Evidence of Organ-Specific Metal Accumulation: ICP-MS Elemental Analysis of Autopsy Tissues of Tobacco Smokers
Abstract
1. Introduction
2. Results
2.1. Evidence of Metal Accumulation in Bronchial Tissues of Smokers
2.2. Comparison of Elemental Content in Lung Tissue (Left and Right) Between Smokers and Non-Smokers
2.3. Comparison of the Content of Elements in Liver Tissue in the Group of Smokers and Non-Smokers
2.4. Comparison of Elemental Content in Different Parts of the Brain Between Smokers and Non-Smokers
2.5. Comparison of Elemental Content in Spinal Cord Between Smokers and Non-Smokers
3. Discussion
4. Materials and Methods
4.1. Studied Population and Sample Characterization
4.2. Sample Collection Procedure
4.3. Sample Preparation
4.4. Measurements Using ICP MS
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CNS | The central nervous system |
COPD | Chronic obstructive pulmonary disease |
CPFE | Combined pulmonary fibrosis and emphysema |
DL | Limit of detection |
FDA | The US Food and Drug Administration |
HPT | Heated tobacco products |
GYTS | Global Youth Tobacco Survey |
iCRC | Integrated collision–reaction cell |
SRIF | Smoking-related interstitial fibrosis |
NHANES | The National Health and Nutrition Examination Survey |
ICP-OES | Inductively coupled plasma optical emission spectroscopy |
MRI | Magnetic resonance imaging |
PCA | Principal component analysis |
SLF | Superior longitudinal fasciculus of brain |
ILF | Inferior longitudinal fasciculus of brain |
NAc | Nucleus accumbens septi |
SR-ILD | Smoking-related interstitial lung diseases |
IPF | Idiopathic pulmonary fibrosis |
ICP-MS | Inductively coupled plasma mass spectrometry |
WHO | World Health Organization |
w.w. | Wet weight |
References
- Family Smoking Prevention and Tobacco Control Act. 22 June 2009. Public Law 111-31. Available online: http://www.gpo.gov/fdsys/pkg/PLAW-111publ31/pdf/PLAW-111publ31.pdf (accessed on 2 December 2013).
- USA Department of Health and Human Services. How Tobacco Smoke Causes Disease: The Biology and Behavioral Basis for Smoking-Attributable Disease: A Report of the Surgeon General; USA Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health: Atlanta, GA, USA, 2010.
- Claire, S.S.; Fayokun, R.; Commar, A.; Schotte, K.; Prasad, V.M. The world health organization’s world no tobacco day 2020 campaign exposes tobacco and related industry tactics to manipulate children and young people and hook a new generation of users. J. Adolesc. Health 2020, 67, 334–337. [Google Scholar] [CrossRef] [PubMed]
- Vogelmeier, C.F.; Criner, G.J.; Martinez, F.J.; Anzueto, A.; Barnes, P.J.; Bourbeau, J.; Celli, B.R.; Chen, R.; Decramer, M.; Fabbri, L.M.; et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report. GOLD Executive Summary. Am. J. Respir. Crit. Care Med. 2017, 195, 557–582. [Google Scholar] [CrossRef] [PubMed]
- Adeloye, D.; Chua, S.; Lee, C.; Basquill, C.; Papana, A.; Theodoratou, E.; Nair, H.; Gasevic, D.; Sridhar, D.; Campbell, H.; et al. Global and regional estimates of COPD prevalence: Systematic review and meta-analysis. J. Glob. Health 2015, 5, 020415. [Google Scholar] [CrossRef]
- Hu, C.W.; Cooke, M.S.; Chang, Y.J.; Chao, M.R. Direct-acting DNA ethylating agents associated with tobacco use primarily originate from the tobacco itself, not combustion. J. Hazard. Mater. 2018, 358, 397–404. [Google Scholar] [CrossRef]
- National Health Fund on Health. Tobacco-Related Diseases (in Polish: NFZ o Zdrowiu. Choroby Odtytoniowe). Available online: https://ezdrowie.gov.pl/portal/home/badania-i-dane/zdrowe-dane/raporty/nfz-o-zdrowiu-choroby-odtytoniowe (accessed on 7 July 2021).
- Jiang, W.; Liu, X.; Lei, Q.; Xiao, M.; Li, M.; Ma, Y.; Hu, C.; Kong, X.; Qi, L.; Wu, H.; et al. Long-term exposure to third-hand smoke could accelerate biological aging via mitochondrial dysfunction: Evidence from population and animal studies. J. Hazard. Mater. 2024, 480, 136061. [Google Scholar] [CrossRef]
- Azeez, S.O.; Saheed, I.O.; Ashiyanbola, I.O. Assessment of Cr, Cd and Pb levels in tobacco leaves and selected cigarette samples from Ilorin Metropolis Kwara State, Nigeria. J. Appl. Sci. Environ. Manag. 2019, 22, 1937. [Google Scholar] [CrossRef]
- Hussain, A.; Ahmad, U.; Khan, Z.I.; Ahmad, K. Evaluation of heavy metals in various brands of tobacco cigarettes marketed in pakistan and their implications in public health. J. Health Rehabil. Res. 2024, 4, 1–8. [Google Scholar] [CrossRef]
- Global Youth Tobacco Survey, Poland 2022. Last Updated 23 January 2025. Available online: https://extranet.who.int/ncdsmicrodata/index.php/catalog/971 (accessed on 31 October 2024).
