Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (570)

Search Parameters:
Keywords = metal sheet forming

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 9214 KiB  
Article
Tribological Performance of Direct Metal Laser Sintered 20MnCr5 Tool Steel Countersamples Designed for Sheet Metal Forming Applications
by Krzysztof Żaba, Marcin Madej, Beata Leszczyńska-Madej, Tomasz Trzepieciński and Ryszard Sitek
Appl. Sci. 2025, 15(15), 8711; https://doi.org/10.3390/app15158711 (registering DOI) - 6 Aug 2025
Abstract
This article presents the results of the tribological performance of 20MnCr5 (1.7147) tool steel countersamples produced by Direct Metal Laser Sintering (DMLS), as a potential material for inserts or working layers of sheet metal forming tools. Tribological tests were performed using a roller-block [...] Read more.
This article presents the results of the tribological performance of 20MnCr5 (1.7147) tool steel countersamples produced by Direct Metal Laser Sintering (DMLS), as a potential material for inserts or working layers of sheet metal forming tools. Tribological tests were performed using a roller-block tribotester. The samples were sheet metals made of materials with significantly different properties: Inconel 625, titanium-stabilised stainless steel 321, EN AW-6061 T0 aluminium alloy, and pure copper. The samples and countersamples were analysed in terms of their wear resistance, coefficient of friction (COF), changes in friction force during testing, and surface morphology after tribological contact under dry friction conditions. The tests were performed on DMLSed countersamples in the as-received state. The largest gain of countersample mass was observed for the 20MnCr5/EN AW-6061 T0 friction pair. The sample mass loss in this combination was also the largest, amounting to 19.96% of the initial mass. On the other hand, in the 20MnCr5/Inconel 625 friction pair, no significant changes in the mass of materials were recorded. For the Inconel 625 sample, a mass loss of 0.04% was observed. The basic wear mechanism of the samples was identified as abrasive wear. The highest friction forces were observed in the 20MnCr5/Cu friction pair (COF = 0.913) and 20MnCr5/EN AW-6061 T0 friction pair (COF = 1.234). The other two samples (Inconel 625, 321 steel) showed a very stable value of the friction force during the roller-block test resulting in a COF between 0.194 and 0.213. Based on the changes in friction force, COFs, and mass changes in friction pair components during wear tests, it can be concluded that potential tools in the form of inserts or working layers manufactured using 3D printing technology, the DMLS method, without additional surface treatment can be successfully used for forming sheets of 321 steel and Inconel 625. Full article
Show Figures

Figure 1

16 pages, 3316 KiB  
Article
Experimental Study on the Electromagnetic Forming Behavior of Pre-Painted Al 99.0 Sheet
by Dorin Luca, Vasile Șchiopu and Dorian D. Luca
J. Manuf. Mater. Process. 2025, 9(8), 259; https://doi.org/10.3390/jmmp9080259 - 3 Aug 2025
Viewed by 181
Abstract
Development of forming methods for surface-coated metals is a current concern due to their economic and environmental advantages. For a successful forming operation, it is necessary that both components, the substrate and the coating, are able to withstand stress without damage until the [...] Read more.
Development of forming methods for surface-coated metals is a current concern due to their economic and environmental advantages. For a successful forming operation, it is necessary that both components, the substrate and the coating, are able to withstand stress without damage until the final shape and dimensions are reached. This goal can be achieved through good knowledge of the elastic and plastic properties of the substrate and the coating, the compatibility between them, the appropriate surface treatment, and the rigorous control of technological forming parameters. Our study was carried out with flat specimens of pre-painted Al 99.0 sheet that were electromagnetically formed by bulging. Forming behavior was investigated as depending on the initial thickness of the substrate, on the aluminum sheet pretreatment, as well as on the plastic deformation path of the metal–paint structure. To verify the damage to the paint layer, tests with increasing strains were performed, and the interface between the metal and the coating layer was investigated by scanning electron microscopy. The obtained results indicate that electromagnetic forming of pre-painted sheets can be a feasible method for specific applications if the forming degree of the substrate is tightly correlated with the type of desired coating and with the pretreatment method used for the metal surface. Full article
Show Figures

