Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (590)

Search Parameters:
Keywords = metal solidification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4978 KB  
Article
Pressure Dependence of Pure Zirconium Liquid–Solid Phase Transition
by Lin Lang, Zhiyuan Xu, Kun Qian, Chang Li and Zhuoliang Yu
Metals 2026, 16(1), 78; https://doi.org/10.3390/met16010078 - 10 Jan 2026
Viewed by 129
Abstract
Molecular dynamics simulations were conducted at a cooling rate of 1.0 × 1011 K/s to investigate the solidification mechanism of zirconium (Zr) under high pressure. Three distinct pressure-dependent regimes are identified: crystallization into a body-centered cubic (BCC) phase below 27.5 GPa, vitrification [...] Read more.
Molecular dynamics simulations were conducted at a cooling rate of 1.0 × 1011 K/s to investigate the solidification mechanism of zirconium (Zr) under high pressure. Three distinct pressure-dependent regimes are identified: crystallization into a body-centered cubic (BCC) phase below 27.5 GPa, vitrification between 27.5 and 65 GPa, and crystallization into an A15 phase above 65 GPa. The volume change during crystallization is found to reverse at critical pressures of 5 and 103 GPa, and anomalous behavior is observed at the phase boundaries: at 27.5 and 65 GPa, the volume varies continuously despite a sharp drop in potential energy, whereas at 65 GPa, the volume decreases abruptly while the energy changes smoothly. Structural analysis indicates that evolution in the low-pressure regime is governed by atomic configurations extending to the second-neighbor shell, while at high pressures, nearest-neighbor interactions become dominant. This work clarifies the microstructure–pressure relationship during metallic solidification, providing insights into controlling phase transitions under extreme conditions. Full article
(This article belongs to the Special Issue Phase Transformations in Metals and Alloys)
Show Figures

Figure 1

24 pages, 10558 KB  
Article
Impact of Pre-Granulated MSWI Fly Ash on Hydration, Microstructure, and Performance of Portland Cement Mortars
by Maryna Shevtsova, Jurgita Malaiškienė, Jelena Škamat, Valentin Antonovič and Rimvydas Stonys
Appl. Sci. 2026, 16(2), 725; https://doi.org/10.3390/app16020725 - 9 Jan 2026
Viewed by 107
Abstract
Portland cement (PC) is widely regarded as a cost-effective and reliable binding material for the stabilization and solidification of municipal solid waste incineration fly ash (MSWI FA). However, the soluble salts and heavy metals present in MSWI FA retard PC hydration, thereby limiting [...] Read more.
Portland cement (PC) is widely regarded as a cost-effective and reliable binding material for the stabilization and solidification of municipal solid waste incineration fly ash (MSWI FA). However, the soluble salts and heavy metals present in MSWI FA retard PC hydration, thereby limiting the amount of fly ash that can be incorporated. The present study investigates the feasibility of normalizing the hydration of PC-based mixtures containing MSWI FA by applying a fly ash pre-granulation step with 25% PC, followed by coating the resulting granules with a geopolymer layer to reduce the release of harmful ions during the early stages of hydration. Isothermal calorimetry, TG/DTA, XRD, SEM, and mechanical testing were used to investigate the hydration characteristics of composites containing such granules and to assess their properties at 7, 28, and 90 days. It was found that a 20% substitution of PC with the studied FA disrupted PC hydration within the first 48 h. In contrast, both types of granules exhibited the main exothermic peak within the first 10–12 h, with hydration heat release (about 300 J/g) comparable to that of sand-containing references. Uncoated granules exhibited more active behavior with hydration kinetics similar to pure cement paste, whereas the effect of geopolymer-coated granules was close to sand. TG/DTA revealed reduced calcite content in mixtures containing granules, whereas uncoated granules promoted greater portlandite formation than the sand-based system. Hardening the samples under wet conditions resulted in the development of a dense cement matrix, firm integration of the granules, redistribution of chlorine and sulfur ions, and mechanical properties that reached at least 93% of those of the sand-containing reference, despite a lower density of ~4.5%. Full article
Show Figures

