Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,261)

Search Parameters:
Keywords = metal-sulfur

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1249 KB  
Article
Optimization of Efficient Tungsten Extraction Process from Wolframite by Na2CO3 Alkaline Melting
by Yang Zheng, Liwen Zhang, Hailong Bai and Xiaoli Xi
Minerals 2026, 16(2), 126; https://doi.org/10.3390/min16020126 (registering DOI) - 24 Jan 2026
Abstract
Tungsten is a critical metal for advanced industrial applications, yet its supply is challenged by the depletion of high-grade ores. This study presents a comprehensive optimization and mechanistic analysis of the alkaline fusion process for extracting tungsten from wolframite ((Fe,Mn)WO4) using [...] Read more.
Tungsten is a critical metal for advanced industrial applications, yet its supply is challenged by the depletion of high-grade ores. This study presents a comprehensive optimization and mechanistic analysis of the alkaline fusion process for extracting tungsten from wolframite ((Fe,Mn)WO4) using sodium carbonate (Na2CO3). Experimental investigations systematically evaluated the effects of alkali-to-ore ratio, reaction temperature (650–1000 °C), and reaction duration (30–270 min). Optimal conditions were established at a 2:1 Na2CO3-to-ore molar ratio, a reaction temperature of 750 °C, and a holding time of 30 min, achieving a tungsten extraction efficiency exceeding 99.9%. This represents a significant improvement in energy and process efficiency over conventional methods. A novel kinetic analysis reveals a two-stage reaction mechanism, transitioning from a slow, diffusion-controlled solid-state reaction (Ea = 243 kJ/mol) to a rapid, autocatalytic liquid-phase reaction (Ea = 212 kJ/mol) upon the formation of a Na2WO4–Na2CO3 eutectic above approximately 590 °C. The optimal temperature of 750 °C is rationalized as the point that ensures operation within this kinetically favorable liquid-phase regime. Furthermore, a thermochemical analysis of ore impurities indicates that silicon, lead, sulfur, and calcium are effectively sequestered into the slag phase as stable silicates, insoluble lead compounds, and sulfates, highlighting an intrinsic purification benefit. X-ray fluorescence (XRF) and X-ray diffraction (XRD) analyses confirmed minimal residual tungsten in the processed slag. This streamlined process, supported by a robust mechanistic understanding, reduces alkaline consumption, shortens reaction times, and maintains high yields, offering a sustainable and efficient pathway for leveraging declining wolframite resources. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