Figure 1

20 pages, 4765 KiB  
Article
Ultrasonic EDM for External Cylindrical Surface Machining with Graphite Electrodes: Horn Design and Hybrid NSGA-II–AHP Optimization of MRR and Ra
by Van-Thanh Dinh, Thu-Quy Le, Duc-Binh Vu, Ngoc-Pi Vu and Tat-Loi Mai
Machines 2025, 13(8), 675; https://doi.org/10.3390/machines13080675 - 1 Aug 2025
Viewed by 199
Abstract
This study presents the first investigation into the application of ultrasonic vibration-assisted electrical discharge machining (UV-EDM) using graphite electrodes for external cylindrical surface machining—an essential surface in the production of tablet punches and sheet metal-forming dies. A custom ultrasonic horn was designed and [...] Read more.
This study presents the first investigation into the application of ultrasonic vibration-assisted electrical discharge machining (UV-EDM) using graphite electrodes for external cylindrical surface machining—an essential surface in the production of tablet punches and sheet metal-forming dies. A custom ultrasonic horn was designed and fabricated using 90CrSi material to operate effectively at a resonant frequency of 20 kHz, ensuring stable vibration transmission throughout the machining process. A Box–Behnken experimental design was employed to explore the effects of five process parameters—vibration amplitude (A), pulse-on time (Ton), pulse-off time (Toff), discharge current (Ip), and servo voltage (SV)—on two key performance indicators: material removal rate (MRR) and surface roughness (Ra). The optimization process was conducted in two stages: single-objective analysis to maximize MRR while ensuring Ra < 4 µm, followed by a hybrid multi-objective approach combining NSGA-II and the Analytic Hierarchy Process (AHP). The optimal solution achieved a high MRR of 9.28 g/h while maintaining Ra below the critical surface finish threshold, thus meeting the practical requirements for punch surface quality. The findings confirm the effectiveness of the proposed horn design and hybrid optimization strategy, offering a new direction for enhancing productivity and surface integrity in cylindrical EDM applications using graphite electrodes. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

21 pages, 9556 KiB  
Article
DP600 Steel Stampability Analysis Through Microstructural Characterization by Electron Backscatter Diffraction and Nanoindentation
by Rafael Guetter Bohatch, Alex Raimundo de Oliveira, Chetan P. Nikhare, Ravilson Antonio Chemin Filho and Paulo Victor Prestes Marcondes
J. Manuf. Mater. Process. 2025, 9(7), 234; https://doi.org/10.3390/jmmp9070234 - 8 Jul 2025
Viewed by 418
Abstract
In recent decades, the automotive industry has faced challenges around improving energy efficiency, reducing pollutant emissions, increasing occupant safety, and reducing production costs. To solve these challenges, it is necessary to reduce the weight of vehicle bodies. In this way, the steel industry [...] Read more.
In recent decades, the automotive industry has faced challenges around improving energy efficiency, reducing pollutant emissions, increasing occupant safety, and reducing production costs. To solve these challenges, it is necessary to reduce the weight of vehicle bodies. In this way, the steel industry has developed more efficient metal alloys. To combine vehicle mass reduction with improved performance in deformations in cases of impact, a new family of advanced steels is present, AHSS (Advanced High-Strength Steels). However, this family of steels has lower formability and greater springback compared to conventional steels; if it is not properly controlled, it will directly affect the accuracy of the product and its quality. Different regions of a stamped component, such as the flange, the body wall, and the punch pole, are subjected to different states of stress and deformation, determined by numerous process variables, such as friction/lubrication and tool geometry, in addition to blank holder force and drawbead geometry, which induce the material to different deformation modes. Thus, it is understood that the degree of work hardening in each of these regions can be evaluated by grain morphology and material hardening, defining critical regions of embrittlement that, consequently, will affect the material’s stampability. This work aims to study the formability of the cold-formed DP600 steel sheets in the die radius region using a Modified Nakazima test, varying drawbead geometry, followed by a nanohardness evaluation and material characterization through the electron backscatter diffraction (EBSD). The main objective is to analyze the work hardening in the critical blank regions by applying these techniques. The nanoindentation evaluations were consistent in die radius and demonstrated the hardening influence, proving that the circular drawbead presented the most uniform hardness variation along the profile of the stamped blank and presented lower hardness values in relation to the other geometries, concluding that the drawbead attenuates this variation, contributing to better sheet formability, which corroborates the Forming Limit Curve results. Full article
(This article belongs to the Special Issue Advances in Material Forming: 2nd Edition)
Show Figures