Figure 1

37 pages, 8503 KB  
Review
A Review of In Situ Quality Monitoring in Additive Manufacturing Using Acoustic Emission Technology
by Wenbiao Chang, Qifei Zhang, Wei Chen, Yuan Gao, Bin Liu, Zhonghua Li and Changying Dang
Sensors 2026, 26(2), 438; https://doi.org/10.3390/s26020438 - 9 Jan 2026
Viewed by 75
Abstract
Additive manufacturing (AM) has emerged as a pivotal technology in component fabrication, renowned for its capabilities in freeform fabrication, material efficiency, and integrated design-to-manufacturing processes. As a critical branch of AM, metal additive manufacturing (MAM) has garnered significant attention for producing metal parts. [...] Read more.
Additive manufacturing (AM) has emerged as a pivotal technology in component fabrication, renowned for its capabilities in freeform fabrication, material efficiency, and integrated design-to-manufacturing processes. As a critical branch of AM, metal additive manufacturing (MAM) has garnered significant attention for producing metal parts. However, process anomalies during MAM can pose safety risks, while internal defects in as-built parts detrimentally affect their service performance. These concerns underscore the necessity for robust in-process monitoring of both the MAM process and the quality of the resulting components. This review first delineates common MAM techniques and popular in-process monitoring methods. It then elaborates on the fundamental principles of acoustic emission (AE), including the configuration of AE systems and methods for extracting characteristic AE parameters. The core of the review synthesizes applications of AE technology in MAM, categorizing them into three key aspects: (1) hardware setup, which involves a comparative analysis of sensor selection, mounting strategies, and noise suppression techniques; (2) parametric characterization, which establishes correlations between AE features and process dynamics (e.g., process parameter deviations, spattering, melting/pool stability) as well as defect formation (e.g., porosity and cracking); and (3) intelligent monitoring, which focuses on the development of classification models and the integration of feedback control systems. By providing a systematic overview, this review aims to highlight the potential of AE as a powerful tool for real-time quality assurance in MAM. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Graphical abstract

15 pages, 3013 KB  
Article
Numerical Simulation and Process Optimization of Sn-0.3Ag-0.7Cu Alloy Casting
by Hao Zhou, Yingwu Wang, Jianghua He, Chengchen Jin, Ayiqujin, Desheng Lei, Hui Fang and Kai Xiong
Materials 2026, 19(1), 198; https://doi.org/10.3390/ma19010198 - 5 Jan 2026
Viewed by 204
Abstract
Porosity formation due to solidification shrinkage and inadequate liquid metal feeding during the casting of Sn-0.3Ag-0.7Cu (SAC0307) is a critical issue that impairs quality and subsequent processing. However, the opacity of the casting process often obscures the quantitative relationships between process parameters and [...] Read more.
Porosity formation due to solidification shrinkage and inadequate liquid metal feeding during the casting of Sn-0.3Ag-0.7Cu (SAC0307) is a critical issue that impairs quality and subsequent processing. However, the opacity of the casting process often obscures the quantitative relationships between process parameters and defect formation, creating a significant barrier to science-based optimization. To address this, the present study utilizes finite element method (FEM) analysis to systematically investigate the influence of pouring temperature (PCT, 290–390 °C) and interfacial heat transfer coefficient (HTC, 900–5000 W/(m2·K)) on this phenomenon. The results reveal that PCT exerts a non-monotonic effect on porosity by modulating the solidification mode, which governs the accumulation of dispersed microporosity. In contrast, HTC plays a critical role in determining porosity morphology by controlling both the solidification rate and mode. Consequently, an optimal processing window was identified at 350 °C PCT and 3000 W/(m2·K) HTC, which significantly enhances interdendritic feeding and improves the ingot’s internal soundness. The efficacy of these optimized parameters was experimentally validated through macro- and microstructural characterization. This work not only elucidates the governing mechanisms of solidification quality but also demonstrates the value of numerical simulation for process optimization, offering a reliable scientific basis for the industrial production of high-quality SAC0307 alloys. Full article
(This article belongs to the Topic Numerical Modelling on Metallic Materials, 2nd Edition)
Show Figures

