Functionalized Polymeric Nanoparticles for Yttrium Recovery by Chelating Effect
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization Techniques
2.2.1. Dynamic Light Scattering and Zeta Potential
2.2.2. Scanning Electron Microscopy (SEM)
2.2.3. Isothermal Titration Calorimetry (ITC)
2.3. Extraction Process and Stripping of Yttrium
3. Results and Discussion
3.1. [Y] Extraction Process
3.2. UV-Vis
3.3. Dynamic Light Scattering and Zeta Potential
3.4. and Extraction Selectivity
Extraction Selectivity [Y] vs. [Eu]
3.5. [Y] Stripping Process
3.6. Isothermal Titration Calorimetry (ITC)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AA | Acrylic acid |
CUR | Curcumin |
FA | Fumaramide |
REEs | Rare earth elements |
References
- Pramanik, B.K.; Nghiem, L.D.; Hai, F.I. Extraction of strategically important elements from brines: Constraints and opportunities. Water Res. 2020, 168, 115149. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.L.; Fan, H.R.; Liu, X.; Meng, J.; Butcher, A.R.; Yann, L.; Yang, K.F.; Li, X.C. Global rare earth elements projects: New developments and supply chains. Ore. Geol. Rev. 2023, 157, 105428. [Google Scholar] [CrossRef]
- Jowitt, S.M.; Werner, T.T.; Weng, Z.; Mudd, G.M. Recycling of the rare earth elements. Curr. Opin. Green Sustain. Chem. 2018, 13, 1–7. [Google Scholar] [CrossRef]
- Favot, M.; Massarutto, A. Rare-earth elements in the circular economy: The case of yttrium. J. Environ. Manag. 2019, 240, 504–510. [Google Scholar] [CrossRef] [PubMed]
- McLellan, B.C.; Corder, G.D.; Golev, A.; Ali, S.H. Sustainability of the Rare Earths Industry. Procedia Environ. Sci. 2014, 20, 280–287. [Google Scholar] [CrossRef]
- Dewulf, B.; Riaño, S.; Binnemans, K. Separation of heavy rare-earth elements by non-aqueous solvent extraction: Flowsheet development and mixer-settler tests. Sep. Purif. Technol. 2022, 290, 120882. [Google Scholar] [CrossRef]
- El Ouardi, Y.; Virolainen, S.; Mouele, E.S.M.; Laatikainen, M.; Repo, E.; Laatikainen, K. The recent progress of ion exchange for the separation of rare earths from secondary resources—A review. Hydrometallurgy 2023, 218, 106047. [Google Scholar] [CrossRef]
- Takaya, Y.; Yasukawa, K.; Kawasaki, T.; Fujinaga, K.; Ohta, J.; Usui, Y.; Nakamura, K.; Kimura, J.I.; Chang, Q.; Hamada, M.; et al. The tremendous potential of deep-sea mud as a source of rare-earth elements. Sci. Rep. 2018, 8, 5763. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, A.K.S.; Kumar, S.; Maity, S. A review on mineralogical speciation, global occurrence and distribution of rare earths and Yttrium (REY) in coal ash. J. Earth Syst. Sci. 2022, 131, 188. [Google Scholar] [CrossRef]
- Hidayah, N.N.; Abidin, S.Z. The evolution of mineral processing in extraction of rare earth elements using liquid-liquid extraction: A review. Miner. Eng. 2018, 121, 146–157. [Google Scholar] [CrossRef]
- Wu, G.; Zhang, Z.; Li, Y.; Liao, W. Extraction and separation of yttrium from other rare earths in chloride medium by phosphorylcarboxylic acids. J. Rare Earths 2022, 40, 958–964. [Google Scholar] [CrossRef]
- Lhamo, P.; Mahanty, B. Bioleaching of rare earth elements from industrial and electronic wastes: Mech-anism and process efficiency. In Environmental Technologies to Treat Rare Earth Element Pollution: Principles and Engineering 2022; IWA: Osaka, Japan, 2022. [Google Scholar] [CrossRef]
- Martínez-Montoya, P.A.; Sanchez-Alvarado, R.G.; Medina-Velazquez, D.Y.; Carrera-Jota, M.L.; Garnica-Chávez, P.; Morales-Ramírez, A.d.J. Solid-liquid extraction for yttrium recovery using porous polymeric resin (XAD-7) functionalized with D2EHPA. J. Rare Earths 2023, 42, 1764–1773. [Google Scholar] [CrossRef]