Figure 1

25 pages, 5042 KiB  
Article
Surface Topography-Based Classification of Coefficient of Friction in Strip-Drawing Test Using Kohonen Self-Organising Maps
by Krzysztof Szwajka, Tomasz Trzepieciński, Marek Szewczyk, Joanna Zielińska-Szwajka and Ján Slota
Materials 2025, 18(13), 3171; https://doi.org/10.3390/ma18133171 - 4 Jul 2025
Viewed by 389
Abstract
One of the important parameters of the sheet metal forming process is the coefficient of friction (CoF). Therefore, monitoring the friction coefficient value is essential to ensure product quality, increase productivity, reduce environmental impact, and avoid product defects. Conventional CoF monitoring techniques pose [...] Read more.
One of the important parameters of the sheet metal forming process is the coefficient of friction (CoF). Therefore, monitoring the friction coefficient value is essential to ensure product quality, increase productivity, reduce environmental impact, and avoid product defects. Conventional CoF monitoring techniques pose a number of problems, including the difficulty in identifying the features of force signals that are sensitive to the variation in the coefficient of friction. To overcome these difficulties, this paper proposes a new approach to apply unsupervised artificial intelligence techniques with unbalanced data to classify the CoF of DP780 (HCT780X acc. to EN 10346:2015 standard) steel sheets in strip-drawing tests. During sheet metal forming (SMF), the CoF changes owing to the evolution of the contact conditions at the tool–sheet metal interface. The surface topography, the contact loads, and the material behaviour affect the phenomena in the contact zone. Therefore, classification is required to identify possible disturbances in the friction process causing the change in the CoF, based on the analysis of the friction process parameters and the change in the sheet metal’s surface roughness. The Kohonen self-organising map (SOM) was created based on the surface topography parameters collected and used for CoF classification. The CoF determinations were performed in the strip-drawing test under different lubrication conditions, contact pressures, and sliding speeds. The results showed that it is possible to classify the CoF using an SOM for unbalanced data, using only the surface roughness parameter Sq and selected friction test parameters, with a classification accuracy of up to 98%. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

15 pages, 3183 KiB  
Article
Platinum-Functionalized Hierarchically Structured Flower-like Nickel Ferrite Sheets for High-Performance Acetone Sensing
by Ziwen Yang, Zhen Sun, Yuhao Su, Caixuan Sun, Peishuo Wang, Shaobin Yang, Xueli Yang and Guofeng Pan
Chemosensors 2025, 13(7), 234; https://doi.org/10.3390/chemosensors13070234 - 26 Jun 2025
Viewed by 535
Abstract
Acetone detection is crucial for non-invasive health monitoring and environmental safety, so there is an urgent demand to develop high-performance gas sensors. Here, platinum (Pt)-functionalized layered flower-like nickel ferrite (NiFe2O4) sheets were efficiently fabricated via facile hydrothermal synthesis and [...] Read more.
Acetone detection is crucial for non-invasive health monitoring and environmental safety, so there is an urgent demand to develop high-performance gas sensors. Here, platinum (Pt)-functionalized layered flower-like nickel ferrite (NiFe2O4) sheets were efficiently fabricated via facile hydrothermal synthesis and wet chemical reduction processes. When the Ni/Fe molar ratio is 1:1, the sensing material forms a Ni/NiO/NiFe2O4 composite, with performance further optimized by tuning Pt loading. At 1.5% Pt mass fraction, the sensor shows a high acetone response (Rg/Ra = 58.33 at 100 ppm), a 100 ppb detection limit, fast response/recovery times (7/245 s at 100 ppm), and excellent selectivity. The enhancement in performance originates from the synergistic effect of the structure and Pt loading: the layered flower-like morphology facilitates gas diffusion and charge transport, while Pt nanoparticles serve as active sites to lower the activation energy of acetone redox reactions. This work presents a novel strategy for designing high-performance volatile organic compound (VOC) sensors by combining hierarchical nanostructured transition metal ferrites with noble metal modifications. Full article
(This article belongs to the Special Issue Recent Progress in Nano Material-Based Gas Sensors)
Show Figures