Figure 1

12 pages, 4985 KB  
Article
Characterization of Ti/Cu Dissimilar Metal Butt-Welded by the Cold Welding Process
by Yunyi Xiao, Fei Liu and Nuo Chen
Materials 2026, 19(1), 197; https://doi.org/10.3390/ma19010197 - 5 Jan 2026
Viewed by 191
Abstract
Titanium alloys and copper have broad applications in aerospace, defense, and industry, but their dissimilar welding faces challenges from significant physicochemical differences and easy formation of brittle Ti-Cu intermetallic compounds, while existing methods like laser welding or friction stir welding have limitations, such [...] Read more.
Titanium alloys and copper have broad applications in aerospace, defense, and industry, but their dissimilar welding faces challenges from significant physicochemical differences and easy formation of brittle Ti-Cu intermetallic compounds, while existing methods like laser welding or friction stir welding have limitations, such as low strength or inability to weld ultra-thin plates. This study adopted cold welding to join Ti-6.5Al-1Mo-1V-2Zr alloy and 99.90% pure copper. The mechanical properties of the joint were tested, the microstructure and fracture of the weld were observed, and the phase composition of the weld was analyzed. The results show that the weld fusion zone mainly consists of Cu-based solid solution and Cu3Ti. Low cold welding heat input reduces the Cu3Ti content, so the joint mechanical properties do not decrease significantly. The tensile strength of the joint reaches 284 MPa, which is 83% of that of copper-based metals, and the elongation rate reaches 6.25%. Diffusion kinetics and solidification thermodynamics analyses confirm that Cu3Ti intermetallic compounds are preferentially generated in the weld seam. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

19 pages, 2528 KB  
Article
A Machine Vision-Enhanced Framework for Tracking Inclusion Evolution and Enabling Intelligent Cleanliness Control in Industrial-Scale HSLA Steels
by Yong Lyu, Yunhai Jia, Lixia Yang, Weihao Wan, Danyang Zhi, Xuehua Wang, Peifeng Cheng and Haizhou Wang
Materials 2026, 19(1), 158; https://doi.org/10.3390/ma19010158 - 2 Jan 2026
Viewed by 176
Abstract
The quantity, size, and distribution of non-metallic inclusions in High-Strength Low-Alloy (HSLA) steel critically influence its service performance. Conventional detection methods often fail to adequately characterize extreme inclusion distributions in large-section components. This study developed an integrated full-process inclusion analysis system combining high-precision [...] Read more.
The quantity, size, and distribution of non-metallic inclusions in High-Strength Low-Alloy (HSLA) steel critically influence its service performance. Conventional detection methods often fail to adequately characterize extreme inclusion distributions in large-section components. This study developed an integrated full-process inclusion analysis system combining high-precision motion control, parallel optical imaging, and laser spectral analysis technologies to achieve rapid and automated identification and compositional analysis of inclusions in meter-scale samples. Through systematic investigation across the industrial process chain—from a dia. 740 mm consumable electrode to a dia. 810 mm electroslag remelting (ESR) ingot and finally to a dia. 400 mm forged billet—key process-specific insights were obtained. The results revealed the effective removal of Type D (globular oxides) inclusions during ESR, with their counts reducing from over 8000 in the electrode to approximately 4000–7000 in the ingot. Concurrently, the mechanism underlying the pronounced enrichment of Type C (silicates) in the ingot tail was elucidated, showing a nearly fourfold increase to 1767 compared to the ingot head, attributed to terminal solidification segregation and flotation dynamics. Subsequent forging further demonstrated exceptional refinement and dispersion of all inclusion types. The billet tail achieved exceptionally high purity, with counts of all inclusion types dropping to extremely low levels (e.g., Types A, B, and C were nearly eliminated), representing a reduction of approximately one order of magnitude. Based on these findings, enhanced process strategies were proposed, including shallow molten pool control, slag system optimization, and multi-dimensional quality monitoring. An intelligent analysis framework integrating a YOLOv11 detection model with spectral feedback was also established. This work provides crucial process knowledge and technological support for achieving the quality control objective of “known and controllable defects” in HSLA steel. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