15 pages, 5618 KB  
Article
Proximity-Assisted Synthesis of Large Area MoS2 on Different Target Substrates by Chemical Vapor Deposition Using a Mo Nanofilm Substrate
by Muhammad Tariq, William Poston, Norah Aldosari, Gregory Jensen, Maryam Bizhani and Eric Stinaff
Nanomaterials 2026, 16(3), 159; https://doi.org/10.3390/nano16030159 (registering DOI) - 24 Jan 2026
Abstract
Despite efforts to produce scalable, substrate-independent, low-defect-density, and high-quality MoS2, this continues to be a critical challenge for industrial-scale applications. This work aims to present a chemical vapor deposition (CVD) method for growing high-quality and potentially large-area mono- to few-layer MoS [...] Read more.
Despite efforts to produce scalable, substrate-independent, low-defect-density, and high-quality MoS2, this continues to be a critical challenge for industrial-scale applications. This work aims to present a chemical vapor deposition (CVD) method for growing high-quality and potentially large-area mono- to few-layer MoS2 films via proximity between the Mo nanofilm substrate and the target substrates. By using stoichiometry-guided knowledge of Mo-S and Mo-O-S phase diagrams, Mo nanofilms are oxidized and then sulfurized under optimized conditions to grow high-quality, millimeter-scale mono- to few-layer MoS2 films in proximity to the target substrate. We have achieved millimeter-scale continuous growth of MoS2 revealed via optical microscopy. Two-dimensional Raman maps of Full Width at Half Maximum show high-quality growth, and photoluminescence-based B/A exciton amplitude ratio shows high crystalline and optical quality with low defect density. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
18 pages, 3814 KB  
Article
Selective Acetylene Hydrogenation: Influence of Carbon Supports on the Stabilization of Pd4S-like Active Sites
by Eduardo Campos-Castellanos, Inmaculada Rodríguez-Ramos, Miguel A. Bañares, Antonio Guerrero-Ruiz and María V. Morales
Nanomaterials 2026, 16(3), 157; https://doi.org/10.3390/nano16030157 - 23 Jan 2026
Abstract
This study examines how both the nature of the carbon support and the palladium precursor influence catalytic performance in acetylene hydrogenation. Six Pd-based catalysts were prepared on four carbon materials—high-heat-treated fibers (HHTs), carbon nanotubes, activated carbon and high surface area graphite—using either sulfate [...] Read more.
This study examines how both the nature of the carbon support and the palladium precursor influence catalytic performance in acetylene hydrogenation. Six Pd-based catalysts were prepared on four carbon materials—high-heat-treated fibers (HHTs), carbon nanotubes, activated carbon and high surface area graphite—using either sulfate or chloride precursors. Catalytic tests performed in a continuous fixed-bed reactor reveal that HHT-supported catalysts achieve the highest ethylene selectivity and long-term stability, while in general catalysts derived from sulfate precursors exhibit enhanced selectivity compared to their chloride-derived counterparts. These improvements are consistent with the formation of sulfur, which may be incorporated as sub-stoichiometric sulfide species (S2−) interacting with metallic Pd, as revealed by the XPS results, rather than to palladium dispersion alone. The role of the carbon support in stabilizing these sites was further assessed by complementary characterization techniques, including transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. The combined results indicate that highly graphitic supports such as HHT fibers favor sulfur retention at the catalyst surface, thereby promoting the stability and catalytic performance of Pd–S active motifs during acetylene hydrogenation. Full article
(This article belongs to the Section Energy and Catalysis)
16 pages, 2373 KB  
Article
Pyrrhotite Facilitates Growth and Cr Accumulation in Leersia hexandra Swartz for Effective Cr(VI) Removal in Constructed Wetlands
by Xinyue Zhang, Xuehong Zhang, Yue Lin, Jiang Lv, Minmin Jiang, Sijia Cheng and Jun Yan
Toxics 2026, 14(1), 107; https://doi.org/10.3390/toxics14010107 - 22 Jan 2026
Viewed by 24
Abstract
Hexavalent chromium (Cr(VI)) is a hazardous pollutant frequently found in industrial wastewater. Constructed wetlands (CWs) provide an alternative for Cr(VI) removal, but their effective removal is essentially governed by the extent of Cr accumulation in plants. This study evaluated the effects of pyrrhotite [...] Read more.
Hexavalent chromium (Cr(VI)) is a hazardous pollutant frequently found in industrial wastewater. Constructed wetlands (CWs) provide an alternative for Cr(VI) removal, but their effective removal is essentially governed by the extent of Cr accumulation in plants. This study evaluated the effects of pyrrhotite addition on a Cr-hyperaccumulator Leersia hexandra Swartz (L. hexandra) in CW microcosms with different substrates (pyrrhotite and gravel) and influent Cr(VI) concentrations (2 and 10 mg·L−1). All microcosms achieved substantial Cr(VI) removal, while pyrrhotite significantly facilitated the removal of NO3-N, COD, and TP. Pyrrhotite alleviated Cr-induced oxidative stress and thus promoted photosynthesis in L. hexandra, reflected by 27.32–39.09% lower malondialdehyde levels, 1.67–8.37% higher total chlorophyll contents, and 17.36–39.61% higher net photosynthetic rates. Consequently, maximum aboveground Cr standing stock reached 164.50 mg·m−2 in the P10 group, where L. hexandra contributed 6.63% to the total Cr removal. Microbial analysis showed reduced Cr-stress responses in pyrrhotite groups. Structural equation modeling indicated that pyrrhotite and its dissolution products promote Cr standing stock of L. hexandra through establishing in/ex planta defensive mechanisms. These findings provide new perspectives on phytoremediation coupled with CWs for the treatment of Cr(VI)-containing wastewater. Full article
(This article belongs to the Special Issue Ecological Remediation of Heavy Metal-Polluted Environment)
Show Figures