- Minardi, V.; Asta, F.; Timelli, L.; Spizzichino, L.; Gorini, G.; Contoli, B.; Masocco, M. Usage and accessibility of cigarettes, electronic cigarettes, and heated tobacco products among 13–15-year-old students in Italy: Temporal trend results from the Global Youth Tobacco Survey (GYTS), 2010–2022. Tob. Prev. Cessat. 2023, 9 (Suppl. S2), A38. [Google Scholar] [CrossRef]
- Saiphoklang, N.; Poachanukoon, O.; Soorapan, S. Smoking characteristics and lung functions among university athletes. Sci. Rep. 2020, 10, 20118. [Google Scholar] [CrossRef]
- Talhout, R.; Schulz, T.; Florek, E.; Benthem, J.V.; Wester, P.; Opperhuizen, A. Hazardous compounds in tobacco smoke. Int. J. Environ. Res. Public Health 2011, 8, 613–628. [Google Scholar] [CrossRef]
- Wang, S.Q.; Bao, L.J.; Li, T.Y.; Zeng, E.Y. Potential health risk of human exposure to tobacco-specific nitrosamines in second-hand and third-hand smoke. J. Hazard. Mater. 2024, 480, 136446. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.; Slezakova, K.; Magalhães, C.P.; Fernandes, A.; Teixeira, J.P.; Delerue-Matos, C.; Pereira, M.D.C.; Morais, S. Individual and cumulative impacts of fire emissions and tobacco consumption on wildland firefighters’ total exposure to polycyclic aromatic hydrocarbons. J. Hazard. Mater. 2017, 334, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Rodgman, A.; Perfetti, T.A. The Chemical Components of Tobacco and Tobacco Smoke; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- European Commission. Ambient Air Pollution by AS, CD and NI Compounds: Position Paper—Final Version; LUA NRW.: Essen, Germany, 2001. [Google Scholar]
- Lugon-Moulin, N.; Martin, F.; Krauss, M.R.; Ramey, P.B.; Rossi, L. Arsenic Concentration in Tobacco Leaves: A Study on Three Commercially Important Tobacco (Nicotiana tabacum L.) Types. Water Air Soil Pollut. 2008, 192, 315–319. [Google Scholar] [CrossRef]
- Pinto, E.; Cruz, M.; Ramos, P.; Santos, A.; Almeida, A. Metals transfer from tobacco to cigarette smoke: Evidences in smokers’ lung tissue. J. Hazard. Mater. 2017, 325, 31–35. [Google Scholar] [CrossRef]
- Bernhard, D.; Rossmann, A.; Wick, G. Metals in cigarette smoke. IUBMB Life 2005, 57, 805–809. [Google Scholar] [CrossRef]
- Iradukunda, A.; Zhang, D.; Proshad, R.; Mperejekumana, P. A review on cadmium contamination in soil and bioaccumulation by tobacco, its source, toxicity and health risk. Asian J. Plant Sci. Res. 2021, 11, 154–163. [Google Scholar]
- Pappas, R.S. Toxic elements in tobacco and in cigarette smoke: Inflammation and sensitization. Metallomics 2011, 3, 1181–1198. [Google Scholar] [CrossRef]
- Tarimo Felix, A.; Ntarisa, A.V. Review of toxic metals in tobacco cigarette brands and risk assessment. J. King Saud Univ. Sci. 2024, 36, 103484. [Google Scholar] [CrossRef]
- Fresquez, M.R.; Pappas, R.S.; Watson, C.H. Establishment of Toxic Metal Reference Range in Tobacco from U.S. Cigarettes. J. Anal. Toxicol. 2013, 37, 298–304. [Google Scholar] [CrossRef]
- Kazi, T.G.; Jalbani, N.; Arain, M.B.; Jamali, M.K.; Afridi, H.I.; Sarfraz, R.A.; Shah, A.Q. Toxic metals distribution in different components of Pakistani and imported cigarettes by electrothermal atomic absorption spectrometer. J. Hazard. Mater. 2009, 163, 302–307. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Tobacco Smoke and Involuntary Smoking. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; World Health Organization, International Agency for Research on Cancer: Lyon, France, 2004; Volume 83. [Google Scholar]
- Food and Drug Administration. Harmful and Potentially Harmful Constituents in Tobacco Products and Tobacco Smoke; FDA–2012–N–0143; Established List. FDA.: Rockville, MD, USA, 2012.
- Matassa, R.; Cattaruzza, M.S.; Sandorfi, F.; Battaglione, E.; Relucenti, M.; Familiari, G. Direct imaging evidences of metal inorganic contaminants traced into cigarettes. J. Hazard. Mater. 2021, 411, 125092. [Google Scholar] [CrossRef] [PubMed]
- Satarug, S.; Moore, M.R. Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke. Environ. Health Perspect. 2004, 112, 1099–1103. [Google Scholar] [CrossRef] [PubMed]
- Arain, M.B.; Kazi, T.G.; Jamali, M.K.; Jalbani, N.; Afridi, H.I.; Kandhro, G.A.; Ansari, R.; Sarfraz, R.A. Hazardous impact of toxic metals on tobacco leaves grown in contaminated soil by ultrasonic assisted pseudo-digestion: Multivariate study. J. Hazard. Mater. 2008, 155, 216–224. [Google Scholar] [CrossRef]
- Özcan, M.M.; Aljuhaimi, F.; Uslu, N.; Ghafoor, K.; Mohamed Ahmed, I.A.; Babiker, E.E. Distribution of heavy metal and macroelements of Indian and imported cigarette brands in Turkey. Environ. Sci. Pollut. Res. 2019, 26, 28210–28215. [Google Scholar] [CrossRef] [PubMed]