18 pages, 2743 KB  
Article
Axial Solidification Experiments to Mimic Net-Shaped Castings of Aluminum Alloys—Interfacial Heat-Transfer Coefficient and Thermal Diffusivity
by Ravi Peri, Ahmed M. Teamah, Xiaochun Zeng, Mohamed S. Hamed and Sumanth Shankar
Processes 2026, 14(1), 128; https://doi.org/10.3390/pr14010128 - 30 Dec 2025
Viewed by 231
Abstract
Net-shaped casting processes in the automotive industry have proved to be difficult to simulate due to the complexities of the interactions amongst thermal, fluid, and solute transport regimes in the solidifying domain, along with the interface. The existing casting simulation software lacks the [...] Read more.
Net-shaped casting processes in the automotive industry have proved to be difficult to simulate due to the complexities of the interactions amongst thermal, fluid, and solute transport regimes in the solidifying domain, along with the interface. The existing casting simulation software lacks the necessary real-time estimation of thermophysical properties (thermal diffusivity and thermal conductivity) and the interfacial heat-transfer coefficient (IHTC) to evaluate the thermal resistances in a casting process and solve the temperature in the solidifying domain. To address these shortcomings, an axial directional solidification experiment setup was developed to map the thermal data as the melt solidifies unidirectionally from the chill surface under unsteady-state conditions. A Dilute Eutectic Cast Aluminum (DECA) alloy, Al-5Zn-1Mg-1.2Fe-0.07Ti, Eutectic Cast Aluminum (ECA) alloys (A365 and A383), and pure Al (P0303) were used to demonstrate the validity of the experiments to evaluate the thermal diffusivity (α) of both the solid and liquid phases of the solidifying metal using an inverse heat-transfer analysis (IHTA). The thermal diffusivity varied from 0.2 to 1.9 cm2/s while the IHTC changed from 9500 to 200 W/m2K for different alloys in the solid and liquid phases. The heat flux was estimated from the chill side with transient temperature distributions estimated from IHTA for either side of the mold–metal interface as an input to compute the interfacial heat-transfer coefficient (IHTC). The results demonstrate the reliability of the axial solidification experiment apparatus in accurately providing input to the casting simulation software and aid in reproducing casting numerical simulation models efficiently. Full article
Show Figures

Figure 1

20 pages, 9468 KB  
Article
Numerical Study on Heat Transfer, Deformation, and Breakup of Flying Droplets During Gas Atomization of Molten Aluminum
by Yi Wang, Shanzheng Huang, Bao Wang, Jian’an Zhou and Changyong Chen
Metals 2026, 16(1), 37; https://doi.org/10.3390/met16010037 - 28 Dec 2025
Viewed by 207
Abstract
The heat transfer behavior of flying molten droplets during gas atomization significantly impacts the performance of metal powders, and the cooling, deformation, breakup, and defect formation processes of these flying droplets are closely interrelated. In this study, a mathematical model was developed by [...] Read more.
The heat transfer behavior of flying molten droplets during gas atomization significantly impacts the performance of metal powders, and the cooling, deformation, breakup, and defect formation processes of these flying droplets are closely interrelated. In this study, a mathematical model was developed by combining the k-ε turbulence model, the VOF model, and the solidification/melting model to determine the cooling and solidification process of a flying molten droplet. The relationship between the atomization parameters and the cooling rate of the molten droplet, as well as the mechanisms of hollow powder formation, was investigated. The results indicate that an increase in the initial temperature of the molten droplet resulted in a delay in its initial solidification time, while its cooling rate remained essentially unchanged. The cooling rate of the molten droplet increased with the increase in the gas velocity but decreased with the increase in the droplet diameter and gas temperature. Among these factors, the droplet diameter had the greatest impact on the cooling rate. During the solidification process, when the droplet’s surface layer was fully solidified, the trapped gas failed to escape and eventually became encapsulated within the solidified particle, resulting in the formation of hollow powder. Full article
Show Figures