Figure 1

32 pages, 4721 KB  
Review
Benzimidazole-Quinoline Hybrids: Synthesis and Antimicrobial Properties
by Maria Marinescu
Pharmaceuticals 2026, 19(1), 180; https://doi.org/10.3390/ph19010180 - 20 Jan 2026
Viewed by 222
Abstract
Background: Heterocyclic compounds are particularly important in medicinal chemistry. With a range of therapeutic uses, benzimidazoles and quinolines are both key heterocycles in medicinal chemistry. A number of hybrid heterocyclic compounds have been reported in recent years because they typically have better [...] Read more.
Background: Heterocyclic compounds are particularly important in medicinal chemistry. With a range of therapeutic uses, benzimidazoles and quinolines are both key heterocycles in medicinal chemistry. A number of hybrid heterocyclic compounds have been reported in recent years because they typically have better therapeutic properties than single heterocyclic rings. Methods: A literature search was conducted across relevant scientific literature from peer-reviewed sources, using keywords, including “benzimidazole”, “quinoline”, “benzimidazole-quinoline hybrids”, “antibacterial”, “antifungal”, “antimalarial” and “hybrid complexes”. Results: This review summarizes the synthetic methodologies for benzimidazole–quinoline hybrids, benzimidazole– quinolinones, and benzimidazole–quinoline metal complexes, along with their antimicrobial and antimalarial activities and the reported structure–activity relationship (SAR) studies. The importance of halogen substitution, particularly with chlorine and fluorine atoms, as well as the structure of the linker between the benzimidazole and quinoline rings—specifically chain length, the presence of oxygen, sulfur, or nitrogen atoms, and heterocyclic moieties—is highlighted. A series of benzimidazole–quinoline hybrids exhibit antimalarial and antitrypanosomal activities or show enhanced antimicrobial properties due to the incorporation of a five-membered heterocycle in addition to the two existing heterocyclic rings. Notably, several hybrids from different compound series exhibit very low minimum inhibitory concentrations (MICs) in the range of 1–8 µg/mL, along with low cytotoxicity, supporting their potential for further investigation as antimicrobial agents. Conclusions: This review summarizes the synthetic methods, medicinal properties, and structure–activity relationship (SAR) studies of benzimidazole–quinoline hybrids reported between 2002 and 2026. Full article
(This article belongs to the Special Issue Advances in the Synthesis and Application of Heterocyclic Compounds)
Show Figures

Graphical abstract

12 pages, 2318 KB  
Article
Enhanced Room-Temperature Optoelectronic NO2 Sensing Performance of Ultrathin Non-Layered Indium Oxysulfide via In Situ Sulfurization
by Yinfen Cheng, Nianzhong Ma, Zhong Li, Dengwen Hu, Zhentao Ji, Lieqi Liu, Rui Ou, Zhikang Shen and Jianzhen Ou
Sensors 2026, 26(2), 670; https://doi.org/10.3390/s26020670 - 19 Jan 2026
Viewed by 207
Abstract
The detection of trace nitrogen dioxide (NO2) is critical for environmental monitoring and industrial safety. Among various sensing technologies, chemiresistive sensors based on semiconducting metal oxides are prominent due to their high sensitivity and fast response. However, their application is hindered [...] Read more.
The detection of trace nitrogen dioxide (NO2) is critical for environmental monitoring and industrial safety. Among various sensing technologies, chemiresistive sensors based on semiconducting metal oxides are prominent due to their high sensitivity and fast response. However, their application is hindered by inherent limitations, including low selectivity and elevated operating temperatures, which increase power consumption. Two-dimensional metal oxysulfides have recently attracted attention as room-temperature sensing materials due to their unique electronic properties and fully reversible sensing performance. Meanwhile, their combination with optoelectronic gas sensing has emerged as a promising solution, combining higher efficiency with minimal energy requirements. In this work, we introduce non-layered 2D indium oxysulfide (In2SxO3−x) synthesized via a two-step process: liquid metal printing of indium followed by thermal annealing of the resulting In2O3 in a H2S atmosphere at 300 °C. The synthesized material is characterized by a micrometer-scale lateral dimension with 6.3 nm thickness and remaining n-type semiconducting behavior with a bandgap of 2.53 eV. It demonstrates a significant response factor of 1.2 toward 10 ppm NO2 under blue light illumination at room temperature. The sensor exhibits a linear response across a low concentration range of 0.1 to 10 ppm, alongside greatly improved reversibility, selectivity, and sensitivity. This study successfully optimizes the application of 2D metal oxysulfide and presents its potential for the development of energy-efficient NO2 sensing systems. Full article
(This article belongs to the Special Issue Gas Sensing for Air Quality Monitoring)
Show Figures