- Eneji, I.S.; Salawu, O.W.; Sha’ato, R. Analysis of heavy metals in selected cigarettes and tobacco leaves in Benue state. Niger. J. Sci. 2013, 3, 244–247. [Google Scholar]
- Viana, G.F.; Garcia, K.S.; Menezes-Filho, J.A. Assessment of carcinogenic heavy metals levels in Brazilian cigarettes. Environ. Monit. Assess 2001, 181, 255–265. [Google Scholar] [CrossRef]
- O’Connor, R.J.; Li, Q.; Stephens, W.E.; Hammond, D.; Elton-Marshall, T.; Cummings, K.M.; Giovino, G.A.; Fong, G.T. Cigarettes sold in China: Design, emissions and metals. Tob. Control 2010, 19, i47–i53. [Google Scholar] [CrossRef]
- Stephens, W.E.; Calder, A.; Newton, J. Source and health implications of high toxic metal concentrations in illicit tobacco products. Environ. Sci. Technol. 2005, 39, 479–488. [Google Scholar] [CrossRef]
- Pappas, R.S.; Polzin, G.M.; Watson, C.H.; Ashley, D.L. Cadmium, lead, and thallium in smoke particulate from counterfeit cigarettes compared to authentic US brands. Food Chem. Toxicol. 2007, 45, 202–209. [Google Scholar] [CrossRef]
- Ziarati, P.; Mousavi, Z.; Pashapour, S. Analysis of heavy metals in cigarette tobacco. J. Med. Discov. 2016, 2, jmd16006. [Google Scholar] [CrossRef]
- Su, X.; Narayanan, M.; Shi, X.; Chen, X.; Li, Z.; Ma, Y. Mitigating heavy metal accumulation in tobacco: Strategies, mechanisms, and global initiatives. Sci. Total Environ. 2024, 926, 172128. [Google Scholar] [CrossRef]
- Gou, Z.; Liu, C.; Qi, M.; Zhao, W.; Sun, Y.; Qu, Y.; Ma, J. Machine learning-based prediction of cadmium bioaccumulation capacity and associated analysis of driving factors in tobacco grown in Zunyi City, China. J. Hazard. Mater. 2024, 463, 132910. [Google Scholar] [CrossRef] [PubMed]
- Wertz, M.S.; Kyriss, T.; Paranjape, S.; Glantz, S.A. The toxic effects of cigarette additives. Philip Morris’ project mix reconsidered: An analysis of documents released through litigation. PLoS Med. 2011, 8, e1001145. [Google Scholar] [CrossRef] [PubMed]
- Tellez-Plaza, M.; Navas-Acien, A.; Caldwell, K.L.; Menke, A.; Muntner, P.; Guallar, E. Reduction in cadmium exposure in the United States population, 1988–2008: The contribution of declining smoking rates. Environ. Health Perspect. 2012, 120, 204–209. [Google Scholar] [CrossRef]
- Dorne, J.L.; Kass, G.E.; Bordajandi, L.R.; Amzal, B.; Bertelsen, U.; Castoldi, A.F.; Heppner, C.; Eskola, M.; Fabiansson, S.; Ferrari, P.; et al. Human risk assessment of heavy metals: Principles and applications. Met. Ions Life Sci. 2011, 8, 27–60. [Google Scholar] [PubMed]
- Ntarisa, A.V. Heavy metals concentration and human health risk assessment in tobacco cigarette products from Tanzania. Chin. J. Anal. Chem. 2024, 52, 100428. [Google Scholar] [CrossRef]
- Marano, K.M.; Naufal, Z.S.; Kathman, S.J.; Bodnar, J.A.; Borgerding, M.F.; Garner, C.D.; Wilson, C.L. Cadmium exposure and tobacco consumption: Biomarkers and risk assessment. Regul. Toxicol. Pharmacol. 2012, 64, 243–252. [Google Scholar] [CrossRef]
- Serdar, M.A.; Akin, B.S.; Razi, C.; Akin, O.; Tokgoz, S.; Kenar, L.; Aykut, O. The correlation between smoking status of family members and concentrations of toxic trace elements in the hair of children. Biol. Trace Elem. Res. 2012, 148, 11–17. [Google Scholar] [CrossRef]
- Gidlow, D.A. Lead toxicity. Occup. Med. 2004, 54, 76–81. [Google Scholar] [CrossRef]
- Stojanović, D.; Nikić, D.; Lazarević, K. The level of nickel in smoker’s blood and urine. Cent. Eur. J. Public Health 2004, 12, 187–189. [Google Scholar]
- Richter, P.A.; Bishop, E.E.; Wang, J.; Swahn, M.H. Tobacco smoke exposure and levels of urinary metals in the U.S. youth and adult population: The National Health and Nutrition Examination Survey (NHANES) 1999–2004. Int. J. Environ. Res. Public Health 2009, 6, 1930–1946. [Google Scholar] [CrossRef] [PubMed]
- Gatzke-Kopp, L.M.; Riis, J.L.; Ahmadi, H.; Piccerillo, H.L.; Granger, D.A.; Blair, C.B.; Thomas, E.A. Environmental tobacco smoke exposure is associated with increased levels of metals in children’s saliva. J. Expo. Sci. Environ. Epidemiol. 2023, 33, 903–910. [Google Scholar] [CrossRef]
- Friberg, L. Health hazards in the manufacture of alkaline accumulators with special reference to chronic cadmium poisoning; a clinical and experimental study. Acta Medica Scand. Suppl. 1950, 240, 1–124. [Google Scholar]
- Friberg, L. Injuries following continued administration of cadmium. preliminary report of a clinical and experimental study. Arch. Indust. Hyg. Occup. Med. 1950, 1, 458–466. [Google Scholar]
- Agency for Toxic Substances & Disease Registry (ATSDR). Toxicological Profile for Cadmium; USA Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2012.