Figure 1

19 pages, 6735 KB  
Article
Innovative Metal–Polymer Composite Panels with Integrated Channels for Thermal Management Systems Using Hybrid Friction Stir Channeling—HFSC
by Arménio N. Correia, Virgínia Infante, Daniel F. O. Braga, Ricardo Baptista and Pedro Vilaça
Metals 2026, 16(1), 16; https://doi.org/10.3390/met16010016 - 24 Dec 2025
Viewed by 318
Abstract
In this research, we assess the feasibility of employing hybrid friction stir channeling (HFSC) to produce composite panels that combined an 8 mm thick AA6082-T6 aluminum alloy and 5 mm thick glass-fiber-reinforced Noryl GFN2. HFSC is an innovative solid-state technology that combines both [...] Read more.
In this research, we assess the feasibility of employing hybrid friction stir channeling (HFSC) to produce composite panels that combined an 8 mm thick AA6082-T6 aluminum alloy and 5 mm thick glass-fiber-reinforced Noryl GFN2. HFSC is an innovative solid-state technology that combines both friction stir joining and channeling characteristics, which enable the generation of integral internal channels while joining different components. A parametric study was outlined to explore the effects of the travel speed, probe length, and tool plunging on the resulting composite panels. The resulting composite panels were subsequently subjected to a comprehensive analysis encompassing exterior ceiling quality, internal channel, and joining interface morphology. Depending on the processing parameters, the geometry of the channels was found to be quasi-rectangular or quasi-trapezoidal, with significant variability on cross-sectional area, resulting in hydraulic diameters ranging from 1.2 to 2.9 mm. The joining interface was characterized by a concavity of aluminum that was extruded downwards into the polymeric molten pool, which was clinched after polymeric re-solidification. The experimental results prove the ability to join metals and polymers while creating an integral channel in a single process step using HFSC. Despite the positive effect of irregular shaped channels on heat exchange, the numerical models evidenced a detrimental effect of 14.3 and 16.3% on ultimate tensile and flexural loads, respectively. This way, this fabrication technology evidenced promising characteristics that are suitable for manufacturing thermal management systems such as conformal cooling for plastic injection molding or battery trays for EVs. Full article
Show Figures

Figure 1

14 pages, 1582 KB  
Article
Chelating, Reducing, and Adsorbing Agents in Geopolymers for Heavy Metals Stabilization from Galvanic Sludge
by Francesco Genua, Mattia Giovini, Cristina Leonelli and Isabella Lancellotti
Polymers 2026, 18(1), 28; https://doi.org/10.3390/polym18010028 - 22 Dec 2025
Viewed by 318
Abstract
Hazardous galvanic sludge waste (GSW) from the electroplating industry, produced at 100,000–150,000 tonnes/year in the EU and containing high concentrations of Cr and Ni was successfully treated using metakaolin-based geopolymers via Stabilization/Solidification (S/S). The experimental design incorporated chelating (sodium diethyl dithio carbamate, C [...] Read more.
Hazardous galvanic sludge waste (GSW) from the electroplating industry, produced at 100,000–150,000 tonnes/year in the EU and containing high concentrations of Cr and Ni was successfully treated using metakaolin-based geopolymers via Stabilization/Solidification (S/S). The experimental design incorporated chelating (sodium diethyl dithio carbamate, C5H10NS2Na, DTC), reducing (sodium sulfide, Na2S), and adsorbing (hydroxyapatite, Ca5(PO4)3(OH), Hap) agents separately to improve heavy metal immobilization. The results demonstrated that Na2S drastically decreased Cr release by −98.7% by reducing mobile Cr(VI) to insoluble Cr(III). DTC reduced Ni leaching by −93.4%, forming sparingly soluble Ni(II)(DTC)2 complexes that precipitated within the matrix. Hap enhanced Ni retention by 55.5% via cation exchange but was ineffective for Cr due to electrostatic repulsion with the anion Cr(VI)O42− at the geopolymer’s high pH. This work is the first to apply geopolymerization coupled with these chemical agents for S/S of as-received galvanic waste, offering a highly efficient, low-carbon strategy to manage this hazardous industrial residue. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

