Application Produced via the TSCR Process
by Yuxin Song, Yaowen Xu and Gengwei Yang
Metals 2025, 15(7), 811; https://doi.org/10.3390/met15070811 - 20 Jul 2025
Viewed by 2791
Abstract
In the industrial practice of metal forming, the consistent and reasonable characterization of the material behavior under the coupling effect of strain, strain rate, and temperature on the material flow stress is very important for the design and optimization of process parameters. The [...] Read more.
In the industrial practice of metal forming, the consistent and reasonable characterization of the material behavior under the coupling effect of strain, strain rate, and temperature on the material flow stress is very important for the design and optimization of process parameters. The purpose of this work was to establish an appropriate constitutive model to characterize the rheological behavior of a hot-formed steel plate (22MnB5 steel) produced through the TSCR (Thin Slab Casting and Rolling) process under practical deformation temperatures (150–250 °C) and strain rates (0.001–3000 s−1). Subsequently, the material flow behavior was modeled and predicted using the Johnson–Cook flow stress constitutive model. In this study, uniaxial tensile tests were conducted on 22MnB5 steel at room temperature under varying strain rates, along with elevated-temperature tensile tests at different strain rates, to obtain the engineering stress–strain curves and analyze the mechanical properties under various conditions. The results show that during room-temperature tensile testing within the strain rate range of 10−3 to 300 s−1, the 22MnB5 steel exhibited overall yield strength and tensile strength of approximately 1500 MPa, and uniform elongation and fracture elongation of about 7% and 12%, respectively. When the strain rate reached 1000–3000 s−1, the yield strength and tensile strength were approximately 2000 MPa, while the uniform elongation and fracture elongation were about 6% and 10%, respectively. Based on the experimental results, a modified Johnson–Cook constitutive model was developed and calibrated. Compared with the original model, the modified Johnson–Cook model exhibited a higher coefficient of determination (R2), indicating improved fitting accuracy. In addition, to predict the material’s damage behavior, three distinct specimen geometries were designed for quasi-static strain rate uniaxial tensile testing at ambient temperature. The Johnson–Cook failure criterion was implemented, with its constitutive parameters calibrated through integrated finite element analysis to establish the damage model. The determined damage parameters from this investigation can be effectively implemented in metal forming simulations, providing valuable predictive capabilities regarding workpiece material performance. Full article
Show Figures

Figure 1

18 pages, 2708 KiB  
Article
Mathematical Model of a Semiconductor Structure Based on Vanadium Dioxide for the Mode of a Conductive Phase
by Oleksii Kachura, Valeriy Kuznetsov, Mykola Tryputen, Vitalii Kuznetsov, Sergei Kolychev, Artur Rojek and Petro Hubskyi
Electronics 2025, 14(14), 2884; https://doi.org/10.3390/electronics14142884 - 18 Jul 2025
Viewed by 213
Abstract
This study presents a comprehensive mathematical model of a semiconductor structure based on vanadium dioxide (VO2), specifically in its conductive phase. The model was developed using the finite element method (FEM), enabling detailed simulation of the formation of a conductive [...] Read more.
This study presents a comprehensive mathematical model of a semiconductor structure based on vanadium dioxide (VO2), specifically in its conductive phase. The model was developed using the finite element method (FEM), enabling detailed simulation of the formation of a conductive channel under the influence of low-frequency alternating voltage (50 Hz). The VO2 structure under investigation exhibits pronounced electric field concentration at the surface, where the field strength reaches approximately 5 × 104 V/m, while maintaining a more uniform distribution of around 2 × 104 V/m within the bulk of the material. The simulation results were validated experimentally using a test circuit. Minor deviations—no greater than 8%—were observed between the simulated and measured current values, attributed to magnetic core saturation and modeling assumptions. A distinctive feature of the model is its ability to incorporate the nonlinear dependencies of VO2’s electrical properties on frequency. Analytical expressions were derived for the magnetic permeability and resistivity of VO2, demonstrating excellent agreement with experimental data. The coefficients of determination (R2) for the frequency dependence of magnetic permeability and resistance were found to be 0.9976 and 0.9999, respectively. The current version of the model focuses exclusively on the conductive phase and does not include the thermally induced metal–insulator phase transition characteristic of VO2. The study confirms that VO2-based structures exhibit high responsiveness and nonlinear switching behavior, making them suitable for applications in electronic surge protection, current limiting, and switching elements. The developed model provides a reliable and physically grounded tool for the design and optimization components based on VO2 in power electronics and protective circuitry. Full article
(This article belongs to the Section Electronic Materials, Devices and Applications)
Show Figures