Graphical abstract

12 pages, 3201 KiB  
Article
Experimental and Numerical Analysis of Friction Effects in the Forming of Thin EN AW 8006-O Aluminum Sheets
by Gianluca Parodo, Luca Sorrentino, Sandro Turchetta and Giuseppe Moffa
Metals 2025, 15(7), 695; https://doi.org/10.3390/met15070695 - 22 Jun 2025
Viewed by 405
Abstract
This work investigates the role of friction in the numerical prediction of formability for ultra-thin aluminum sheets made of the EN AW 8006-O alloy. Nakazima-type hemispherical punch stretching tests were conducted under lubricated conditions to assess the influence of interface tribology on thickness [...] Read more.
This work investigates the role of friction in the numerical prediction of formability for ultra-thin aluminum sheets made of the EN AW 8006-O alloy. Nakazima-type hemispherical punch stretching tests were conducted under lubricated conditions to assess the influence of interface tribology on thickness distribution and failure behavior. The experimental activity included tensile testing for material parameter identification and coefficient of friction (COF) measurements according to ASTM D1894 to characterize interface friction. These parameters were then implemented into a finite element model developed in PAM-STAMP. The simulation results were compared with experimental thickness profiles, and showed good agreement when calibrated friction coefficients were used. The analysis highlights the sensitivity of sheet deformation to frictional conditions, and demonstrates that accurate tribological input significantly improves predictive accuracy. The proposed workflow offers a reliable and efficient methodology for simulating forming processes involving ultra-thin aluminum foils, with potential applications in the food packaging industry. Full article
(This article belongs to the Special Issue Advances in Lightweight Alloys, 2nd Edition)
Show Figures

Figure 1

16 pages, 2524 KiB  
Article
Impact of Lubrication on Shear Deformation During Asymmetrical Rolling: A Viscoplastic Analysis of Slip System Activity Using an Affine Linearization Scheme
by I Putu Widiantara, Siti Fatimah, Warda Bahanan, Jee-Hyun Kang and Young Gun Ko
Lubricants 2025, 13(6), 265; https://doi.org/10.3390/lubricants13060265 - 15 Jun 2025
Viewed by 385
Abstract
In industrial applications, rolling is commonly performed with lubrication to prevent undesirable modification of the sheet. Although it is well established that lubrication influences the microstructure and texture of deformed sheets through its effect on shear deformation, the underlying mechanisms remain insufficiently understood. [...] Read more.
In industrial applications, rolling is commonly performed with lubrication to prevent undesirable modification of the sheet. Although it is well established that lubrication influences the microstructure and texture of deformed sheets through its effect on shear deformation, the underlying mechanisms remain insufficiently understood. In this study, we investigated how lubrication affects slip system activity during asymmetrical rolling, using viscoplastic modeling of BCC ferritic steel. Two conditions—lubricated and non-lubricated samples—were examined under asymmetrical rolling. Slip system activity was inferred from the rotation axes between pairs of orientations separated by low-angle grain boundaries, based on the assumption that such boundaries represent the simplest form of orientation change. A Viscoplastic Self-Consistent (VPSC) model employing an affine linearization scheme was used. This proved sufficient for evaluating slip system activity in BCC polycrystalline metals undergoing early-stage plastic deformation involving either plane strain or combined plane strain and shear. The results demonstrated that lubrication had a limiting effect by reducing the penetration of shear deformation through the thickness of the sample. Understanding this effect could enable the optimization of lubrication strategies—not only to minimize defects such as bending, but also to achieve microstructural characteristics favorable for industrial applications. Full article
Show Figures