24 pages, 3105 KB  
Article
Thermal Modeling and Investigation of Interlayer Dwell Time in Wire-Laser Directed Energy Deposition
by Panagis Foteinopoulos, Marios Moutsos and Panagiotis Stavropoulos
Appl. Sci. 2026, 16(1), 122; https://doi.org/10.3390/app16010122 - 22 Dec 2025
Viewed by 239
Abstract
This study investigates the effect of Interlayer Dwell Time (IDT) on the thermal behavior of the Wire-Laser Directed Energy Deposition (WLDED) process. A two-dimensional transient thermal model was developed in MATLAB, incorporating temperature-dependent material properties, a moving Gaussian heat source, and melting–solidification phase [...] Read more.
This study investigates the effect of Interlayer Dwell Time (IDT) on the thermal behavior of the Wire-Laser Directed Energy Deposition (WLDED) process. A two-dimensional transient thermal model was developed in MATLAB, incorporating temperature-dependent material properties, a moving Gaussian heat source, and melting–solidification phase change to simulate sequential layer deposition. The model was calibrated for thin-walled geometries, numerically validated using ANSYS, and experimentally validated with literature data. Using the validated model, twenty-seven cases were simulated to examine the combined influence of IDT, part length, and layer thickness on melt-pool dimensions and layer-wise temperature distribution. The results show that increasing IDT reduces melt-pool depth and length by limiting heat accumulation, with the magnitude of this effect depending strongly on part length and layer thickness. Shorter parts and thicker layers exhibit the highest sensitivity to IDT variations. Additionally, the Thermal Stability Factor (TSF) is introduced, a dimensionless index that effectively identifies heat-accumulation phenomena and indicates thermal instabilities. Overall, the findings enhance the understanding of the impact of IDT in the thermal profile of WLDED and demonstrate that optimized IDT selection can stabilize melt-pool geometry and reduce thermal buildup, supporting future adaptive IDT strategies in wire-based metal additive manufacturing. Full article
(This article belongs to the Special Issue Smart Manufacturing and Materials: 3rd Edition)
Show Figures

