Separation of Rare Earth Elements by Ion Exchange Resin: pH Effect and the Use of Fractionation Column
Abstract
1. Introduction
2. Materials and Methods
2.1. Acid Mine Drainage (AMD)
2.2. Eluent Solution
2.3. Ion Exchange Resin
2.4. Loading Experiments
2.5. Elution Experiments
2.6. Chemical Analyses
2.7. Thermodynamic Analysis: REE-Impurity-EDTA-H2O System
3. Results
3.1. Loading of REE and Impurities
3.2. Effect of pH on REE Fractionation in a Single-Column System
3.3. Effect of the Fractionation Column on REE Elution
3.4. Elution Profiles of Impurities for Single-Column and Two-Column Systems
3.5. Influence of the pH That Enters the Fractionation Column
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Feng, J.; Wu, X.; Gao, Z.; Sun, W.; Zhou, F.; Chi, R. Leaching Behavior of Rare Earth Elements and Aluminum from Weathered Crust Elution-Deposited Rare Earth Ore with Ammonium Formate Inhibitor. Minerals 2023, 13, 1245. [Google Scholar] [CrossRef]
- Dagwar, P.P.; Iqbal, S.S.; Dutta, D. Sustainable recovery of rare Earth elements from industrial waste: A path to circular economy and environmental health. Waste Manag. Bull. 2025, 3, 373–390. [Google Scholar] [CrossRef]
- Otron, A.M.A.A.; Tran, L.H.; Blais, J.F. Mass balance and economic study of a treatment chain for nickel, cobalt and rare earth elements recovery from Ni-MH batteries. Environ. Technol. 2024, 46, 1369–1383. [Google Scholar] [CrossRef]
- Chowdhury, M.O.S.; Talan, D. From Waste to Wealth: A Circular Economy Approach to the Sustainable Recovery of Rare Earth Elements and Battery Metals from Mine Tailings. Separations 2025, 12, 52. [Google Scholar] [CrossRef]
- Tuncay, G.; Yuksekdag, A.; Kose Mutlu, B.; Koyuncu, I. A review of greener approaches for rare earth elements recovery from mineral wastes. Environ. Pollut. 2024, 357, 124379. [Google Scholar] [CrossRef]
- Hoffman, D.; Ziemkiewicz, P.; Siefert, E. Recovery of Rare Earth Elements from Acid Mine Drainage Feedstocks. Apresentação, West Virginia University. 2025. Available online: https://wvwri.wvu.edu/files/d/94918daf-1eb3-4f49-88e4-2f9044e112d7/hoffman-ree-presentation-2025.pdf (accessed on 17 June 2025).
- Binnemans, K.; Jones, P.T.; Blanpain, B.; Van Gerven, T.; Pontikes, Y. Towards zero-waste valorisation of rare-earth-containing industrial process residues: A critical review. J. Clean. Prod. 2015, 99, 17–38. [Google Scholar] [CrossRef]
- Sharifian, S.; Wang, L.N.H. Resin-based approaches for selective extraction and purification of rare earth elements: A comprehensive review. J. Environ. Chem. Eng. 2024, 12, 112402. [Google Scholar] [CrossRef]
- Hermassi, M.; Granados, M.; Valderrama, C.; Ayora, C.; Cortina, J.L. Recovery of rare earth elements from acidic mine waters: An unknown secondary resource. Sci. Tot. Environ. 2022, 810, 152258. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Honaker, R.Q. Rare Earth Elements Recovery Using Staged Precipitation from a Leachate Generated from Coarse Coal Refuse. Int. J. Coal Geol. 2018, 195, 189–199. [Google Scholar] [CrossRef]
- Page, M.J.; Soldenhoff, K.; Ogden, M.D. Comparative study of the application of chelating resins for rare earth recovery. Hydrometallurgy 2017, 169, 275–281. [Google Scholar] [CrossRef]
- El Ouardi, Y.; Virolainen, S.; Mouele, E.S.M.; Laatikainen, M.; Repo, E.; Laatikainen, K. The recent progress of ion exchange for the separation of rare earths from secondary resources—A review. Hydrometallurgy 2023, 218, 106047. [Google Scholar] [CrossRef]