- Yan, Q.; Yang, Z.; Chen, Z. Recent advances in microbial nanomaterials/nanoparticles synthesis and rare earth elements recovery from rare earth mine wastewater: A review. Chem. Eng. J. 2025, 510, 161647. [Google Scholar] [CrossRef]
- Croft, C.F.; Nagul, E.A.; Almeida, M.I.G.S.; Kolev, S.D. Polymer-Based Extracting Materials in the Green Recycling of Rare Earth Elements: A Review. Am. Chem. Soc. 2024, 9, 40315–40328. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Gao, Y. Polymeric Materials for Rare Earth Elements Recovery. Gels 2023, 9, 775. [Google Scholar] [CrossRef] [PubMed]
- Murthy, V.; Ramakrishna, S. A Review on Global E-Waste Management: Urban Mining towards a Sustainable Future and Circular Economy. Sustainability 2022, 14, 647. [Google Scholar] [CrossRef]
- Yao, Y.; Farac, N.F.; Azimi, G. Recycling of Rare Earth Elements from Nickel Metal Hydride Battery Utilizing Supercritical Fluid Extraction. ECS Meet. Abstr. 2018, 85, 405. [Google Scholar] [CrossRef]
- Tunsu, C.; Petranikova, M.; Gergorić, M.; Ekberg, C.; Retegan, T. Reclaiming rare earth elements from end-of-life products: A review of the perspectives for urban mining using hydrometallurgical unit operations. Hydrometallurgy 2015, 156, 239–258. [Google Scholar] [CrossRef]
- Opare, E.O.; Mirkouei, A. Environmental and economic assessment of a portable e-waste recycling and rare earth elements recovery process. In Proceedings of the ASME Design Engineering Technical Conference, Virtual Online, 17–19 August 2021. [Google Scholar] [CrossRef]
- Martínez-Montoya, P.A.; del Río, J.M.; Morales-Ramirez, A.D.; Corea, M. Europium recovery process by means of polymeric nanoparticles functionalized with acrylic acid, curcumin and fumaramide. J. Rare Earths 2023, 42, 1950–1959. [Google Scholar] [CrossRef]
- Lovell, P.A.; Schork, F.J. Fundamentals of Emulsion Polymerization. Biomacromolecules 2020, 16, 4396–4441. [Google Scholar] [CrossRef] [PubMed]
- Neves, H.P.; Ferreira, G.M.D.; de Lemos, L.R.; Rodrigues, G.D.; Leão, V.A.; Mageste, A.B. Liquid-liquid extraction of rare earth elements using systems that are more environmentally friendly: Advances, challenges and perspectives. Sep. Purif. Technol. 2022, 282, 120064. [Google Scholar] [CrossRef]
- Li, J.; Xu, Z.; Wu, W.; Jing, Y.; Dai, H.; Fang, G. Nanocellulose/Poly(2-(dimethylamino)ethyl methacrylate)Interpenetrating polymer network hydrogels for removal of Pb(II) and Cu(II) ions. Colloids Surf. A Physicochem. Eng. Asp. 2018, 538, 474–480. [Google Scholar] [CrossRef]
- Xie, F.; Zhang, T.A.; Dreisinger, D.; Doyle, F. A critical review on solvent extraction of rare earths from aqueous solutions. Miner. Eng. 2014, 56, 10–28. [Google Scholar] [CrossRef]
- Hudson, M.J. An introduction to some aspects of solvent extraction chemistry in hydrometallurgy. Hydrometallurgy 1982, 9, 149–168. [Google Scholar] [CrossRef]
- Bayer, M.C.; Greither, N.; Bockmair, V.; Nitzer, A.; Kornath, A.J. Stabilizing the C−N Double Bond Character in Fumaramide with the Aid of Superacids. Eur. J. Inorg. Chem. 2022, 2022, e202200501. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, H.; Pei, Y.; Wang, J. Selective separation of scandium (III) from rare earth metals by carboxyl-functionalized ionic liquids. Sep. Purif. Technol. 2017, 178, 261–268. [Google Scholar] [CrossRef]