- World Health Organization (WHO). Exposure to Cadmium: A Major Public Health Concern; WHO: Geneva, Switzerland, 2010. [Google Scholar]
- Ganguly, K.; Levänen, B.; Palmberg, L.; Åkesson, A.; Lindén, A. Cadmium in tobacco smokers: A neglected link to lung disease? Eur. Respir. Rev. 2018, 27, 170122. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.R.; DeGheselle, O.; Smeets, K.; Van Kerkhove, E.; Cuypers, A. Cadmium-induced pathologies: Where is the oxidative balance lost (or not)? Int. J. Mol. Sci. 2013, 14, 6116–6143. [Google Scholar] [CrossRef]
- Barregard, L.; Fabricius-Lagging, E.; Lundh, T.; Mölne, J.; Wallin, M.; Olausson, M.; Modigh, C.; Sallsten, G. Cadmium, mercury, and lead in kidney cortex of living kidney donors: Impact of different exposure sources. Environ. Res. 2010, 110, 47–54. [Google Scholar] [CrossRef]
- Mannino, D.M.; Holguin, F.; Greves, H.M.; Savage-Brown, A.; Stock, A.L.; Jones, R.L. Urinary cadmium levels predict lower lung function in current and former smokers: Data from the Third National Health and Nutrition Examination Survey. Thorax 2004, 59, 194–198. [Google Scholar] [CrossRef]
- Rokadia, H.K.; Agarwal, S. Serum heavy metals and obstructive lung disease: Results from the National Health and Nutrition Examination Survey. Chest 2013, 143, 388–397. [Google Scholar] [CrossRef]
- Hassan, F.; Xu, X.; Nuovo, G.; Killilea, D.W.; Tyrrell, J.; Da Tan, C.; Tarran, R.; Diaz, P.; Jee, J.; Knoell, D.; et al. Accumulation of metals in GOLD4 COPD lungs is associated with decreased CFTR levels. Respir. Res. 2014, 15, 69. [Google Scholar] [CrossRef]
- Lindén, A.; Sundblad, B.-M.; Ji, J.; Levänen, B.; Midander, K.; Julander, A.; Larsson, K.; Palmberg, L. Extracellular cadmium in the bronchoalveolar space of long-term tobacco smokers with and without COPD and its association with inflammation. Int. J. Chron. Obstruct. Pulmon. Dis. 2016, 11, 1005–1013. [Google Scholar] [CrossRef]
- Exley, C. The toxicity of aluminium in humans. Morphologie 2016, 100, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Verma, P.; Sharma, A.K.; Shankar, H.; Sharma, A.; Rao, D.N. Role of Trace Elements, Oxidative Stress and Immune System: A Triad in Premature Ovarian Failure. Biol. Trace Elem. Res. 2018, 184, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P. Selenium and human health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef]
- Hawkes, W.C.; Turek, P.J. Effects of dietary selenium on sperm motility in healthy men. J. Androl. 2001, 22, 764–772. [Google Scholar] [CrossRef] [PubMed]
- Scheiber, I.F.; Dringen, R. Astrocyte functions in the copper homeostasis of the brain. Neurochem. Int. 2013, 62, 556–565. [Google Scholar] [CrossRef]
- Scheiber, I.F.; Mercer, J.F.; Dringen, R. Metabolism and functions of copper in brain. Prog. Neurobiol. 2014, 116, 33–57. [Google Scholar] [CrossRef]
- Uriu-Adams, J.Y.; Keen, C.L. Copper, oxidative stress, and human health. Mol. Aspects Med. 2005, 26, 268–298. [Google Scholar] [CrossRef]
- Fang, X.; Wang, K.; Han, D.; He, X.; Wei, J.; Zhao, L.; Imam, M.U.; Ping, Z.; Li, Y.; Xu, Y.; et al. Dietary magnesium intake and the risk of cardiovascular disease, type 2 diabetes, and all-cause mortality: A dose-response meta-analysis of prospective cohort studies. BMC Med. 2016, 14, 210–223. [Google Scholar] [CrossRef]
- Jurowski, K.; Szewczyk, B.; Nowak, G.; Piekoszewski, W. Biological consequences of zinc deficiency in the pathomechanisms of selected diseases. J. Biol. Inorg. Chem. 2014, 19, 1069–1079. [Google Scholar] [CrossRef]
- Mocchegiani, E.; Giacconi, R.; Muzzioli, M.; Cipriano, C. Zinc, infections and immunosenescence. Mech. Ageing Dev. 2000, 121, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P. Selenium intake, status, and health: A complex relationship. Hormones 2020, 19, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Arora, M.; Mahat, R.K.; Kumar, S.; Mustafa, I.; Sah, S.P. Study of Trace Elements in Patients of Hypothyroidism with Special Reference to Zinc and Copper. Biomed. J. Sci. Tech. Res. 2018, 6, 11–16. [Google Scholar]
- Zhang, X.; Xia, J.; Del Gobbo, L.C.; Hruby, A.; Dai, Q.; Song, Y. Serum magnesium concentrations and all-cause, cardiovascular, and cancer mortality among U.S. adults: Results from the NHANES I Epidemiologic Follow-up Study. Clin. Nutr. 2018, 37, 1541–1549. [Google Scholar] [CrossRef]