- Bazhko, O.; van Deventer, J. Application of ion exchange technology for the upgrading and purification of the rare earth elements. In Proceedings of the Southern African Rare Earths 2nd International Conference 2024, Swakopmund, Namibia, 19–20 June 2024; The Southern African Institute of Mining and Metallurgy: Johannesburg, South Africa, 2015; Volume 99, pp. 17–38. [Google Scholar]
- Shokobayev, N.; Bouffier, C.; Dauletbakov, T.S. Rare earth metals sorption recovery from uranium in situ leaching process solutions. Rare Met. 2015, 34, 161–166. [Google Scholar] [CrossRef]
- Hermassi, M.; Granados, M.; Valderrama, C.; Skoglund, N.; Ayora, C.; Cortina, J.L. Impact of functional group types in ion exchange resins on rare earth element recovery from treated acid mine waters. J. Clean. Prod. 2022, 379, 134742. [Google Scholar] [CrossRef]
- Moore, B.W.; Froisland, L.J.; Petersen, A.E. Rapid Separation of Heavy Rare-Earth Elements; Report of Investigations, 9564; Bureau of Mines: Washington, DC, USA, 1995. [Google Scholar]
- José, L.B.; Silva, G.C.; Ladeira, A.C.Q. Pre-concentration and partial fractionation of rare earth elements by ion exchange. Miner. Eng. 2024, 205, 108477. [Google Scholar] [CrossRef]
- Fernández, R.G.; Alonso, J.I.G. Separation of rare earth elements by anion-exchange chromatography using ethylenediaminetetraacetic acid as mobile phase. J. Chromatogr. A 2008, 1180, 59–65. [Google Scholar] [CrossRef]
- Ding, Y.; David, H.; Wang, N.-H.L. Two-zone ligand-assisted displacement chromatography for producing high-purity praseodymium, neodymium, and dysprosium with high yield and high productivity from crude mixtures derived from waste magnets. Green Chem. 2020, 22, 3769–3783. [Google Scholar] [CrossRef]
- Tsao, C.-Y.; Ding, Y.; Wang, N.-H.L. Three-zone ligand-assisted displacement (LAD) chromatography method for producing high-purity neodymium, praseodymium, cerium, and lanthanum from mineral concentrates. Sep. Purif. Technol. 2025, 376, 133947. [Google Scholar] [CrossRef]
- Mosadeghsedghi, S.; Sauber, M.E.; Baghbanzadeh, M.; Dashtban Kenari, S.L.; Volchek, K.; Issa, S.; Mortazavi, S. Separation of rare earth elements using chelation-assisted electrodialysis. J. Environ. Chem. Eng. 2023, 11, 111313. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, Y.; Hao, H.; Guan, Z.; Wang, M.; Feng, Z.; Huang, X.; Yang, G.; Wang, C. One-stop decomplexation of Cu-EDTA and Cu capture in rare earth purification wastewater using NdFeB waste/H2O2 system: Performance, mechanism, and application. Chem. Eng. J. 2025, 517, 163856. [Google Scholar] [CrossRef]
- Almadani, M. Adsorption process modeling to reduce COD by activated carbon for wastewater treatment. Chemosphere 2023, 339, 139691. [Google Scholar] [CrossRef]
- LANXESS Lewatit MDS 200 H [Internet]. Cologne: LANXESS Corporation; [cited 12 April 2025]. Available online: https://lanxess.com/en-us/products-and-brands/products/l/lewatit--mds-200-h (accessed on 8 June 2025).
- Gustafsson, J.P. Visual MINTEQ 4.0 User Guide; Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology: Stockholm, Sweden, 2024. [Google Scholar]
- CHEMPENDIX. Thermodynamic Data. Available online: https://sites.google.com/site/chempendix/thermo (accessed on 5 June 2025).