Figure 1

16 pages, 2085 KiB  
Article
Multivariate Analysis and Geostatistics of the Physicochemical Quality Waters Study from the Complex Lake Togo-Lagoon of Aneho (Southern Togo)
by Kamilou Ouro-Sama, Hodabalo Dheoulaba Solitoke, Gnon Tanouayi, Narcis Barsan, Emilian Mosnegutu, Sadikou Agbere, Fègbawè Badanaro, Valentin Nedeff, Kissao Gnandi, Florin-Marian Nedeff, Mirela Panainte-Lehadus and Dana Chitimus
Appl. Sci. 2025, 15(14), 7940; https://doi.org/10.3390/app15147940 - 16 Jul 2025
Viewed by 341
Abstract
The hydrosystem composed of Lake Togo, Lagoon of Togoville, and Lagoon of Aného is located in the coastal zone of Togo and receives important and different kinds of mining waste that cause its degradation. This study aims to evaluate the physicochemical and metallic [...] Read more.
The hydrosystem composed of Lake Togo, Lagoon of Togoville, and Lagoon of Aného is located in the coastal zone of Togo and receives important and different kinds of mining waste that cause its degradation. This study aims to evaluate the physicochemical and metallic quality of these waters and determine the possible sources of these contaminants using geostatistical, multivariate, and special analysis methods. These waters were very mineralized according to the average conductivity (15.51 mS/cm). Average contents (μg/L) in trace elements varied from 2.46 μg/L for As to 141.63 μg/L for Pb. Average levels of Cd, Pb, Cr, and Ni were significantly higher than the WHO standards. Trace elements and physicochemical parameters showed strong spatial variations with the highest values recorded downstream of the hydrosystem. The main possible source of trace element pollution was the intrusion of seawater loaded with phosphate effluent, followed by atmospheric deposition and soil leaching. This hydrosystem, therefore, deserves special attention for better planning its management. Full article
Show Figures

Figure 1

18 pages, 3550 KiB  
Article
Monitoring and Assessment of the Trace Element Accumulation in the Polychaete Hediste diversicolor from Tunisian Coastal Localities (Southwest of Mediterranean Sea)
by Ali Annabi, Walid Ben Ameur, Nermine Akermi and Mauro Marini
J. Mar. Sci. Eng. 2025, 13(7), 1353; https://doi.org/10.3390/jmse13071353 - 16 Jul 2025
Viewed by 325
Abstract
The study of the impact of anthropogenic and natural pollution on living organisms has become a major social issue. In this context, the objective of this work is to assess the use of the polychaete annelid Hediste diversicolor as a bioindicator organism for [...] Read more.
The study of the impact of anthropogenic and natural pollution on living organisms has become a major social issue. In this context, the objective of this work is to assess the use of the polychaete annelid Hediste diversicolor as a bioindicator organism for the quality of the marine environment. The concentration of four heavy metals (lead, copper, zinc, and cadmium) was determined in natural populations of H. diversicolor captured from four locations along the Tunisian coast using atomic absorption spectroscopy. Concentration ranges (µg/g dry weight) across all sites were as follows: Cd (0.12–0.43), Cu (3.80–6.45), Zn (18.35–42.78), and Pb (22.64–63.91). Statistical analysis confirmed significant spatial variation (Pb: F = 12.15, p < 0.001; Zn: F = 3.32, p = 0.04; Cd: F = 48.66, p < 0.001; Cu: F = 9.08, p < 0.001), with peak Pb in Bizerte and Cu in Sfax. These results highlight the influence of local environmental factors, such as industrial and urban pollution on metal accumulation in Hediste diversicolor. In this study, the accumulation of the analyzed elements in the tissues of H. diversicolor follows an increasing order as follows: Cd < Cu < Zn < Pb. Additionally, lead metal concentrations were higher than those of cadmium, zinc, and copper for all four studied locations. To our knowledge, this is the first study in Tunisia to assess heavy metal accumulation in H. diversicolor. The recorded levels were similar to, or lower than, those reported in other studies worldwide. These findings underscore the potential of H. diversicolor as a sensitive and effective bioindicator for monitoring coastal contamination and guiding environmental management strategies in Tunisia. Full article
(This article belongs to the Topic Conservation and Management of Marine Ecosystems)
Show Figures