Figure 1

26 pages, 9313 KiB  
Article
Investigating Resulting Surface Topography and Residual Stresses in Bending DC01 Sheet Under Tension Friction Test
by Krzysztof Szwajka, Tomasz Trzepieciński, Marek Szewczyk, Joanna Zielińska-Szwajka and Marek Barlak
Lubricants 2025, 13(6), 255; https://doi.org/10.3390/lubricants13060255 - 9 Jun 2025
Viewed by 472
Abstract
This article presents the results of experimental studies aimed at determining the values of residual stresses and coefficient of friction (CoF) in bending under tension friction test, which simulates friction conditions in sheet metal forming. The influence of surface modification of the countersample [...] Read more.
This article presents the results of experimental studies aimed at determining the values of residual stresses and coefficient of friction (CoF) in bending under tension friction test, which simulates friction conditions in sheet metal forming. The influence of surface modification of the countersample and CoFs between the countersample and DC01 steel sheet on the residual stress were analysed. This study also focused on the influence of surface modification of countersamples on the change of the main parameters of DC01 steel sheets. The hole-drilling method was used to determine residual stresses. Electron beam melting, lead-ion implantation and a combination of these two techniques were used to modify the surface layer of 145Cr6 steel countersamples. The maximum value of the CoF, about 0.31, was found for the electron beam melted countersample. As a result of the surface modification process, this countersample was characterised by the lowest value of average roughness, which directly influenced the increase in the real contact area. The occurrence of residual tensile stresses was observed near the surface layer of the sheet strip in contact with the countersample. With the increase of the considered depth of residual stress measurement, the residual tensile stresses were transformed into compressive residual stresses with a value between −75 and −50 MPa, depending on the type of friction pair. SEM analyses allowed us to identify two main friction mechanisms for all friction pairs: adhesion and abrasive wear. Full article
Show Figures

Figure 1

13 pages, 3459 KiB  
Article
Incremental Forming of Natural Fiber-Reinforced Polypropylene Composites: Considerations on Formability Limits and Energy Consumption
by Antonio Formisano, Dario De Fazio, Giuseppe Irace and Massimo Durante
Materials 2025, 18(12), 2688; https://doi.org/10.3390/ma18122688 - 7 Jun 2025
Viewed by 478
Abstract
Incremental sheet forming originated as an excellent alternative to conventional forming techniques for incrementally deforming flat metal sheets into complex three-dimensional profiles. Recently, its use has been extended to polymers and composites. Among these, the use of natural fiber-reinforced composites is increasing considerably [...] Read more.
Incremental sheet forming originated as an excellent alternative to conventional forming techniques for incrementally deforming flat metal sheets into complex three-dimensional profiles. Recently, its use has been extended to polymers and composites. Among these, the use of natural fiber-reinforced composites is increasing considerably compared to synthetic fiber-reinforced composites, due to the availability and unique properties of natural fibers in polymer applications. One of the dominant thermoplastics used as a matrix is polypropylene. This experimental study focuses on the incremental forming of natural fiber-reinforced polypropylene composites. Cones and spherical caps were manufactured from composite laminates of polypropylene reinforced with hemp and flax long-fiber fabrics. The formability limits, observed through failures and defects, as well as the forming forces, power, and energy consumption, were investigated to examine the feasibility of incremental forming applied to these composite materials; based on the results obtained, it is possible to say that the process can manufacture components with not very high wall angles but under low load conditions and allowing to limit the energy impact. Full article
(This article belongs to the Special Issue Manufacturing and Recycling of Natural Fiber-Reinforced Composites)
Show Figures

Figure 1

15 pages, 3488 KiB  
Article
Prediction of Large Springback in the Forming of Long Profiles Implementing Reverse Stretch and Bending
by Mohammad Reza Vaziri Sereshk and Hamed Mohamadi Bidhendi
J. Exp. Theor. Anal. 2025, 3(2), 16; https://doi.org/10.3390/jeta3020016 - 6 Jun 2025
Viewed by 317
Abstract
Springback represents the deflection of a workpiece after releasing the forming tools or dies, which influences the quality and precision of the final products. It is basically governed by the elastic strain recovery of the material after unloading. Most approaches only implement reverse [...] Read more.
Springback represents the deflection of a workpiece after releasing the forming tools or dies, which influences the quality and precision of the final products. It is basically governed by the elastic strain recovery of the material after unloading. Most approaches only implement reverse bending to determine the final shape of the formed product. However, stretch plays significant role whe the blank is held by a blank holder. In this paper, an algorithm is presented to calculate the contributions of both stretch loads and bending moments to elastic deformation during springback for each element, and to combine them mathematically and geometrically to achieve the final shape of the product. Comparing the results of this algorithm for different sheet metal forming processes with experimental measurements demonstrates that this technique successfully predicts a wide range of springback with reasonable accuracy. The advantage of this approach is its accuracy, which is not sensitive to hardening and softening mechanisms, the magnitude of plastic deformation during the forming process, or the size of the object. The application of the proposed formulation is limited to long profiles (plane-strain cases). However, it can be extended to more general applications by adding the effect of torsion and developing equations in 3D space. Due to the explicit nature of the calculations, data-processing time would be reduced significantly compared to the sophisticated algorithms used in commercial software. Full article
Show Figures