- Torres, J.; Kremer, C.; Kremer, E.; Domíguez, S.; Mederos Arrieta, M.A. The thermodynamics of the formation of Sm(III) mixed-ligand complexes carrying α-amino acids. Inorg. Chim. Acta. 2003, 355, 175–182. [Google Scholar] [CrossRef]
- Aikens, D.A.; Bahbah, F.J. Potentiometric characterization of aluminum aminopolycarboxylate chelonates. Anal. Chem. 1967, 39, 646–649. [Google Scholar] [CrossRef]
- Pinto, I.S.S.; Ascenso, O.S.; Barros, M.T.; Soares, H.M.V.M. Pre-treatment of the paper pulp in the biodegradable chelating agents. Int. J. Environ. Sci. Technol. 2015, 12, 975–982. [Google Scholar] [CrossRef]
- O’Brien, R.D.; Summers, T.J.; Kaliakin, D.S.; Cantu, D.C. Correction: The solution structures and relative stability constant of lanthanide-EDTA complexes predicted from computation. Phys. Chem. Chem. Phys. 2022, 24, 10263–10271. [Google Scholar] [CrossRef]
- Brücher, E.; Laurenczy, G. Aminopolycarboxylic of Rare Earths. 9. Kinetic Study of Exchange Reactions between Cerium (III)-Ethylenediaminetetraacetate Complex and Lead (II), Nickel (II) and Cobal(II) Ions. Inorg. Chem. 1983, 22, 338–342. [Google Scholar] [CrossRef]
- Kostromina, N.A.; Kholodnaya, G.S.; Kirillov, A.I. Investigation of praseodymium (3) complexing with ethylenediaminetetraacetate and diethylenetriaminepentaacetate. Koord. Khim. 1980, 6, 532–536. [Google Scholar]
- Kolat, R.S.; Powell, J.E. The solid Rare Earth Chelates of Ethylenediaminetetraacetic Acid. Inorg. Chem. 1961, 1, 485–490. [Google Scholar] [CrossRef]
- Crea, F.; De Stefano, C.; Gianguzza, A.; Piazzese, D.; Sammartano, S. Speciation of Poly-Amino Carboxylic Compounds in Seawater. Chem. Speciat. Bioavailab. 2003, 15, 75–86. [Google Scholar] [CrossRef]
- Smith, R.M.; Martell, A.E. NIST Critically Selected Stability Constants of Metal Complexes Database 46; Version 8.0; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2004. Available online: https://www.nist.gov/system/files/documents/srd/46_8.pdf (accessed on 24 July 2025).
- José, L.B.; Ladeira, A.C.Q. Recovery and separation of rare earth elements from an acid mine drainage-like solution using a strong acid resin. J. Water Process Eng. 2021, 41, 102052. [Google Scholar] [CrossRef]
- Silva, G.C.; Bertoli, A.C.; Duarte, H.A.; Ladeira, A.C.Q. Recovery of rare earth elements from sulfate-rich acid mine water: Looking through the keyhole, the exchange reaction for cationic resin. J. Environ. Chem. Eng. 2022, 10, 108715. [Google Scholar] [CrossRef]
- Silva, G.C.; Souza, C.; Ferreira, P.A.P.V.S.; Nazareth, L.P.T.; Ladeira, A.C.Q. Effect of Fractionation Columns on the Elution of Rare Earth Elements Recovered from Acid Mine Drainage. Minerals 2024, 14, 451. [Google Scholar] [CrossRef]
- Moore, B.W. Selective Separation of Rare Earth Elements by Ion Exchange in an Iminodiacetic Resin. U.S. Patent No 6093376, 25 July 2000. [Google Scholar]
- Jen, J.-F.; Chen, C.-S. Determination of metal ions as EDTA complexes by reversed-phase ion-pair liquid chromatography. Anal. Chim. Acta 1992, 270, 55–61. [Google Scholar] [CrossRef]
- Zhang, Y.; Hamza, M.F.; Vincent, T.; Roux, J.-C.; Faur, C.; Guibal, E. Tuning the sorption properties of amidoxime-functionalized algal/polyethyleneimine beads for La(III) and Dy(III) using EDTA: Impact of metal speciation on selective separation. Chem. Eng. J. 2022, 431, 133214. [Google Scholar] [CrossRef]
- Xu, T.; Zheng, X.; Ji, B.; Xu, Z.; Bao, S.; Zhang, X.; Li, G.; Mei, J.; Li, Z. Green recovery of rare earth elements under sustainability and low carbon: A review of current challenges and opportunities. Sep. Purif. Technol. 2024, 330, 125501. [Google Scholar] [CrossRef]
- Lee, Y.H. Aluminium Speciation in Different Water Types. In Lake Gårdsjön: An Acid Forest Lake and Its Catchment; Ecological Bulletins: Copenhagen, Denmark, 1985; Volume 37, pp. 109–119. Available online: https://www.jstor.org/stable/20112940 (accessed on 7 June 2025).