Figure 1

26 pages, 5873 KiB  
Article
Pyridine–Quinoline and Biquinoline-Based Ruthenium p-Cymene Complexes as Efficient Catalysts for Transfer Hydrogenation Studies: Synthesis and Structural Characterization
by Nikolaos Zacharopoulos, Gregor Schnakenburg, Eleni I. Panagopoulou, Nikolaos S. Thomaidis and Athanassios I. Philippopoulos
Molecules 2025, 30(14), 2945; https://doi.org/10.3390/molecules30142945 - 11 Jul 2025
Viewed by 469
Abstract
Searching for new and efficient transfer hydrogenation catalysts, a series of new organometallic ruthenium(II)-arene complexes of the formulae [Ru(η6-p-cymene)(L)Cl][PF6] (18) and [Ru(η6-p-cymene)(L)Cl][Ru(η6-p-cymene)Cl3] ( [...] Read more.
Searching for new and efficient transfer hydrogenation catalysts, a series of new organometallic ruthenium(II)-arene complexes of the formulae [Ru(η6-p-cymene)(L)Cl][PF6] (18) and [Ru(η6-p-cymene)(L)Cl][Ru(η6-p-cymene)Cl3] (911) were synthesized and fully characterized. These were prepared from the reaction of pyridine–quinoline and biquinoline-based ligands (L) with [Ru(η6-p-cymene)(μ-Cl)Cl]2, in 1:2 and 1:1, metal (M) to ligand (L) molar ratios. Characterization includes a combination of spectroscopic methods (FT-IR, UV-Vis, multi nuclear NMR), elemental analysis and single-crystal X-ray crystallography. The pyridine–quinoline organic entities encountered, were prepared in high yield either via the thermal decarboxylation of the carboxylic acid congeners, namely 2,2′-pyridyl-quinoline-4-carboxylic acid (pqca), 8-methyl-2,2′-pyridyl-quinoline-4-carboxylic acid (8-Mepqca), 6′-methyl-2,2′-pyridyl-quinoline-4-carboxylic acid (6′-Mepqca) and 8,6′-dimethyl-2,2′-pyridyl-quinoline-4-carboxylic acid (8,6′-Me2pqca), affording the desired ligands pq, 8-Mepq, 6′-Mepq and 8,6′-Me2pq, or by the classical Friedländer condensation, to yield 4,6′-dimethyl-2,2′-pyridyl-quinoline (4,6′-Me2pq) and 4-methyl-2,2′-pyridyl-quinoline (4-Mepq), respectively. The solid-state structures of complexes 14, 6, 8 and 9 were determined showing a distorted octahedral coordination geometry. The unit cell of 3 contains two independent molecules (Ru-3), (Ru′-3) in a 1:1 ratio, due to a slight rotation of the arene ring. All complexes catalyze the transfer hydrogenation of acetophenone, using 2-propanol as a hydrogen donor in the presence of KOiPr. Among them, complexes 1 and 5 bearing methyl groups at the 8 and 4 position of the quinoline moiety, convert acetophenone to 1-phenylethanol quantitatively, within approximately 10 min with final TOFs of 1600 h−1. The catalytic performance of complexes 111, towards the transfer hydrogenation of p-substituted acetophenone derivatives and benzophenone, ranges from moderate to excellent. An inner-sphere mechanism has been suggested based on the detection of ruthenium(II) hydride species. Full article
(This article belongs to the Special Issue Advances in Coordination Chemistry, 3rd Edition)
Show Figures