- Kim, D.J.; Xun, P.; Liu, K.; Loria, C.; Yokota, K.; Jacobs, D.R.; He, K. Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes. Diabetes Care 2010, 33, 2604–2610. [Google Scholar] [CrossRef] [PubMed]
- Ikehara, T.; Yamaguchi, H.; Sakai, T.; Miyamoto, H. Kinetic parameters and mechanism of active cation transport in HeLa cells as studied by Rb+ influx. Biochim. Biophys. Acta 1984, 775, 297–307. [Google Scholar] [CrossRef]
- Nielsen, F.H. Nonessential Trace Minerals: Basic Nutritional and Toxicological Aspects. Mol. Genet. Nutr. Asp. Major Trace Miner. 2017, 1, 527–537. [Google Scholar]
- Kordjazy, N.; Haj-Mirzaian, A.; Amiri, S.; Ostadhadi, S.; Kordjazy, M.; Sharifzadeh, M.; Dehpour, A.R. Elevated level of nitric oxide mediates the anti-depressant effect of rubidium chloride in mice. Eur. J. Pharmacol. 2015, 762, 411–418. [Google Scholar] [CrossRef]
- Krachler, M.; Wirnsberger, G.H. Long-term changes of plasma trace element concentrations in chronic hemodialysis patients. Blood Purif. 2000, 18, 138–143. [Google Scholar] [CrossRef]
- Remick, K.A.; Helmann, J.D. The elements of life: A biocentric tour of the periodic table. Adv. Microb. Physiol. 2023, 82, 1–127. [Google Scholar] [CrossRef]
- Morrow, J.R.; Tóth, É. Next-generation magnetic resonance imaging contrast agents. Inorg. Chem. 2017, 56, 6029–6034. [Google Scholar] [CrossRef] [PubMed]
- Boros, E.; Gale, E.M.; Caravan, P. MR imaging probes: Design and applications. Dalton Trans. 2015, 44, 4804–4818. [Google Scholar] [CrossRef] [PubMed]
- El-Fakahany, E.; Richelson, E. Effects of lanthanides on muscarinic acetylcholine receptor function. Mol. Pharmacol. 1981, 19, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Chantler, P.D. Lanthanides do not function as calcium analogues in scallop myosin. J. Biol. Chem. 1983, 258, 4702–4705. [Google Scholar] [CrossRef]
- Wang, K.; Cheng, Y.; Yang, X.; Li, R. Cell responses to lanthanides and potential pharmacological actions of lanthanides. Met. Ions Biol. Syst. 2003, 40, 707–751. [Google Scholar]
- Assi, M.A.; Hezmee, M.N.M.; Abd Wahid Haron, M.Y.M.; Sabri, M.A.R. The detrimental effects of lead on human and animal health. Vet. World 2016, 9, 660–671. [Google Scholar] [CrossRef]
- Ilesanmi, O.B.; Adeogun, E.F.; Odewale, T.T.; Chikere, B. Lead exposure-induced changes in hematology and biomarkers of hepatic injury: Protective role of TrévoTM supplement. Environ. Anal. Health Toxicol. 2022, 37, e2022007. [Google Scholar] [CrossRef]
- Mudipalli, A. Lead hepatotoxicity & potential health effects. Indian J. Med. Res. 2007, 126, 518. [Google Scholar]
- Flora, S.J.; Flora, G.; Saxena, G. Environmental occurrence, health effects and management of lead poisoning in Lead Chemistry, Analytical Aspects. In Environmental Impacts and Health Effects; Cascas, S.B., Sordo, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 158–228. [Google Scholar]
- Chen, B.; Sun, L.; Zeng, G.; Shen, Z.; Wang, K.; Yin, L.; Xu, F.; Wang, P.; Ding, Y.; Nie, Q.; et al. Gut bacteria alleviate smoking-related NASH by degrading gut nicotine. Nature 2022, 610, 562–568. [Google Scholar] [CrossRef]
- Marti-Aguado, D.; Clemente-Sanchez, A.; Bataller, R. Cigarette smoking and liver diseases. J. Hepatol. 2022, 77, 191–205. [Google Scholar] [CrossRef]
- Kulikowska-Karpińska, E.; Zdanowicz, M.; Gałażyn-Sidorczuk, M. Estimation of copper in the urine of cigarette smokers. Wiad. Lek. 2017, 70, 697–702. [Google Scholar] [PubMed]
- Lapenna, D.; Mezzetti, A.; de Gioia, S.; Pierdomenico, S.D.; Daniele, F.; Cuccurullo, F. Plasma copper and lipid peroxidation in cigarette smokers. Free Radic. Biol. Med. 1995, 19, 849–852. [Google Scholar] [CrossRef] [PubMed]
- Jasińska-Starczewska, M.; Szydłowska, I.; Mroczek, B.; Laszczyńska, M.; Chlubek, D.; Kemicer-Chmielewska, E.; Chełstowski, K.; Karakiewicz, B.; Ciećwież, S.; Starczewski, A. The Influence of Cigarette Smoke Exposure on the Copper Concentration in the Serum Depending on the Use of Menopausal Hormone Therapy. Biomed. Res. Int. 2017, 2017, 5732380. [Google Scholar] [CrossRef]
- Son, Y.B.; Kim, T.B.; Min, H.J.; Yang, J.; Kim, M.G.; Jo, S.K.; Cho, W.Y.; Oh, S.W. Smoking amplifies the risk of albuminuria in individuals with high sodium intake: The Korea National Health and Nutrition Examination Survey (KNHANES) 2008–2011 and 2014–2018. Kidney Res. Clin. Pract. 2023, 44, 452–460. [Google Scholar] [CrossRef]