- Yaragalla, S.; Anilkumar, G.; Kalarikkal, N.; Thomas, S. Structural and optical properties of functionalized multi-walled carbon nanotubes. Mater. Sci. Semicond. Process. 2016, 41, 491–496. [Google Scholar] [CrossRef]
- Rizwan, M.; Gwenin, C. Nanomaterials in renewable energy: UV-Visible spectroscopy characterization and applications. In Nano Tools and Devices for Enhanced Renewable Energy; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Raval, N.; Maheshwari, R.; Kalyane, D.; Youngren-Ortiz, S.R.; Chougule, M.B.; Tekade, R.K. Importance of physicochemical characterization of nanoparticles in pharmaceutical product development. In Basic Fundamentals of Drug Delivery; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar] [CrossRef]
- Ruiz-Virgen, L.; Hernandez-Martinez, M.A.; Martínez-Mejía, G.; Caro-Briones, R.; Herbert-Pucheta, E.; del Río, J.M.; Corea, M. Analysis of Structural Changes of pH–Thermo-Responsive Nanoparticles in Polymeric Hydrogels. Gels 2024, 10, 541. [Google Scholar] [CrossRef] [PubMed]
- Ofridam, F.; Tarhini, M.; Lebaz, N.; Gagnière, É.; Mangin, D.; Elaissari, A. pH-sensitive polymers: Classification and some fine potential applications. Polym. Adv. Technol. 2021, 32, 1455–1484. [Google Scholar] [CrossRef]
- Bazban-Shotorbani, S.; Hasani-Sadrabadi, M.M.; Karkhaneh, A.; Serpooshan, V.; Jacob, K.I.; Moshaverinia, A.; Mahmoudi, M. Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications. J. Control. Release 2017, 253, 46–63. [Google Scholar] [CrossRef] [PubMed]
- Turanov, A.N.; Karandashev, V.K.; Baulin, D.V.; Baulin, V.E.; Tsivadze, A.Y. Solvent extraction of lanthanides(iii) with mixtures of 1,3,5-tris(2-diphenylphosphoryl-4-ethylphenoxymethyl)benzene and 4-benzoyl-5-methyl-2-phenyl-3-pyrazolone. Russ. Chem. Bull. 2021, 70, 2416–2421. [Google Scholar] [CrossRef]
- Tunsu, C.; Lapp, J.B.; Ekberg, C.; Retegan, T. Selective separation of yttrium and europium using Cyanex 572 for applications in fluorescent lamp waste processing. Hydrometallurgy 2016, 166, 98–106. [Google Scholar] [CrossRef]
- Banda, R.; Forte, F.; Onghena, B.; Binnemans, K. Yttrium and europium separation by solvent extraction with undiluted thiocyanate ionic liquids. RSC Adv. 2019, 9, 4876–4883. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhang, C.; Liu, Y.; Zhao, Y.; Xu, Y.; Ozaki, Y.; Wu, J. Coordination between yttrium ions and amide groups of polyamide 6 and the crystalline behavior of polyamide 6/yttrium composites. J. Mol. Struct. 2012, 1021, 63–69. [Google Scholar] [CrossRef]
- Bayer, E. Chelating Agents and Metal Chelates. Herausgeg, v.F.; Dwver, P.; Mellor, D.P. Academic Press, New York-London 1964. 1. Aufl., XV, 530 S., zahlr. Abb. u. Tab., geb. $ 17.–. Angew. Chem. 1965, 77, 1144. [Google Scholar] [CrossRef]
- Aweda, T.A.; Meares, C.F. Combination of isothermal titration calorimetry and time-resolved luminescence for high affinity antibody-ligand interaction thermodynamics and kinetics. Methods 2012, 56, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Chodera, J.D.; Mobley, D.L. Entropy-enthalpy compensation: Role and ramifications in biomolecular ligand recognition and design. Annu. Rev. Biophys. 2013, 42, 121–142. [Google Scholar] [CrossRef] [PubMed]
- Krainer, G.; Keller, S. Single-experiment displacement assay for quantifying high-affinity binding by isothermal titration calorimetry. Methods 2015, 76, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Cavalcanti, I.D.L.; Junior, F.H.X.; Magalhães, N.S.S.; Nogueira, M.C.D.B.L. Isothermal titration calorimetry (ITC) as a promising tool in pharmaceutical nanotechnology. Int. J. Pharm. 2023, 641, 123063. [Google Scholar] [CrossRef] [PubMed]