Figure 1

10 pages, 1472 KiB  
Technical Note
Modeling of Tensile Tests Flow Curves Using an Explicit Piecewise Inverse Approach
by Aditya Vuppala, Holger Brüggemann, David Bailly and Emad Scharifi
Metals 2025, 15(6), 638; https://doi.org/10.3390/met15060638 - 5 Jun 2025
Viewed by 438
Abstract
Tensile tests are a common method for characterizing plastic behavior for sheet metal forming applications. During tensile testing at the beginning of the deformation, the stress state is uniaxial; however, as the deformation proceeds, the state changes to triaxial, making the post-processing of [...] Read more.
Tensile tests are a common method for characterizing plastic behavior for sheet metal forming applications. During tensile testing at the beginning of the deformation, the stress state is uniaxial; however, as the deformation proceeds, the state changes to triaxial, making the post-processing of experimental data challenging using analytical methods. In contrast, inverse approaches in which the behavior is represented by constitutive equations and the parameters are fitted using an iterative procedure are extremely dependent on the empirical equation chosen at the outset and can be computationally expensive. The inverse piecewise flow curve determination method, previously developed for compression tests, is extended in this paper to tensile testing. A stepwise approach is proposed to calculate constant strain rate flow curves accounting for the unique characteristics of tensile deformation. To capture the effects of localized strain rate variations during necking, a parallel flow curve determination strategy is introduced. Tensile test flow curves for manganese-boron steel 22MnB5, a material commonly used in hot stamping applications, are determined, and the approach is demonstrated for virtual force–displacement curves. It has been shown that these curves can replicate the virtual experimental flow curves data with a maximum deviation of 1%. Full article
Show Figures

Figure 1

26 pages, 3344 KiB  
Review
A Holistic Review of Surface Texturing in Sheet Metal Forming: From Sheet Rolling to Final Forming
by Paulo L. Monteiro and Henara L. Costa
Lubricants 2025, 13(6), 253; https://doi.org/10.3390/lubricants13060253 - 5 Jun 2025
Cited by 1 | Viewed by 891
Abstract
Skin-pass cold rolling is a crucial step in sheet metal production, modifying the sheet surface topography, ensuring thickness uniformity, and enhancing tribological performance. A key factor in this process is the surface texturing of work rolls, which, when transferred to the rolled sheet, [...] Read more.
Skin-pass cold rolling is a crucial step in sheet metal production, modifying the sheet surface topography, ensuring thickness uniformity, and enhancing tribological performance. A key factor in this process is the surface texturing of work rolls, which, when transferred to the rolled sheet, directly affects lubrication distribution and formability in subsequent stamping operations. Properly textured sheets promote lubricant retention, reducing friction and wear, while roll wear can compromise texture transfer, leading to defects in the final product. This review presents a holistic view of surface texturing from the roll topography to the final product. First, it explores different texturing methods for work rolls, analyzing their efficiency, durability, and impact on texture transfer. Then, alternative texturing techniques and coatings are discussed as strategies to mitigate roll wear. By assessing the relationship between roll texturing and sheet drawability, this study provides insights to improve industrial processes, enhance product quality, and promote more sustainable manufacturing solutions. Full article
Show Figures