- Jomova, K.; Makova, M.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Rhodes, C.J.; Valko, M. Essential metals in health and disease. Chem. Biol. Interact. 2022, 367, 110173. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Barzi, F.; Lam, T.H.; Huxley, R.; Feigin, V.L.; Ueshima, H.; Woo, J.; Gu, D.; Ohkubo, T.; Lawes, C.M.; et al. Asia Pacific Cohort Studies Collaboration. Cigarette smoking, systolic blood pressure, and cardiovascular diseases in the Asia-Pacific region. Stroke 2008, 39, 1694–1702. [Google Scholar] [CrossRef]
- Stern, L.Z.; Bernick, C. The Motor System and Gait. In Clinical Methods: The History, Physical, and Laboratory Examinations, 3rd ed.; Walker, H.K., Hall, W.D., Hurst, J.W., Eds.; Butterworths: Boston, MA, USA, 1990. [Google Scholar]
- Wang, S.; Lyu, Y.; Ji, S.; Liu, N.; Wu, B.; Zhao, F.; Li, Z.; Qu, Y.; Zhu, Y.; Xie, L.; et al. Heavy metals and metalloids exposure and liver function in Chinese adults—A nationally representative cross-sectional study. Environ. Res. 2024, 252, 118653. [Google Scholar] [CrossRef]
- Balbi, B.; Cottin, V.; Singh, S.; De Wever, W.; Herth, F.J.; Robalo Cordeiro, C. Smoking-related lung diseases: A clinical perspective. Eur. Respir. J. 2010, 35, 231–233. [Google Scholar] [CrossRef]
- Wick, M.R. Pathologic features of smoking-related lung diseases, with emphasis on smoking-related interstitial fibrosis and a consideration of differential diagnoses. Semin. Diagn. Pathol. 2018, 35, 315–323. [Google Scholar] [CrossRef]
- Akbartabartoori, M.; Lean, M.E.; Hankey, C.R. Relationships between cigarette smoking, body size and body shape. Int. J. Obes. 2005, 29, 236–243. [Google Scholar] [CrossRef]
- Hammad, M.M.; Darwazeh, A.M.; Al-Waeli, H.; Tarakji, B.; Alhadithy, T.T. Prevalence and awareness of halitosis in a sample of Jordanian population. J. Int. Soc. Prev. Community Dent. 2014, 4, S178–S186. [Google Scholar] [CrossRef] [PubMed]
- Palma Carrió, C.; Maestre Ferrín, L.; Peñarrocha Oltra, D.; Peñarrocha Diago, M.; Peñarrocha Diago, M. Risk factors associated with early failure of dental implants. A literature review. Med. Oral. Patol. Oral. Cir. Bucal. 2011, 16, e514–e517. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, R.R. Introduction to Robust Estimation and Hypothesis Testing; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Fay, M.P.; Proschan, M.A. Wilcoxon-Mann-Whitney or t-Test? On Assumptions for Hypothesis Tests and Multiple Interpretations of Decision Rules. Stat. Surv. 2010, 4, 1–39. [Google Scholar] [CrossRef]
- Neuhäuser, M. Wilcoxon–Mann–Whitney Test. In International Encyclopedia of Statistical Science; Lovric, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1656–1658. ISBN 978-3-642-04898-2. [Google Scholar]
- Nachar, N. The Mann-Whitney U: A test for assessing whether two independent samples come from the same distribution. Tutor. Quant. Methods Psychol. 2008, 4, 13–20. [Google Scholar] [CrossRef]
- Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 1979, 6, 65–70. [Google Scholar]
- Tukey, J.W. Exploratory Data Analysis; Addison-Wesley: Boston, MA, USA, 1977. [Google Scholar]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Ringnér, M. What is principal component analysis? Nat. Biotechnol. 2008, 26, 303–304. [Google Scholar] [CrossRef]
- Lever, J.; Krzywinski, M.; Altman, N. Principal component analysis. Nat. Methods 2017, 14, 641–642. [Google Scholar] [CrossRef]
Element | Min (1) | Max (1) | Min (2) | Max (2) | Median (1) | Median (2) | Statistic | p |
---|---|---|---|---|---|---|---|---|
Al | <DL | <DL | <DL | 3.0488 | <DL | <DL | 48.000 | 0.004 ** |
As | <DL | 0.0159 | <DL | 0.0183 | <DL | <DL | 94.500 | 0.701 |
Ba | <DL | 0.1443 | <DL | 0.087 | <DL | <DL | 71.000 | 0.188 |
Ca | 28.6072 | 2237.151 | 139.8396 | 4498.682 | 400 | 330 | 78.000 | 0.645 |
Cd | <DL | 0.1855 | 0.0103 | 0.2513 | 0.037 | 0.043 | 87.000 | 0.980 |
Ce | <DL | 0.0098 | <DL | 0.0096 | <DL | 0.003 | 65.500 | 0.261 |
Co | <DL | 0.032 | <DL | 0.011 | 0.002 | 0.004 | 67.000 | 0.308 |
Cr | <DL | 0.331 | <DL | 0.04 | 0.016 | 0.009 | 101.500 | 0.502 |
Cs | <DL | 0.007 | <DL | 0.0061 | <DL | <DL | 100.000 | 0.533 |
Cu | <DL | 5.7606 | <DL | 1.0924 | 0.54 | 0.19 | 127.000 | 0.057 |
Dy | <DL | 0.0005 | <DL | <DL | <DL | <DL | 93.500 | 0.451 |
Fe | 12.1397 | 76.2908 | 4.6835 | 60.2807 | 27 | 22 | 92.000 | 0.865 |
Gd | <DL | 0.0403 | <DL | 0.0024 | <DL | <DL | 91.000 | 0.821 |
K | 781.3791 | 2806.727 | 764.645 | 2006.422 | 1300 | 1200 | 103.000 | 0.481 |
La | <DL | 0.0045 | <DL | 0.0433 | <DL | <DL | 85.000 | 0.786 |