- Gourmand, C.; Bertagnolli, C.; Prelot, B.; Boos, A.; Hubscher-Bruder, V.; Brandel, J. Competitive adsorption mechanisms of Cd(ii), Cu(ii) and Pb(ii) on bioinspired mesoporous silica revealed by complementary adsorption/isothermal titration calorimetry studies. Dalton Trans. 2024, 53, 3690–3701. [Google Scholar] [CrossRef] [PubMed]
- Quinn, C.F.; Carpenter, M.C.; Croteau, M.L.; Wilcox, D.E. Isothermal Titration Calorimetry Measurements of Metal Ions Binding to Proteins. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 2016; Volume 567. [Google Scholar] [CrossRef]
- Xiao, C.Q.; Huang, Q.; Zhang, Y.; Zhang, H.Q.; Lai, L. Binding thermodynamics of divalent metal ions to several biological buffers. Thermochim. Acta 2020, 691, 178721. [Google Scholar] [CrossRef]
- Israelachvili, J.N. Intermolecular and Surface Forces, 3rd ed.; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar] [CrossRef]
- Martínez, M.A.; Aranda, D.; Ortí, E.; Aragó, J.; Sánchez, L. Thermodynamics of the self-assembly of N-annulated perylene bisimides in water. Disentangling the enthalpic and entropic contributions. Org. Chem. Front. 2023, 10, 1959–1967. [Google Scholar] [CrossRef]
- Velazquez-Campoy, A.; Freire, E. ITC in the post-genomic era…? Priceless. Biophys. Chem. 2005, 115, 115–124. [Google Scholar] [CrossRef] [PubMed]
Reagents and Purity | Source | Reagent Use | b Latex Preparation |
---|---|---|---|
Methyl methacrylate (MMA) | Especialidades Químicas, S.A. de C.V., MEXICO | Monomer | c First stage: a pre-emulsion containing MMA, initiator, surfactant, and crosslinking agent was added with a dosing pump at a flow rate of 0.3 g/min, at 75 °C, controlled by a thermal bath and nitrogen atmosphere. |
Nonylphenol ethoxylate ammonium sulfate | Abex® EP 120, Solvay from USA | Surfactant | |
Potassium persulfate | Sigma-Aldrich from USA | Initiator | |
Ethylene glycol dimethacrylate (EDGMA) | Crosslinking agent | ||
a Acrylic acid (AA) ≥ 99% | Functionalization | c Second stage: the functional group was added to ensure that it would remain on the surface of particle. | |
a Curcumin (CUR) ≥ 65% | |||
a Fumaramide (FA) ≥ 96% | ChemCruz from USA |
System Extraction | Functional Group Concentration (mol) | Yttrium Concentration (mol) |
---|---|---|
AA-[Y] | 0.5 | 0.015 |
CUR-[Y] | 0.46 | |
FA-[Y] | 0.56 |
System Extraction | |||||
---|---|---|---|---|---|
AA-[Y] | 42.2 | 0.32 | −25 | 2.68 | −27.7 |
CUR-[Y] | 253 | 0.97 | −20.5 | 8.92 | −29.5 |
FA-[Y] | 134 | 0.33 | −22.1 | 6.76 | −28.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Montoya, P.A.; Martínez-Gutiérrez, H.; Morales-Ramírez, Á.d.J.; Corea, M. Functionalized Polymeric Nanoparticles for Yttrium Recovery by Chelating Effect. Polymers 2025, 17, 2011. https://doi.org/10.3390/polym17152011
Martínez-Montoya PA, Martínez-Gutiérrez H, Morales-Ramírez ÁdJ, Corea M. Functionalized Polymeric Nanoparticles for Yttrium Recovery by Chelating Effect. Polymers. 2025; 17(15):2011. https://doi.org/10.3390/polym17152011
Chicago/Turabian StyleMartínez-Montoya, Pedro Adrián, Hugo Martínez-Gutiérrez, Ángel de Jesús Morales-Ramírez, and Mónica Corea. 2025. "Functionalized Polymeric Nanoparticles for Yttrium Recovery by Chelating Effect" Polymers 17, no. 15: 2011. https://doi.org/10.3390/polym17152011
APA StyleMartínez-Montoya, P. A., Martínez-Gutiérrez, H., Morales-Ramírez, Á. d. J., & Corea, M. (2025). Functionalized Polymeric Nanoparticles for Yttrium Recovery by Chelating Effect. Polymers, 17(15), 2011. https://doi.org/10.3390/polym17152011