Figure 1

19 pages, 8261 KB  
Article
Organic Acids for Lignin and Hemicellulose Extraction from Black Liquor: A Comparative Study in Structure Analysis and Heavy Metal Adsorption Potential
by Patrycja Miros-Kudra, Paulina Sobczak-Tyluś, Agata Jeziorna, Karolina Gzyra-Jagieła, Justyna Wietecha and Maciej Ciepliński
Polymers 2026, 18(2), 251; https://doi.org/10.3390/polym18020251 - 16 Jan 2026
Viewed by 258
Abstract
This study presents a method for extracting lignin and hemicellulose from black liquor using organic acids (citric, malic, and acetic) in comparison to the traditional sulfuric acid method. We investigated and compared the influence of the acid type on the structural properties of [...] Read more.
This study presents a method for extracting lignin and hemicellulose from black liquor using organic acids (citric, malic, and acetic) in comparison to the traditional sulfuric acid method. We investigated and compared the influence of the acid type on the structural properties of the resulting precipitates in the context of their potential applications. The lignin fractions were characterized for their chemical structure (ATR-FTIR, NMR), thermal stability (TGA), morphology and surface elemental composition (SEM-EDS), bulk elemental composition (C, H, N, S), and molecular weight distribution (GPC). The hemicellulose fractions were analyzed for their molecular weight (GPC), surface elemental composition (EDS), and chemical structure (ATR-FTIR). These analyses revealed subtle differences in the properties of the individual materials depending on the extraction method. We showed that organic acids, particularly citric acid, can effectively precipitate lignin with yields comparable to the sulfuric acid method (47–60 g/dm3 vs. 50 g/dm3). Simultaneously, this method produces lignin with higher purity (regarding sulfur content) and an increased content of carboxyl groups. This latter aspect is of particular interest due to the enhanced potential of lignin’s adsorption functions towards metal ions. AAS analysis confirmed that lignin precipitated with citric acid showed better adsorption efficiency towards heavy metals compared to lignin precipitated with sulfuric acid, especially for Cu2+ ions (80% vs. 20%) and Cr3+ ions (46% vs. 2%). This enhanced adsorption efficiency of the isolated lignins, combined with the environmental benefits of using organic acids, opens a promising perspective for their application in water treatment and environmental remediation. Furthermore, the presented research on the valorization and reuse of paper industry by-products fully aligns with the fundamental principles of the Circular Economy. Full article
(This article belongs to the Special Issue Biobased Polymers and Its Composites)
Show Figures

Graphical abstract

16 pages, 5511 KB  
Article
Enhancing Lithium Extraction: Effect of Mechanical Activation on the Sulfuric Acid Leaching Behavior of Lepidolite
by Yuik Eom, Laurence Dyer, Aleksandar N. Nikoloski and Richard Diaz Alorro
Minerals 2026, 16(1), 87; https://doi.org/10.3390/min16010087 - 16 Jan 2026
Viewed by 197
Abstract
This study investigated the effect of mechanical activation on the physicochemical properties of lepidolite and the leaching behavior of mechanically activated samples in sulfuric acid (H2SO4). Lepidolite was mechanically activated using a high-energy planetary ball mill (PBM) at 400 [...] Read more.
This study investigated the effect of mechanical activation on the physicochemical properties of lepidolite and the leaching behavior of mechanically activated samples in sulfuric acid (H2SO4). Lepidolite was mechanically activated using a high-energy planetary ball mill (PBM) at 400 RPM with a 20:1 ball-to-feed weight ratio (BFR, g:g) and the samples activated for different durations were characterized for amorphous phase content, particle size, and morphology using various solid analyses. X-ray diffraction (XRD) revealed the progressive amorphization of lepidolite, with the amorphous fraction increased from 34.1% (unactivated) to 81.4% after 60 min of mechanical activation. Scanning electron microscopy (SEM) showed that mechanically activated particles became fluffy and rounded, whereas unactivated particles retained lamellar and angular shapes. The reactivity of minerals after mechanical activation was evaluated through a 2 M H2SO4 leaching test at different leaching temperatures (25–80 °C) and time periods (30–180 min). Although the leaching efficiencies of Li and Al slightly improved at higher leaching temperatures and longer leaching times, the leaching of these metals was primarily governed by the mechanical activation time. The highest Li and Al leaching efficiencies—87.0% for Li and 79.4% for Al—were obtained from lepidolite that was mechanically activated for 60 min under leaching conditions of 80 °C and a 10% (w/v) solid/liquid (S/L) ratio for 30 min. The elemental mapping images of leaching feed and residue produced via energy dispersive spectroscopy (EDS) indicated that unactivated particles in the leaching residue had much higher metal content than mechanically activated particles. Kinetic analysis further suggested that leaching predominantly occurs at mechanically activated sites and the apparent activation energies calculated in this study (<3.1 kJ·mol−1) indicate diffusion-controlled behavior with weak temperature dependence. This result confirmed that mechanical activation significantly improves reactivity and that the residual unleached fraction can be attributed to unactivated particles. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Graphical abstract