Mg | 65.9929 | 236.6223 | 81.2823 | 271.2504 | 110 | 110 | 88.000 | 1.000 |
Mn | <DL | 0.9565 | 0.122 | 0.8899 | 0.27 | 0.22 | 94.000 | 0.786 |
Na | 1256.017 | 3442.592 | 1743.74 | 3130.921 | 2100 | 2000 | 82.000 | 0.790 |
Nd | <DL | 0.0021 | <DL | 0.0014 | <DL | <DL | 97.500 | 0.472 |
Ni | <DL | 0.5856 | <DL | 0.2636 | 0.006 | 0.002 | 95.000 | 0.740 |
P | 552.3 | 4377.063 | 575.9288 | 4336.314 | 880 | 810 | 80.000 | 0.716 |
Pb | <DL | 0.4585 | <DL | 0.2984 | 0.041 | 0.027 | 83.000 | 0.824 |
Pr | <DL | 0.0026 | <DL | 0.0006 | <DL | <DL | 86.000 | 0.871 |
Rb | 0.8229 | 2.8272 | 0.4701 | 2.7236 | 1.6 | 1.3 | 122.000 | 0.099 |
Se | 0.1024 | 0.2518 | 0.079 | 0.215 | 0.15 | 0.13 | 120.000 | 0.121 |
Sr | 0.0724 | 3.1352 | 0.3364 | 7.6229 | 0.58 | 0.68 | 82.000 | 0.790 |
Tb | <DL | 0.0022 | <DL | 0.003 | <DL | 0.001 | 62.000 | 0.146 |
Tl | <DL | 0.0014 | <DL | 0.001 | <DL | <DL | 107.500 | 0.245 |
Tm | <DL | 0.0156 | <DL | <DL | <DL | <DL | 99.000 | 0.254 |
V | <DL | 0.0857 | <DL | 0.0588 | 0.008 | <DL | 98.000 | 0.619 |
Zn | 3.4497 | 14.7706 | 4.1378 | 13.8104 | 6.9 | 8.1 | 77.000 | 0.610 |
Left Lung; 1—Non-Smokers; 2—Smokers n1 = 17, n2 = 11 | Right Lung, 1—Non-Smokers; 2—Smokers n1 = 16, n2 = 11 | |||||||
---|---|---|---|---|---|---|---|---|
Element | Median 1 Min–Max | Median 2 Min–Max | Statistic | p | Median 1 Min–Max | Median 2 Min–Max | Statistic | p |
Al | 3.9 0–66.2991 | 13 1.0861–81.6244 | 45 | 0.022 * | 2.9 0.9809–16.3328 | 10 0–34.1825 | 43 | 0.026 * |
As | ND | ND | - | - | <DL 0–0.0093 | <DL 0–0.0095 | 85 | 0.786 |
Ba | <DL 0–0.0572 | <DL 0–0.189 | 73 | 0.122 | ND | ND | - | - |
Be | <DL 0–0 | <DL 0–0.0022 | 85 | 0.242 | ND | ND | - | - |
Ca | 61 0–152.1785 | 130 0–2121.157 | 53.5 | 0.063 | 66 0–146.2553 | 64 17.0846–493.4554 | 80 | 0.711 |
Cd | 0.11 0.0056–0.4501 | 0.046 0.0099–0.1428 | 113 | 0.378 | 0.072 0–0.6907 | 0.036 0–0.1428 | 116.5 | 0.167 |
Ce | 0.010 0–0.0656 | 0.016 0–0.1181 | 67.5 | 0.23 | 0.011 0.0019–0.0535 | 0.010 0–0.051 | 85 | 0.904 |
Co | 0.004 0–0.0146 | 0.005 0–0.0164 | 78 | 0.48 | 0.004 0–0.0109 | 0.004 0–0.0092 | 90.5 | 0.921 |
Cr | 0.045 0–0.2734 | 0.11 0–0.6297 | 54 | 0.066 | 0.050 0.0208–0.2383 | 0.056 0.0089–0.3173 | 83.5 | 0.844 |
Cs | <DL 0–0.0092 | 0.003 0–0.0165 | 60 | 0.106 | 0.001 0–0.0079 | 0.004 0–0.0103 | 72 | 0.423 |
Cu | 0.26 0–1.3773 | 0.44 0–4.0041 | 63 | 0.157 | 0.28 0–2.4577 | 0.46 0–4.2812 | 71 | 0.413 |
Dy | <DL 0–0.0016 | 0.0003 0–0.0023 | 57 | 0.041 * | <DL 0–0.0005 | <DL 0–0.0011 | 54.5 | 0.035 * |
Er | <DL 0–0.0118 | 0.001 0–0.0148 | 42 | 0.003 * | <DL 0–0.0011 | <DL 0–0.0035 | 64.5 | 0.119 |
Eu | <DL 0–0.001 | <DL 0–0.0004 | 91 | 0.833 | <DL 0–0.0012 | <DL 0–0.0012 | 85.5 | 0.828 |
Fe | 160 30.1028–282.943 | 150 60.6105–250.6031 | 91 | 0.926 | 180 69.3616–297.2741 | 180 15.9543–323.7149 | 92 | 0.865 |
Gd | <DL 0–0.0148 | <DL 0–0.0029 | 96 | 0.861 | <DL 0–0.0023 | <DL 0–0.0022 | 86 | 0.871 |
K | 1500 753.474–2301.703 | 1700 878.5678–2001.746 | 96 | 0.926 | 1600 690.7442–2264.628 | <DL 580.8769–1961.902 | 82 | 0.79 |
La | <DL 0–0.4883 | <DL 0–0.0553 | 77 | 0.322 | <DL 0–0.0895 | <DL 0–0.0171 | 89.5 | 0.942 |
Mg | 69 40.771–86.6753 | 73 32.7442–126.2084 | 75 | 0.404 | 62 41.498–90.4246 | 65 40.82–82.992 | 71 | 0.422 |
Mn | 0.18 0.0688–1.609 | 0.31 0–0.4757 | 51 | 0.047 * | 0.15 0–0.4211 | 0.22 0.087–0.7414 | 50 | 0.064 |
Na | 1300 821.2906–1822.073 | 1500 1063.692–2093.654 | 50 | 0.042 * | 1300 923.6779–2391.144 | 1400 631.091–1823.976 | 82 | 0.79 |
Nd | <DL 0–0.017 | 0.005 0–0.0351 | 45.5 | 0.018 * | 0.001 0–0.0118 | 0.002 0–0.0201 | 71 | 0.394 |
Ni | 0.006 0–0.1896 | 0.020 0–0.0492 | 85 | 0.698 | 0.003 0–0.4607 | 0.004 0–0.0679 | 83.5 | 0.836 |
P | 1000 620.7558–1645.799 | 1100 616.3822–2694.085 | 81 | 0.578 | 1000 574.577–1337.523 | 940 583.7071–1451.195 | 86 | 0.942 |
Pb | 0.013 0–0.1275 | 0.041 0–0.1473 | 57 | 0.089 | 0.009 0–0.522 | 0.014 0–0.0853 | 62 | 0.2 |
Pr | <DL 0–0.0021 | 0.001 0–0.0112 | 40.5 | 0.004 * | <DL 0–0.0172 | 0.0005 0–0.001 | 67 | 0.256 |
Rb | 2.0 0.8012–2.7632 | 1.7 0.6281–2.6911 | 123 | 0.175 | 1.8 0.7179–2.4813 | 1.5 0.418–2.3999 | 104 | 0.451 |
Sb | <DL 0–0.0107 | <DL 0–0.0301 | 81 | 0.293 | <DL 0–0.0231 | <DL 0–0.0335 | 85 | 0.786 |
Se | 0.18 0.0989–0.5166 | 0.16 0.0849–0.2538 | 107 | 0.547 | 0.16 0.1169–0.2986 | 0.14 0.0842–0.2203 | 116 | 0.178 |
Sm | <DL 0–0 | <DL 0–0.0049 | 59.5 | 0.01 * | ND | ND | - | - |
Sr | 0.22 0.1029–1.1926 | 0.58 0.1686–1.2492 | 40 | 0.011 * | 0.23 0.0556–1.2585 | 0.24 0.0262–1.5324 | 79 | 0.68 |