Graphical abstract

17 pages, 4414 KiB  
Article
Mechanical Characteristics of 26H2MF and St12T Steels Under Torsion at Elevated Temperatures
by Waldemar Dudda
Materials 2025, 18(13), 3204; https://doi.org/10.3390/ma18133204 - 7 Jul 2025
Viewed by 264
Abstract
The concept of “material effort” appears in continuum mechanics wherever the response of a material to the currently existing state of loads and boundary conditions loses its previous, predictable character. However, within the material, which still descriptively remains a continuous medium, new physical [...] Read more.
The concept of “material effort” appears in continuum mechanics wherever the response of a material to the currently existing state of loads and boundary conditions loses its previous, predictable character. However, within the material, which still descriptively remains a continuous medium, new physical structures appear and new previously unused physical features of the continuum are activated. The literature is dominated by a simplified way of thinking, which assumes that all these states can be characterized and described by one and the same measure of effort—for metals it is the Huber–Mises–Hencky equivalent stress. Quantitatively, perhaps 90% of the literature is dedicated to this equivalent stress. The remaining authors, as well as the author of this paper, assume that there is no single universal measure of effort that would “fit” all operating conditions of materials. Each state of the structure’s operation may have its own autonomous measure of effort, which expresses the degree of threat from a specific destruction mechanism. In the current energy sector, we are increasingly dealing with “low-cycle thermal fatigue states”. This is related to the fact that large, difficult-to-predict renewable energy sources have been added. Professional energy based on coal and gas units must perform many (even about 100 per year) starts and stops, and this applies not only to the hot state, but often also to the cold state. The question arises as to the allowable shortening of start and stop times that would not to lead to dangerous material effort, and whether there are necessary data and strength characteristics for heat-resistant steels that allow their effort to be determined not only in simple states, but also in complex stress states. Do these data allow for the description of the material’s yield surface? In a previous publication, the author presented the results of tension and compression tests at elevated temperatures for two heat-resistant steels: St12T and 26H2MF. The aim of the current work is to determine the properties and strength characteristics of these steels in a pure torsion test at elevated temperatures. This allows for the analysis of the strength of power turbine components operating primarily on torsion and for determining which of the two tested steels is more resistant to high temperatures. In addition, the properties determined in all three tests (tension, compression, torsion) will allow the determination of the yield surface of these steels at elevated temperatures. They are necessary for the strength analysis of turbine elements in start-up and shutdown cycles, in states changing from cold to hot and vice versa. A modified testing machine was used for pure torsion tests. It allowed for the determination of the sample’s torsion moment as a function of its torsion angle. The experiments were carried out at temperatures of 20 °C, 200 °C, 400 °C, 600 °C, and 800 °C for St12T steel and at temperatures of 20 °C, 200 °C, 400 °C, 550 °C, and 800 °C for 26H2MF steel. Characteristics were drawn up for each sample and compared on a common graph corresponding to the given steel. Based on the methods and relationships from the theory of strength, the yield stress and torsional strength were determined. The yield stress of St12T steel at 600 °C was 319.3 MPa and the torsional strength was 394.4 MPa. For 26H2MH steel at 550 °C, the yield stress was 311.4 and the torsional strength was 382.8 MPa. St12T steel was therefore more resistant to high temperatures than 26H2MF. The combined data from the tension, compression, and torsion tests allowed us to determine the asymmetry and plasticity coefficients, which allowed us to model the yield surface according to the Burzyński criterion as a function of temperature. The obtained results also allowed us to determine the parameters of the Drucker-Prager model and two of the three parameters of the Willam-Warnke and Menetrey-Willam models. The research results are a valuable contribution to the design and diagnostics of power turbine components. Full article
Show Figures