Figure 1

65 pages, 30714 KB  
Article
Directional Solidification of a Refractory Complex Concentrated Alloy (RCCA) Using Optical Floating Zone (OFZ) Solidification Processing: Implications for Alloy Design and Development
by Nik Tankov, Claire Utton and Panos Tsakiropoulos
Alloys 2025, 4(4), 29; https://doi.org/10.3390/alloys4040029 - 18 Dec 2025
Viewed by 369
Abstract
Some cast metallic alloys for ultra-high-temperature structural applications can have better mechanical properties compared with Ni-based superalloys. Research on the directional solidification (DS) of such alloys is limited. The production of DS components of these alloys with “tailor-made” microstructures in different parts of [...] Read more.
Some cast metallic alloys for ultra-high-temperature structural applications can have better mechanical properties compared with Ni-based superalloys. Research on the directional solidification (DS) of such alloys is limited. The production of DS components of these alloys with “tailor-made” microstructures in different parts of the component has not been considered. This paper attempts to address these issues. A bar of the RCCA/RM(Nb)IC with nominal composition 3.5Al–4Crc6Ge–1Hf–5Mo–36Nb–22Si–1.5Sn–20Ti–1W (at.%) was directionally grown using OFZ processing, where the growth rate R increased from 1.2 to 6 and then to 15 cm/h. The paper studies how the macrosegregation of the elements affected the microstructure in different parts of the bar. It was shown that the synergy of macrosegregation and growth rate produced microstructures from the edge to the centre of the OFZ bar and along the length of the OFZ bar that differed in type and chemical composition as R increased. Contamination with oxygen was confined to the “root” of the part of the bar that was grown with R = 1.2 cm/h. The concentrations of elements in the bar were related (a) to each of the parameters VEC, Δχ, and δ for different sections, (i) across the thickness and (ii) along the length of the bar, or to each other for different sections of the bar, and demonstrated the synergy and entanglement of processing, parameters, and elements. In the centre of the bar, the phases were the Nbss and Nb5Si3 for all R values. In the bar, the silicide formed with Nb/(Ti + Hf) less or greater than one. There was synergy of solutes in the solid solution and the silicide for all R values, and synergy and entanglement of the two phases. Owing to the synergy and entanglement of processing, parameters, elements, and phases, properties would “emerge” in each part of the bar. The creep and oxidation properties of the bar were calculated as guided by the alloy design methodology NICE. It was suggested that, in principle, a component based on a metallic UHTM with “functionally graded” composition, microstructure and properties could be directionally grown. Full article
Show Figures

Figure 1

15 pages, 3343 KB  
Article
Effect of Solidification Conditions on High-Cycle Fatigue Behavior in DD6 Single-Crystal Superalloy
by Hongji Xie, Yushi Luo, Yunsong Zhao and Zhenyu Yang
Metals 2025, 15(12), 1385; https://doi.org/10.3390/met15121385 - 17 Dec 2025
Viewed by 275
Abstract
This study investigates the influence of solidification conditions on the high-cycle fatigue (HCF) behavior of a second-generation DD6 single-crystal superalloy. Single-crystal bars with a [001] orientation were prepared using the high-rate solidification (HRS) and liquid-metal cooling (LMC) techniques under various pouring temperatures. The [...] Read more.
This study investigates the influence of solidification conditions on the high-cycle fatigue (HCF) behavior of a second-generation DD6 single-crystal superalloy. Single-crystal bars with a [001] orientation were prepared using the high-rate solidification (HRS) and liquid-metal cooling (LMC) techniques under various pouring temperatures. The HCF performance of the heat-treated alloy was subsequently evaluated at 800 °C using rotary bending fatigue tests. The results demonstrate that increasing the pouring temperature effectively reduced the content and size of microporosity in the HRS alloys. At an identical pouring temperature, the LMC alloy exhibited a significant reduction in microporosity, with its content and maximum pore size being only 44.4% and 45.8% of those in the HRS alloy, respectively. Consequently, the HCF performance was enhanced with increasing pouring temperature for the HRS alloys. The LMC alloy outperformed its HRS counterpart processed at the same temperature, showing a 9.4% increase in the conditional fatigue limit (at 107 cycles). Microporosity was identified as the dominant site for HCF crack initiation at 800 °C. The role of γ/γ′ eutectic in crack initiation diminished or even vanished as the solidification conditions were optimized. Fractographic analysis revealed that the HCF fracture mechanism was quasi-cleavage, independent of the solidification conditions. Under a typical stress amplitude of 550 MPa, the deformation mechanism was characterized by the slip of a/2<011> dislocations within the γ matrix channels, which was also unaffected by the solidification conditions. In conclusion, optimizing solidification conditions, such as by increasing the pouring temperature or employing the LMC process, enhances the HCF performance of the DD6 alloy primarily by refining microporosity, which in turn prolongs the fatigue crack initiation life. Full article
(This article belongs to the Section Metal Failure Analysis)
Show Figures