20 pages, 5660 KB  
Article
Synthesis and Tribological Properties of Multifunctional Nitrogen-Containing Heterocyclic Dialkyl Dithiocarbamate Derivatives
by Mengxuan Wang, Ting Li, Zhongxian Li, Wenjing Hu, Junwei Wang and Jiusheng Li
Lubricants 2026, 14(1), 35; https://doi.org/10.3390/lubricants14010035 - 14 Jan 2026
Viewed by 194
Abstract
Energy conservation and efficiency enhancement necessitate continuous advancement in the development and preparation of multifunctional, high-performance lubricant additives. This paper reports three novel ashless, phosphorus-free, multifunctional nitrogen-containing heterocyclic dialkyl dithiocarbamate derivative additives (Py-2-DBDTC, PDM-DBDTC, and BZT-DBDTC). Thermal stability, oxidation resistance, and tribological properties [...] Read more.
Energy conservation and efficiency enhancement necessitate continuous advancement in the development and preparation of multifunctional, high-performance lubricant additives. This paper reports three novel ashless, phosphorus-free, multifunctional nitrogen-containing heterocyclic dialkyl dithiocarbamate derivative additives (Py-2-DBDTC, PDM-DBDTC, and BZT-DBDTC). Thermal stability, oxidation resistance, and tribological properties were investigated for the synthesized additives. All three additives demonstrated excellent thermal stability and oxidation resistance. Furthermore, their extreme-pressure properties improved by 116.33% or more compared to the base oil, while wear reduction rates also exceeded 58.32%. Under both point-to-point and point-on-flat friction conditions, the friction-reducing performance of all three additives was equally outstanding. Across a broad temperature range (25 °C–150 °C), all additives maintained their friction-reducing properties. Analysis of the worn surface morphology reveals that all three additives undergo tribochemical reactions during the friction process, forming tribofilms containing sulfur elements. Research indicates that introducing different nitrogen-containing heterocyclic structures into dialkyl dithiocarbamates can effectively enhance the adsorption capacity of the additives on metal surfaces and promote the formation of tribofilms at the friction interface, thereby significantly improving tribological performance. These systematic investigations not only provide important guidance for the molecular design and industrial application of multifunctional lubricant additives but also further advance the development of sustainable lubrication technologies. Full article
Show Figures