Figure 1

13 pages, 7042 KiB  
Article
Electrochemical Sensor Capable of Enhancing Dopamine Sensitivity Based on Micron-Sized Metal–Organic Frameworks
by Ruhui Yan, Yuewu Zhao, Huaixiao Geng, Mengxia Yan, Jine Wang and Shuang Han
Biosensors 2025, 15(6), 348; https://doi.org/10.3390/bios15060348 - 30 May 2025
Viewed by 484
Abstract
Micron-sized, ultrathin metal–organic framework (MOF) sheet is a two-dimensional (2D) hybrid material with a large specific surface area, which can be used not only in the fields of energy and biomedicine, but also in electrode modification to improve the electrochemical detection effect. In [...] Read more.
Micron-sized, ultrathin metal–organic framework (MOF) sheet is a two-dimensional (2D) hybrid material with a large specific surface area, which can be used not only in the fields of energy and biomedicine, but also in electrode modification to improve the electrochemical detection effect. In this work, the 2D-structured Co-TCPP(Fe) MOF sheets were synthesized from porphyrin molecules and cobalt ions and then combined with reduced graphene oxide (rGO) and perfluorosulfonic acid polymer (Nafion) solution to construct Co-TCPP(Fe)/rGO/Nafion-modified electrodes capable of sensitively capturing dopamine (DA). The 2D ultrathin lamellar structure of this electrode-modified material is beneficial to the formation of π-π stacking effect with DA molecules, and the oxygen-containing groups carried on its surface can also form electrostatic attraction with the amino groups of DA molecules. Therefore, the Co-TCPP(Fe)/rGO/Nafion-modified electrode under the synergistic effect shows a specific adsorption effect on DA molecules, resulting in high anti-interference ability and a low detection limit of 0.014 µM in the concentration range of 0.1–100 µM. Furthermore, the Co-TCPP(Fe)/rGO/Nafion composite material composed of micron-sized, ultrathin lamellar structures also shows high reusability due to the stability of its coordination structure and can demonstrate good results when applied to the actual sample detection of human urine. Full article
(This article belongs to the Special Issue Advances in Biosensors Based on Framework Materials)
Show Figures

Figure 1

25 pages, 7210 KiB  
Article
Determination of Interface Fracture Parameters in Thermoplastic Fiber Metal Laminates Under Mixed-Mode I+II
by Michał Smolnicki and Szymon Duda
Polymers 2025, 17(11), 1462; https://doi.org/10.3390/polym17111462 - 24 May 2025
Viewed by 557
Abstract
Thermoplastic fiber metal laminates (FMLs) are hybrid material systems that consist of a thin aluminum alloy sheet bonded to plies of fiber-reinforced adhesive. They provide excellent properties like fatigue strength, damage-tolerant properties, and inherent resistance to corrosion. However, they are still challenging materials [...] Read more.
Thermoplastic fiber metal laminates (FMLs) are hybrid material systems that consist of a thin aluminum alloy sheet bonded to plies of fiber-reinforced adhesive. They provide excellent properties like fatigue strength, damage-tolerant properties, and inherent resistance to corrosion. However, they are still challenging materials in terms of the metal–composite interface, which is the weakest link in this material system. In this paper, an experimental–numerical method for the determination of the fracture stress and energy for metal–composite interlayer is presented and verified. The proposed method utilizes four different experimental tests: DCB test (interface opening—mode I), ENF test (interface shearing—mode II), MMB test (mixed-mode I+II—opening with the shearing of the interface) and three-point bending test (3PB). For each test, digital twin in the form of a numerical model is prepared. The established numerical models for DCB and ENF allowed us to determine fracture stress and energy for mode I and mode II, respectively. On the basis of the numerical and experimental (from the MMB test) data, the B-K exponent is determined. Finally, the developed material model is verified in a three-point bending test, which results in mixed-mode conditions. The research is conducted on the thermoplastic FML made of aluminum alloy sheet and glass fiber reinforced polyamide 6. The research presented is complemented by fundamental mechanical tests, image processing and Scanning Electron Microscopy (SEM) analysis. As an effect, for the tested material, fracture parameters are determined using the described method. Full article
(This article belongs to the Special Issue Advances in Fatigue and Fracture of Fiber-Reinforced Polymers)
Show Figures

Graphical abstract

Back to TopTop