Figure 1

33 pages, 12918 KiB  
Article
Time-Dependent Fragility Functions and Post-Earthquake Residual Seismic Performance for Existing Steel Frame Columns in Offshore Atmospheric Environment
by Xiaohui Zhang, Xuran Zhao, Shansuo Zheng and Qian Yang
Buildings 2025, 15(13), 2330; https://doi.org/10.3390/buildings15132330 - 2 Jul 2025
Viewed by 408
Abstract
This paper evaluates the time-dependent fragility and post-earthquake residual seismic performance of existing steel frame columns in offshore atmospheric environments. Based on experimental research, the seismic failure mechanism and deterioration laws of the seismic behavior of corroded steel frame columns were revealed. A [...] Read more.
This paper evaluates the time-dependent fragility and post-earthquake residual seismic performance of existing steel frame columns in offshore atmospheric environments. Based on experimental research, the seismic failure mechanism and deterioration laws of the seismic behavior of corroded steel frame columns were revealed. A finite element analysis (FEA) method for steel frame columns, which considers corrosion damage and ductile metal damage criteria, is developed and validated. A parametric analysis in terms of service age and design parameters is conducted. Considering the impact of environmental erosion and aging, a classification criterion for damage states for existing steel frame columns is proposed, and the theoretical characterization of each damage state is provided based on the moment-rotation skeleton curves. Based on the test and numerical analysis results, probability distributions of the fragility function parameters (median and logarithmic standard deviation) are constructed. The evolution laws of the fragility parameters with increasing service age under each damage state are determined, and a time-dependent fragility model for existing steel frame columns in offshore atmospheric environments is presented through regression analysis. At a drift ratio of 4%, the probability of complete damage to columns with 40, 50, 60, and 70-year service ages increased by 18.1%, 45.3%, 79.2%, and 124.5%, respectively, compared with columns within a 30-year service age. Based on the developed FEA models and the damage class of existing columns, the influence of characteristic variables (service age, design parameters, and damage level) on the residual seismic capacity of earthquake-damaged columns, namely the seismic resistance that can be maintained even after suffering earthquake damage, is revealed. Using the particle swarm optimization back-propagation neural network (PSO-BPNN) model, nonlinear mapping relationships between the characteristic variables and residual seismic capacity are constructed, thereby proposing a residual seismic performance evaluation model for existing multi-aged steel frame columns in an offshore atmospheric environment. Combined with the damage probability matrix of the time-dependent fragility, the expected values of the residual seismic capacity of existing multi-aged steel frame columns at a given drift ratio are obtained directly in a probabilistic sense. The results of this study lay the foundation for resistance to sequential earthquakes and post-earthquake functional recovery and reconstruction, and provide theoretical support for the full life-cycle seismic resilience assessment of existing steel structures in earthquake-prone areas. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