Figure 1

26 pages, 30392 KB  
Article
Multisystem (S–Pb–He–Ar–H–O) Isotopic and Fluid Inclusion Constraints on the Genesis of the Chaijiagou Porphyry Mo Deposit, North China Craton
by Wei Xie, Chao Jin, Qingdong Zeng, Lingli Zhou, Rui Dong, Zhao Wang and Kaiyuan Wang
Minerals 2026, 16(1), 71; https://doi.org/10.3390/min16010071 - 12 Jan 2026
Viewed by 257
Abstract
The Chaijiagou Mo deposit (0.11 Mt Mo @ 0.07%) is located along the northern margin of the North China Craton. This study integrates ore geology, S–Pb–He–Ar–H–O isotopes, and fluid inclusion (FI) analyses to constrain the sources of ore-forming fluids and metals, as well [...] Read more.
The Chaijiagou Mo deposit (0.11 Mt Mo @ 0.07%) is located along the northern margin of the North China Craton. This study integrates ore geology, S–Pb–He–Ar–H–O isotopes, and fluid inclusion (FI) analyses to constrain the sources of ore-forming fluids and metals, as well as mineralization mechanisms. Three principal inclusion types were identified: liquid-rich, vapor-rich, and saline FIs. Microthermometry documents a progressive decline in homogenization temperatures and salinities from early to late mineralization stages: Stage 1 (360–450 °C; 5.3–11.3 and 35.4–51.5 wt.% NaCl equation), Stages 2.1–2.2 (320–380 °C and 260–340 °C; 5.4–11.8 and 33.8–44.5 wt.% NaCl equation), and Stage 4 (140–200 °C; 0.4–3.9 wt.% NaCl equation). Noble gas and stable isotope data reveal that the ore-forming fluids were initially dominated by crustally derived magmatic–hydrothermal components with a minor mantle contribution, subsequently experiencing significant meteoric water input. S–Pb isotopic compositions demonstrate a genetic relationship between mineralization and the ore-bearing granite porphyry, indicating a magmatic origin for both sulfur and lead. Fluid–rock interactions and fluid boiling were the dominant controls on molybdenite and chalcopyrite deposition during Stage 2, whereas mixing with meteoric waters triggered galena and sphalerite precipitation in Stage 3. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

21 pages, 11383 KB  
Article
Identification of miRNAs Responsive to a Defined Period of Iron Deficiency and Resupply in Arabidopsis thaliana
by Qianmiao Zhao, Fei Liu, Jin Xu and Ping Zhang
Plants 2026, 15(2), 227; https://doi.org/10.3390/plants15020227 - 11 Jan 2026
Viewed by 206
Abstract
Iron (Fe), as one of the essential micronutrients for plants, plays a pivotal role in regulating growth and development through homeostatic balance. Fe deficiency is a common agricultural stress that causes visible leaf chlorosis and impairs plant growth. In this study, Arabidopsis thaliana [...] Read more.
Iron (Fe), as one of the essential micronutrients for plants, plays a pivotal role in regulating growth and development through homeostatic balance. Fe deficiency is a common agricultural stress that causes visible leaf chlorosis and impairs plant growth. In this study, Arabidopsis thaliana seedlings grown under Fe deficiency for 4 days were subjected to 6 h Fe resupply via foliar spray or root supply, followed by measurements of chlorophyll fluorescence and metal ion contents in leaves and roots. Fe deficiency significantly reduced Fe levels and the maximum quantum yield of fluorescence (Fv/Fm), while increasing copper (Cu) accumulation in roots. Zinc (Zn) and manganese (Mn) levels were also altered, depending on tissue type. Fe resupply restored Fv/Fm, increased Mn levels, and rebalanced micronutrient content. MicroRNA (miRNA) mediates adaptation to Fe deficiency via post-transcriptional regulation in plants. However, the involved regulatory networks of miRNAs under stress conditions during Fe resupply following deficiency remain poorly understood. These physiological changes prompted us to explore the underlying regulatory networks using miRNA-seq and mRNA-seq. The bioinformatics analysis identified differentially expressed miRNAs responsive to Fe stress, with the Fe-deficiency-specific cis-element IDE1 characterized in their promoter regions. By integrating miRNA-seq and mRNA-seq datasets, we constructed a regulatory network and identified 13 miRNAs harboring IDE1 motifs alongside their functional target genes. Three critical Fe homeostasis modules were proposed—miR396b-LSU2, miR401-HEMA1, and miR169b-NF-YA2—that link Fe homeostasis to chlorophyll synthesis, sulfur (S) responses, and developmental signaling. This study integrates physiological phenotyping with transcriptomic insights to provide a comprehensive view of Fe deficiency and recovery in Arabidopsis. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