- Hem, J.D. Graphical Methods for Studies of Aqueous Aluminum Hydroxide, Fluoride, and Sulfate Complexes; U.S. Geological Survey Water-Supply Paper 1827-B; United States Government Printing Office: Washington, DC, USA, 1968. [Google Scholar]
- Yu, Y.; Wang, M.; Zhang, Q.; Feng, Z.; Xu, Y.; Yang, G.; Yang, Z. Application of Temperature Regulation of Complex Stability Constants in Removal of Key Impurities from Lanthanum Oxide. J. Rare Earths, 2025, in press. [CrossRef]
- Pinto, I.S.S.; Sadeghi, S.M.; Soares, H.M.V.M. Separation and recovery of nickel, as a salt, from an EDTA leachate of spent hydrodesulphurization catalyst using precipitation methods. Chem. Eng. Sci. 2015, 122, 130–137. [Google Scholar] [CrossRef]
AMD | ||
---|---|---|
Elements | (mg·L−1) | (mmol·L−1) |
La | 40.3 | 0.29 |
Ce | 23.8 | 0.17 |
Pr | 4.2 | 0.030 |
Nd | 10.5 | 0.073 |
Sm | 1.5 | 0.0010 |
Gd | 1.2 | 0.0076 |
Dy | 0.7 | 0.0043 |
Y | 4.5 | 0.051 |
REETotal | 86.6 | 0.64 |
Ca | 272.1 | 6.8 |
Al | 123.8 | 4.6 |
Mg | 9.7 | 0.40 |
Mn | 47.8 | 0.87 |
ImpuritiesTotal | 453.5 | 12.7 |
SO4 | 1412 | 14.7 |
pH solution | 3.5 |
Species | log k | Reference |
---|---|---|
LaEDTA− | 15.4 | [26] |
CeEDTA− | 15.9 | [26] |
PrEDTA− | 16.3 | [26] |
NdEDTA− | 16.5 | [26] |
SmEDTA− | 17.1 | [27] |
GdEDTA− | 17.4 | [26] |
DyEDTA− | 18.3 | [26] |
YEDTA− | 18.1 | [26] |
CaEDTA2− | 10.7 | [26] |
MgEDTA2− | 8.8 | [26] |
AlEDTA− | 16.4 | [26] |
AlOHEDTA2− | 8.0 | [28] |
MnEDTA2− | 13.9 | [29] |
LaHEDTA | 7.8 | [30] |
CeHEDTA | 7.3 | [31] |
PrHEDTA | 7.9 | [32] |
NdHEDTA | 8.7 | [33] |
SmHEDTA | 8.4 | [27] |
GdHEDTA | 9.8 | [33] |
DyHEDTA | 10.8 | [33] |
– | – | – |
CaHEDTA− | 5.0 | [34] |
MgHEDTA− | 4.0 | [35] |
AlHEDTA | 9.21 | [28] |
– | – | – |
MnHEDTA− | 3.1 | [29] |
Loading Column LC (Bed Volume 8 mL) | Loading Column LC (Bed Volume 15.5 mL) | |||||
---|---|---|---|---|---|---|
Elements | Loading Q (mmol∙g−1) | Adsorption (%) | Loading Q (%) | Loading Q (mmol∙g−1) | Adsorption (%) | Loading Q (%) |
La | 0.23 | 100.0 | 12.4 | 0.25 | 100.0 | 13.6 |
Ce | 0.14 | 100.0 | 7.3 | 0.13 | 100.0 | 7.2 |
Pr | 0.023 | 96.0 | 1.2 | 0.02 | 87.4 | 1.1 |
Nd | 0.052 | 95.1 | 2.8 | 0.043 | 90.1 | 2.3 |
Sm | 0.0064 | 80.4 | 0.3 | 0.0080 | 98.0 | 0.4 |
Gd | 0.0055 | 94.4 | 0.3 | 0.0060 | 97.1 | 0.3 |
Dy | 0.0030 | 88.5 | 0.2 | 0.0030 | 97.5 | 0.2 |
Y | 0.030 | 77.3 | 1.6 | 0.036 | 89.1 | 2.0 |
REETotal | 0.49 | 100.0 | 26.1 | 0.50 | 99.0 | 27.1 |
Ca | 0.74 | 34.7 | 39.7 | 0.68 | 36.8 | 37.0 |
Al | 0.54 | 42.2 | 28.9 | 0.56 | 30.6 | 30.5 |
Mg | 0.059 | 529 | 3.2 | 0.050 | 41.0 | 2.7 |
Mn | 0.041 | 14.6 | 2.2 | 0.050 | 17.1 | 2.7 |
ImpuritiesTotal | 1.39 | 37.5 | 73.9 | 1.33 | 32.9 | 72.9 |
NH4EDTA 0.01 mol·L−1 LC = 8 mL | ||||||||||||||||
pH 6.0 | pH 8.5 | |||||||||||||||
REE | La | Ce | Pr | Nd | Sm | Gd | Dy | Y | La | Ce | Pr | Nd | Sm | Gd | Dy | Y |