16 pages, 4591 KiB  
Article
Influence of Process Parameters on the Ultrasonic Atomization Efficiency and Possibility of Testing Properties of Liquid Metals
by Rafał Szostak-Staropiętka, Wojciech Presz, Roksana Pawlic, Anna Dziubińska and Katarzyna Kołacz
Metrology 2025, 5(3), 39; https://doi.org/10.3390/metrology5030039 - 2 Jul 2025
Viewed by 240
Abstract
Over recent years, ultrasonic atomization, especially with regard to liquid metals, has become an object of increased interest, mainly from industry, for additive manufacturing, but also from investigators, for research purposes. A strong correlation between the average particle size, distribution of particle sizes, [...] Read more.
Over recent years, ultrasonic atomization, especially with regard to liquid metals, has become an object of increased interest, mainly from industry, for additive manufacturing, but also from investigators, for research purposes. A strong correlation between the average particle size, distribution of particle sizes, and other process parameters like frequency and vibration amplitude was noted based on the analysis of available theoretical studies, simulations and experiments. The influence of parameters of the atomized fluid-like viscosity and surface tension on process parameters was also mentioned. The objective of this study is further research on the feasibility of using ultrasonic atomization to examine the properties of liquids, especially metals in liquid state. It attempts to close a gap in existing knowledge in searching for a new, possibly simple and cost-effective method to study the properties of liquid metals and further clarify the relationship between ultrasonic atomization parameters (amplitude, frequency, characteristics of metal being spilled on a vibrating surface) and obtained atomization results meant by average particle size and atomization time. Using numerical modeling (finite element method and computational fluid dynamics) as a methodology, combined with tests of using ultrasonic atomization as an instrument to determine properties of liquid metals, was considered as an introduction to a series of experiments. These tests were followed by real experiments that are also presented. At the first stage, numerical modeling was applied to a case of a specific liquid being spilled over a vibrating surface of different angles of inclination and specified, constant frequency and amplitude. The results of the simulation are in line with the current state of knowledge about ultrasonic atomization. Moreover, they can provide some more information on scalability, thus easing the comparison of the results of other experiments presented in the available literature. As a result, the relationship between fluid properties and the average size of atomized particles was demonstrated independently of the surface inclination angle. In the same way, the dependence of successful atomization on a sufficiently thin layer of a liquid was demonstrated. Thirdly, a correlation between the aforementioned layer thickness and the value of vibration amplitude has also been shown. Taking all the above into consideration, ultrasonic atomization can also be considered a research method and can be applied to study the properties of liquid metals. Further research, simulations and experimentation will be conducted to verify, develop and describe this method in full. Full article
Show Figures

Figure 1

30 pages, 3838 KiB  
Article
Evidence of Organ-Specific Metal Accumulation: ICP-MS Elemental Analysis of Autopsy Tissues of Tobacco Smokers
by Wojciech Flieger, Przemysław Niedzielski, Zofia Wojciechowska, Aleksandra Proch, Jędrzej Proch, Alicja Forma, Andrzej Torbicz, Dariusz Majerek, Grzegorz Teresiński, Jacek Baj, Ryszard Maciejewski and Jolanta Flieger
Int. J. Mol. Sci. 2025, 26(13), 6368; https://doi.org/10.3390/ijms26136368 - 2 Jul 2025
Viewed by 376
Abstract
Cigarette smoking exposes individuals to numerous toxic substances, including heavy metals. Smokers are at risk due to the accumulation of these substances in various tissues. Objective: To compare the concentrations of 41 elements in 11 brain regions, the spinal cord, the bronchial, the [...] Read more.
Cigarette smoking exposes individuals to numerous toxic substances, including heavy metals. Smokers are at risk due to the accumulation of these substances in various tissues. Objective: To compare the concentrations of 41 elements in 11 brain regions, the spinal cord, the bronchial, the lungs, and the liver in smokers (n = 11) and non-smokers (n = 17). Elemental composition was determined by ICP-MS after wet digestion in a microwave system. The following toxic elements were detected at levels of µg/g w.w.: Al, Cd, Pb, Ba, As, Ni, and Tl. Significantly higher concentrations of Al were detected in bronchial and lung, and more Pb, Tl, and rare earth elements were detected in the liver of smokers compared to non-smokers. In addition, smokers had significantly lower concentrations of essential elements involved in antioxidant defense, such as Cu, in liver tissue (p = 0.033). The brain and spinal cord in smokers and non-smokers were similar in terms of chemical composition, except the insula, where smokers had greater Al accumulation (p = 0.030), the precentral gyrus, where higher amounts of As, Cd, and Mn were detected, and the septal nucleus accumbens, which preferentially accumulated Cd in smokers; however, the p-values indicate that these differences were not statistically significant. Most brain areas of smokers were characterized by higher Na content (p < 0.05). These findings prove the long-term effects of smoking, demonstrating the bioaccumulation of toxic elements, the increased levels of rare earth elements in the liver, decreased levels of elements involved in the body’s antioxidant defense, and disruption of sodium homeostasis in the brain of smokers. Full article
Show Figures