Figure 1

21 pages, 6204 KB  
Article
Numerical Simulation of Temperature Field, Velocity Field and Solidification Microstructure Evolution of Laser Cladding AlCoCrFeNi High Entropy Alloy Coatings
by Andi Huang, Yilong Liu, Xin Li, Jingang Liu and Shiping Yang
Lubricants 2025, 13(12), 541; https://doi.org/10.3390/lubricants13120541 - 12 Dec 2025
Viewed by 497
Abstract
In this study, a multiphysics coupling numerical model was developed to investigate the thermal-fluid dynamics and microstructure evolution during the laser metal deposition of AlCoCrFeNi high-entropy alloy (HEA) coatings on 430 stainless steel substrates. The model integrated laser-powder interactions, temperature-dependent material properties, and [...] Read more.
In this study, a multiphysics coupling numerical model was developed to investigate the thermal-fluid dynamics and microstructure evolution during the laser metal deposition of AlCoCrFeNi high-entropy alloy (HEA) coatings on 430 stainless steel substrates. The model integrated laser-powder interactions, temperature-dependent material properties, and the coupled effects of buoyancy and Marangoni convection on melt pool dynamics. The simulation results were compared with experimental data to validate the model’s effectiveness. The simulations revealed a strong bidirectional coupling between temperature and flow fields in the molten pool: the temperature distribution governed surface tension gradients that drove Marangoni convection patterns, while the resulting fluid motion dominated heat redistribution and pool morphology. Initially, the Peclet number (PeT) remained below 5, indicating conduction-controlled heat transfer with a hemispherical melt pool. As the process progressed, PeT exceeded 50 at maximum flow velocities of 2.31 mm/s, transitioning the pool from a circular to an elliptical geometry with peak temperatures reaching 2850 K, where Marangoni convection became the primary heat transfer mechanism. Solidification parameter distributions (G and R) were computed and quantitatively correlated with scanning electron microscopy (SEM)-observed microstructures to elucidate the columnar-to-equiaxed transition (CET). X-ray diffraction (XRD) analysis identified body-centered cubic (BCC), face-centered cubic (FCC), and ordered B2 phases within the coating. The resulting hierarchical microstructure, transitioning from fine equiaxed surface grains to coarse columnar interfacial grains, synergistically enhanced surface properties and established robust metallurgical bonding with the substrate. Full article
(This article belongs to the Special Issue Mechanical Tribology and Surface Technology, 2nd Edition)
Show Figures

Figure 1

11 pages, 5534 KB  
Article
Static Magnetic Field Impact on Laser Weld Bead Morphology of Sn-10%wt.Pb Alloy
by Imants Kaldre, Aleksandrs Kleinhofs, Valdemars Felcis and Valters Dzelme
Metals 2025, 15(12), 1344; https://doi.org/10.3390/met15121344 - 8 Dec 2025
Viewed by 272
Abstract
Additive manufacturing (AM) offers significant potential but faces challenges in controlling rapid solidification processes due to thermal conditions. The application of magnetic fields provides a promising path to influence liquid metal behavior during solidification. Thermoelectromagnetic convection (TEMC) is one of the mechanisms by [...] Read more.
Additive manufacturing (AM) offers significant potential but faces challenges in controlling rapid solidification processes due to thermal conditions. The application of magnetic fields provides a promising path to influence liquid metal behavior during solidification. Thermoelectromagnetic convection (TEMC) is one of the mechanisms by which an applied static magnetic field can induce melt flow, where thermal gradients at the solid–liquid interface generate thermoelectric currents, and in the presence of an external magnetic field induce Lorentz force that drives liquid convection, leading to enhanced heat transfer. This study investigates the impact of moderate static magnetic fields on the laser melting process of a Sn-10%wt.Pb alloy. It is found that applying a magnetic field significantly widens and deepens laser weld beads. Bead depth and width under different field strengths and orientations are measured. Numerical models are developed to calculate the TEMC current distribution and flow in the melt pool. Full article
Show Figures

Figure 1

Back to TopTop