20 pages, 1050 KB  
Article
Patent-Based Prospective Life Cycle Assessment and Eco-Design of Lithium–Sulfur Batteries
by Baris Ördek and Christian Spreafico
Sustainability 2026, 18(2), 711; https://doi.org/10.3390/su18020711 - 10 Jan 2026
Viewed by 251
Abstract
Lithium–sulfur batteries (LSBs) are a promising emerging technology due to their high energy density, low-cost materials, and safety. However, their environmental sustainability is not yet well understood. This study conducted a prospective life cycle assessment (LCA) on two patented LSB models, using data [...] Read more.
Lithium–sulfur batteries (LSBs) are a promising emerging technology due to their high energy density, low-cost materials, and safety. However, their environmental sustainability is not yet well understood. This study conducted a prospective life cycle assessment (LCA) on two patented LSB models, using data from patents as the inventory: one with a standard sulfur cathode and another with a graphene–sulfur composite (GSC). The assessment is conducted for a functional unit of 1 Wh of produced electricity, adopting a cradle-to-gate system boundary and a prospective time horizon set to 2035. The LSB GSC model battery showed significantly better performance in terms of climate change and fossil depletion, with a 42% lower impact, mainly due to a reduction in the lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) content from 1205 mg Wh−1 to 250 mg Wh−1. However, the GSC model also had significant drawbacks, showing a 93% higher metal depletion and 49% higher water depletion than the standard sulfur battery. Building on an established patent-based prospective LCA approach, this work applies patent-derived quantitative inventories and patent-informed eco-design analysis to support environmentally informed design decisions for emerging LSB technologies prior to large-scale commercialization. Full article
(This article belongs to the Special Issue Smart Technologies Toward Sustainable Eco-Friendly Industry)
Show Figures

Figure 1

24 pages, 10558 KB  
Article
Impact of Pre-Granulated MSWI Fly Ash on Hydration, Microstructure, and Performance of Portland Cement Mortars
by Maryna Shevtsova, Jurgita Malaiškienė, Jelena Škamat, Valentin Antonovič and Rimvydas Stonys
Appl. Sci. 2026, 16(2), 725; https://doi.org/10.3390/app16020725 - 9 Jan 2026
Viewed by 167
Abstract
Portland cement (PC) is widely regarded as a cost-effective and reliable binding material for the stabilization and solidification of municipal solid waste incineration fly ash (MSWI FA). However, the soluble salts and heavy metals present in MSWI FA retard PC hydration, thereby limiting [...] Read more.
Portland cement (PC) is widely regarded as a cost-effective and reliable binding material for the stabilization and solidification of municipal solid waste incineration fly ash (MSWI FA). However, the soluble salts and heavy metals present in MSWI FA retard PC hydration, thereby limiting the amount of fly ash that can be incorporated. The present study investigates the feasibility of normalizing the hydration of PC-based mixtures containing MSWI FA by applying a fly ash pre-granulation step with 25% PC, followed by coating the resulting granules with a geopolymer layer to reduce the release of harmful ions during the early stages of hydration. Isothermal calorimetry, TG/DTA, XRD, SEM, and mechanical testing were used to investigate the hydration characteristics of composites containing such granules and to assess their properties at 7, 28, and 90 days. It was found that a 20% substitution of PC with the studied FA disrupted PC hydration within the first 48 h. In contrast, both types of granules exhibited the main exothermic peak within the first 10–12 h, with hydration heat release (about 300 J/g) comparable to that of sand-containing references. Uncoated granules exhibited more active behavior with hydration kinetics similar to pure cement paste, whereas the effect of geopolymer-coated granules was close to sand. TG/DTA revealed reduced calcite content in mixtures containing granules, whereas uncoated granules promoted greater portlandite formation than the sand-based system. Hardening the samples under wet conditions resulted in the development of a dense cement matrix, firm integration of the granules, redistribution of chlorine and sulfur ions, and mechanical properties that reached at least 93% of those of the sand-containing reference, despite a lower density of ~4.5%. Full article
Show Figures