Figure 1

19 pages, 3316 KiB  
Article
Ecological Risk and Human Health Assessment of Heavy Metals in Sediments of Datong Lake
by Gao Li, Rui Chen, Zhen Li, Xin Wu, Kui Xiang, Chiheng Wang and Yi Peng
Toxics 2025, 13(7), 560; https://doi.org/10.3390/toxics13070560 - 30 Jun 2025
Cited by 1 | Viewed by 380
Abstract
Heavy metal pollution of lake sediments is one of the prominent ecological and environmental problems worldwide, and it is of great significance to conduct research on heavy metal pollution in lake sediments to protect the ecological environment, safeguard human health, and promote sustainable [...] Read more.
Heavy metal pollution of lake sediments is one of the prominent ecological and environmental problems worldwide, and it is of great significance to conduct research on heavy metal pollution in lake sediments to protect the ecological environment, safeguard human health, and promote sustainable development. As an integral part of Dongting Lake, Datong Lake holds a crucial ecological position. More than 10 years ago, due to a series of factors, including excessive fertilizer application and fishing, the water quality of Datong Lake declined, resulting in varying degrees of contamination by Cd, Mn, and other heavy metals in the sediments. After 2017, Datong Lake began to establish a mechanism for protecting and managing the lake, and its ecological and environmental problems have been significantly improved. To clarify the current situation of heavy metal contamination in the sediments of Datong Lake, 15 sediment samples were collected from the lake, and the contents of soil heavy metals Cd, As, Pb, Cr, Cu, Mn, Ni, and Zn were determined. A Monte Carlo simulation was introduced to carry out the ecological and human health risk evaluation of the sediments in the study area to overcome the problem of low reliability of the results of ecological and human health risk evaluation due to the randomness and incompleteness of the environmental data as well as the differences in the human body parameters. The results and conclusions show that (1) the average values of Cd, Pb, Cr, Cu, Mn, Ni, and Zn contents in the sediments of Datong Lake are higher than the background values of soil elements in the sediments of Dongting Lake, and the average values of As contents of heavy metals are lower than the background values of the soil, and the heavy metal contamination in the sediments in the study area is dominated by slight contamination, and the possibility of point-source contamination is slight. (2) The results of both the Geo-accumulation index and Enrichment factor evaluation showed that the degree of heavy metal contamination of sediments was Ni > Cu > Cr > Mn > Cd > Pb > Zn > As. (3) The average value of the single ecological risk index of heavy metal elements, in descending order, was as follows: Cd > As > Pb > Cu > Ni > Cr > Zn > Mn; all the heavy metal elements were at the level of light pollution, and the average value of the comprehensive ecological risk index was 32.83, which is a slight ecological risk level. (4) Both non-carcinogenic and carcinogenic risks for all populations in the study area remain low following heavy metal exposure via ingestion and dermal pathways. Ecological and health risk assessments identified As and Cd as exhibiting significantly higher sensitivity than other heavy metals. Consequently, continuous monitoring and source-tracking of these elements are recommended to safeguard long-term ecological integrity and public health in the region. Full article
(This article belongs to the Section Metals and Radioactive Substances)
Show Figures

Graphical abstract

Back to TopTop