Tb | <DL 0–0.0012 | <DL 0–0.0008 | 94 | 1 | <DL 0–0.0041 | <DL 0–0.0014 | 88 | 1 |
Tl | <DL 0–0.0013 | 0.0003 0–0.0019 | 66.5 | 0.146 | <DL 0–0.0025 | 0.0004 0–0.0022 | 68.5 | 0.312 |
Tm | <DL 0–0 | <DL 0–0.0027 | 85 | 0.242 | ND | ND | - | - |
V | 0.030 0–0.085 | 0.023 0–0.1738 | 85 | 0.705 | 0.025 0–0.1068 | 0.020 0–0.0578 | 100 | 0.567 |
Zn | 8.0 5.4195–16.3532 | 9.0 3.7135–12.9737 | 70 | 0.285 | 7.9 4.9786–11.2627 | 7.2 5.6125–13.3734 | 92 | 0.865 |
Element | Min 1 | Max 1 | Min 2 | Max 2 | Median1 | Median 2 | Statistic | p |
---|---|---|---|---|---|---|---|---|
Al | <DL | 9.6075 | <DL | 0.7099 | <DL | <DL | 84 | 0.629 |
As | <DL | 0.0115 | <DL | 0.0109 | <DL | <DL | 72 | 0.754 |
Ca | <DL | 87.5888 | <DL | 63.3913 | 41 | 39 | 78 | 0.957 |
Cd | 0.0552 | 1.5265 | 0.1009 | 0.8344 | 0.23 | 0.21 | 79 | 0.916 |
Ce | 0.0013 | 0.1003 | <DL | 0.0346 | 0.010 | 0.005 | 103.5 | 0.153 |
Co | <DL | 0.032 | 0.0077 | 0.0188 | 0.008 | 0.012 | 48.5 | 0.138 |
Cr | <DL | 0.0745 | <DL | 0.0729 | 0.018 | 0.017 | 93 | 0.388 |
Cs | <DL | 0.0199 | 0.0042 | 0.0204 | 0.008 | 0.007 | 75 | 0.957 |
Cu | <DL | 15.873 | <DL | 4.9786 | 4.1 | 2.0 | 116.5 | 0.033 * |
Fe | 39.952 | 727.4559 | 69.35 | 370.176 | 130 | 160 | 65 | 0.56 |
Gd | <DL | 0.2612 | <DL | 0.0146 | <DL | <DL | 73 | 0.726 |
K | 1483.552 | 3544.808 | 1362.333 | 2807.976 | 2400 | 2200 | 106 | 0.12 |
La | <DL | 0.0141 | <DL | 0.058 | <DL | <DL | 72 | 0.754 |
Mg | 101.1198 | 217.3327 | 109.5691 | 163.2676 | 150 | 130 | 101 | 0.2 |
Mn | 1.118 | 6.5598 | 2.4224 | 5.1005 | 3.1 | 3.6 | 64 | 0.525 |
Na | 758.9443 | 2813.448 | 1049.011 | 1839.927 | 1100 | 1300 | 53 | 0.22 |
Nd | <DL | 0.0081 | <DL | 0.0028 | <DL | <DL | 94 | 0.28 |
Ni | <DL | 0.5249 | <DL | 0.365 | 0.001 | 0.008 | 74 | 0.91 |
P | 1887.783 | 3967.537 | 1933.888 | 2731.597 | 2300 | 2400 | 82 | 0.792 |
Pb | <DL | 0.2863 | 0.0685 | 0.7855 | 0.054 | 0.11 | 35 | 0.025 * |
Pr | <DL | 0.0027 | <DL | 0.0011 | <DL | <DL | 85 | 0.581 |
Rb | 1.2687 | 6.9822 | 1.453 | 4.513 | 3.7 | 2.9 | 108 | 0.095 |
Se | 0.2318 | 2.0931 | 0.2941 | 0.643 | 0.44 | 0.39 | 93 | 0.396 |
Sm | <DL | 0.0012 | <DL | <DL | <DL | <DL | 81 | 0.518 |
Sr | <DL | 0.7505 | <DL | 0.2441 | 0.13 | 0.065 | 90.5 | 0.466 |
Tb | <DL | 0.0041 | <DL | 0.0024 | <DL | <DL | 70 | 0.679 |
Tl | <DL | 0.0009 | <DL | 0.0012 | <DL | <DL | 47.5 | 0.025 * |
Tm | <DL | 0.0083 | <DL | <DL | <DL | <DL | 85.5 | 0.322 |
V | <DL | 0.0355 | <DL | 0.0332 | <DL | 0.011 | 64 | 0.482 |
Zn | 13.1965 | 178.2931 | 21.0617 | 77.3686 | 40 | 30 | 107 | 0.107 |
Group | Controls (n = 17) | Cases (n = 11) | p |
---|---|---|---|
Mean age ± SD 2 | 54.50 ± 17.99 | 56.01 ± 14.04 | 0.8172 |
Gender (n%) | female: 8 (47.06%) | female: 2 (18.18%) | 0.2264 |
male: 9 (52.94%) | male: 9 (81.81%) | ||
Mean weight [kg] | 69.13 ± 20.18 | 76.82 ± 14.44 | 0.2592 |
BMI 1 [kg m−2] (mean ± SD 2) | 23.69 ± 6.03 | 24.84 ± 3.75 | 0.5464 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flieger, W.; Niedzielski, P.; Wojciechowska, Z.; Proch, A.; Proch, J.; Forma, A.; Torbicz, A.; Majerek, D.; Teresiński, G.; Baj, J.; et al. Evidence of Organ-Specific Metal Accumulation: ICP-MS Elemental Analysis of Autopsy Tissues of Tobacco Smokers. Int. J. Mol. Sci. 2025, 26, 6368. https://doi.org/10.3390/ijms26136368
Flieger W, Niedzielski P, Wojciechowska Z, Proch A, Proch J, Forma A, Torbicz A, Majerek D, Teresiński G, Baj J, et al. Evidence of Organ-Specific Metal Accumulation: ICP-MS Elemental Analysis of Autopsy Tissues of Tobacco Smokers. International Journal of Molecular Sciences. 2025; 26(13):6368. https://doi.org/10.3390/ijms26136368
Chicago/Turabian StyleFlieger, Wojciech, Przemysław Niedzielski, Zofia Wojciechowska, Aleksandra Proch, Jędrzej Proch, Alicja Forma, Andrzej Torbicz, Dariusz Majerek, Grzegorz Teresiński, Jacek Baj, and et al. 2025. "Evidence of Organ-Specific Metal Accumulation: ICP-MS Elemental Analysis of Autopsy Tissues of Tobacco Smokers" International Journal of Molecular Sciences 26, no. 13: 6368. https://doi.org/10.3390/ijms26136368
APA StyleFlieger, W., Niedzielski, P., Wojciechowska, Z., Proch, A., Proch, J., Forma, A., Torbicz, A., Majerek, D., Teresiński, G., Baj, J., Maciejewski, R., & Flieger, J. (2025). Evidence of Organ-Specific Metal Accumulation: ICP-MS Elemental Analysis of Autopsy Tissues of Tobacco Smokers. International Journal of Molecular Sciences, 26(13), 6368. https://doi.org/10.3390/ijms26136368