Figure 1

35 pages, 4216 KB  
Review
Anticancer Activity of Schiff Base Metal Complexes Against MCF-7 Breast Cancer Cell Line
by Justyna Samaszko-Fiertek, Barbara Dmochowska and Janusz Madaj
Int. J. Mol. Sci. 2026, 27(2), 678; https://doi.org/10.3390/ijms27020678 - 9 Jan 2026
Viewed by 292
Abstract
According to the World Health Organization, breast cancer is the cancer that affects the largest number of people each year, especially women. Millions of women are diagnosed with it each year, and hundreds of thousands die from it. Research into new types of [...] Read more.
According to the World Health Organization, breast cancer is the cancer that affects the largest number of people each year, especially women. Millions of women are diagnosed with it each year, and hundreds of thousands die from it. Research into new types of drugs, including metal complexes, including those containing tetradentate Schiff bases as ligands, offers a chance to reduce this number. Various cell lines are being used to test their effectiveness in cancer therapy, with the MCF-7 cancer cell line being the most commonly used. A literature search was conducted in four major databases: PubMed, SciELO. The Boolean operator “and” was used to refine the search strategy, combining the terms Schiff base, breast cancer, MCF-7 and metal complexes. Studies published between 2020 and 2025 investigating the cytotoxic activity of metal complexes with Schiff base ligands on the MCF-7 breast cancer cell line were included in the analysis. Articles were considered eligible if they were written in English. As a result of the database search, 37 scientific articles were selected and divided into three groups based on the ligand structure. The largest group of articles described the synthesis, structure, and anticancer activity of metal complexes with ligands based on the salicylaldehyde structure. These were included in the first group of complexes described. The second, extremely interesting and promising group of compounds consisted of metal complexes with ligands containing a sulfur atom. The last group included metal complexes with Schiff base ligands that were not included in the two previously mentioned groups. As indicated by the research results contained in the reviewed articles, Schiff base metal complexes constitute an interesting group of compounds characterized by a range of activities, including anticancer activity, which may in the future be used in anticancer therapy. They may also represent a cheaper and more effective alternative to platinum-based drugs. Full article
(This article belongs to the Special Issue Synthesis and Structural Studies of Potential Anticancer Drugs)
Show Figures

Figure 1

15 pages, 1784 KB  
Article
Sulfur Polymer to Develop Low-Carbon Reclaimed Asphalt Pavements
by Mohammad Doroudgar, Mohammadjavad Kazemi, Shadi Saadeh, Mahour Parast and Elham H. Fini
Polymers 2026, 18(2), 168; https://doi.org/10.3390/polym18020168 - 8 Jan 2026
Viewed by 257
Abstract
The incorporation of reclaimed asphalt pavement (RAP) offers significant environmental benefits; however, its use is often limited by an increased susceptibility to cracking due to the insufficient elasticity of the severely aged RAP binder. This limitation is conventionally mitigated using polymers such as [...] Read more.
The incorporation of reclaimed asphalt pavement (RAP) offers significant environmental benefits; however, its use is often limited by an increased susceptibility to cracking due to the insufficient elasticity of the severely aged RAP binder. This limitation is conventionally mitigated using polymers such as styrene–butadiene styrene, which, despite their effectiveness, are costly and carbon intensive. This paper introduces a low-carbon sulfur-based ternary polymer developed through TiO2-catalyzed inverse vulcanization of elemental sulfur to be used as a modifier to address the abovementioned challenge at the asphalt mixture level. The sulfur polymer containing waste cooking oil and metal-rich biochar was incorporated into hot-mix asphalt having 25% RAP. The mixture specimens were evaluated before and after accelerated thermal and ultraviolet aging. Cracking resistance was measured using the Indirect Tensile Asphalt Cracking Test (IDEAL-CT), while resistance to rutting and moisture damage were assessed through the Hamburg Wheel Tracking Test (HWT). IDEAL-CT findings showed improved CTIndex values for the modified mixture under unaged conditions and after three days of thermal aging, with smaller variations noted after prolonged thermal aging and during the combined thermal–ultraviolet aging process. Results from the HWT test revealed that the addition of the sulfur polymer did not negatively impact resistance to rutting or moisture damage; all mixtures remained significantly below rutting failure thresholds. Furthermore, a simplified environmental analysis indicated that substituting 10 wt% of petroleum binder with the sulfur polymer lowered the binder’s cradle-to-gate global warming potential by around 11%. In summary, study results showed that the newly developed sulfur polymer system has the potential to improve cracking resistance even when exposed to select accelerated aging protocols while decreasing embodied carbon, thus endorsing its viability as a sustainable modifier for asphalt mixtures. Full article
Show Figures

Graphical abstract

Back to TopTop