Conc. Peak (mmol·L−1) | 0.7 | 3.4 | 0.7 | 2.5 | 0.5 | 0.4 | 0.2 | 2.6 | 11.6 | 11.3 | 1.6 | 4.7 | 0.5 | 0.3 | 0.4 | 3.8 |
Peak (BV) | 60 | 52 | 34 | 22 | 14 | 14 | 6 | 8 | 27 | 21 | 15 | 13 | 10 | 8 | 8 | 6 |
Total Elution (%) | 3.4 | 78 | 100 | 97 | 97 | 100 | 98 | 100 | 86.5 | 96 | 100 | 100 | 100 | 99 | 100 | 100 |
NH4EDTA 0.02 mol·L−1 LC = 15.5 mL | ||||||||||||||||
pH 6.0 | pH 8.5 | |||||||||||||||
REE | La | Ce | Pr | Nd | Sm | Gd | Dy | Y | La | Ce | Pr | Nd | Sm | Gd | Dy | Y |
Conc. Peak (mmol·L−1) | 7.2 | 5.7 | 1.1 | 3.3 | 0.5 | 0.4 | 0.2 | 3.6 | 10.1 | 8.1 | 1.7 | 5 | 0.7 | 0.5 | 0.5 | 6.6 |
Peak (BV) | 41 | 25 | 17 | 11 | 9 | 7 | 3 | 7 | 24 | 11 | 7 | 6 | 4 | 3 | 2 | 2 |
Total Elution (%) | 80 | 82 | 96 | 100 | 93 | 96 | 99 | 100 | 85 | 84 | 95 | 100 | 93 | 94 | 100 | 100 |
Single-Column System LC = 15.5 mL | Two-Column System LC = 15.5 mL and FC = 15.5 mL | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
REE | La | Ce | Pr | Nd | Sm | Gd | Dy | Y | La | Ce | Pr | Nd | Sm | Gd | Dy | Y |
Conc. Peak (mmol∙L−1) | 7.2 | 5.7 | 1.1 | 3.3 | 0.5 | 0.4 | 0.2 | 3.6 | 10.1 | 4.5 | 1.2 | 3.3 | 0.5 | 0.3 | 0.3 | 3.2 |
BV Peak | 41 | 25 | 17 | 11 | 9 | 7 | 3 | 7 | 34 | 28 | 22 | 18 | 12 | 12 | 6 | 10 |
Total Elution (%) | 80 | 82 | 95 | 100 | 93 | 96 | 99 | 100 | 78.5 | 93.5 | 100 | 100 | 100 | 100 | 93.6 | 100 |
Experimental Condition | pH | Elution Ca (%) | Elution Al (%) | Elution Mg (%) | Elution Mn (%) |
---|---|---|---|---|---|
Single-Column System LC = 8 mL NH4EDTA 0.01 mol·L−1 | 6.0 | 25.0 | 31.2 | 12.5 | 85.2 |
8.5 | 20.0 | 32.6 | 14 | 44.8 | |
Single-Column System LC = 15.5 mL NH4EDTA 0.01 mol·L−1 | 6 | 25.2 | 65 | 13.3 | 100 |
8.5 | 63.7 | 57 | 8.5 | 100 | |
NH4EDTA 0.02 mol·L−1 Two-Column System LC and FC = 15.5 mL | 6.0 | 2.2 | 33 | 3.2 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza, C.; Ferreira, P.A.P.V.S.; Ladeira, A.C.Q. Separation of Rare Earth Elements by Ion Exchange Resin: pH Effect and the Use of Fractionation Column. Minerals 2025, 15, 821. https://doi.org/10.3390/min15080821
Souza C, Ferreira PAPVS, Ladeira ACQ. Separation of Rare Earth Elements by Ion Exchange Resin: pH Effect and the Use of Fractionation Column. Minerals. 2025; 15(8):821. https://doi.org/10.3390/min15080821
Chicago/Turabian StyleSouza, Clauson, Pedro A. P. V. S. Ferreira, and Ana Claudia Q. Ladeira. 2025. "Separation of Rare Earth Elements by Ion Exchange Resin: pH Effect and the Use of Fractionation Column" Minerals 15, no. 8: 821. https://doi.org/10.3390/min15080821
APA StyleSouza, C., Ferreira, P. A. P. V. S., & Ladeira, A. C. Q. (2025). Separation of Rare Earth Elements by Ion Exchange Resin: pH Effect and the Use of Fractionation Column. Minerals, 15(8), 821. https://doi.org/10.3390/min15080821