Electrochemical Sensor Capable of Enhancing Dopamine Sensitivity Based on Micron-Sized Metal–Organic Frameworks
Abstract
1. Introduction
2. Experimental Section
2.1. Chemicals
2.2. Synthesis of Co-TCPP(Fe) MOF Materials
2.3. Synthesis of Co-TCPP(Fe)/rGO/Nafion Composite Materials
2.4. Preparation of Co-TCPP(Fe)/rGO/Nafion-Modified Electrode
2.5. Electrochemical Analysis
2.6. Actual Samples
2.7. Characterization
3. Results and Discussion
3.1. Characterization of the Synthesized MOF Materials
3.2. Electrochemical Performance of the MOF/rGO/Nafion Composites
3.3. Detection DA of the MOF/rGO/Nafion Composites
3.4. Detection Sensitivity of the MOF/rGO/Nafion Composites
3.5. Stability and Selectivity of the MOF/rGO/Nafion Composites
3.6. Detection of Real Samples of Human Urine
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ayano, G. Dopamine: Receptors, functions, synthesis, pathways, locations and mental disorders: Review of literatures. J. Ment. Disord. Treat. 2016, 2, 1000120. [Google Scholar] [CrossRef]
- Seeman, P.; Bzowej, N.H.; Guan, H.C.; Bergeron, C.; Reynolds, G.P.; Bird, E.D.; Riederer, P.; Jellinger, K.; Tourtellotte, W.W. Human brain D1 and D2 dopamine receptors in schizophrenia, Alzheimer’s, Parkinson’s, and Huntington’s diseases. Neuropsychopharmacology 1987, 1, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Yao, B.; Li, N.; Lin, S.; Huang, Z. Association of dopamine beta-hydroxylase polymorphisms with Alzheimer’s disease, Parkinson’s disease and schizophrenia: Evidence based on currently available loci. Cell Physiol. Biochem. 2018, 51, 411–428. [Google Scholar] [CrossRef]
- GBD 2021 Nervous System Disorders Collaborators. Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet Neurol. 2024, 23, 344–381. [Google Scholar] [CrossRef]
- Zhu, J.; Cui, Y.; Zhang, J.; Yan, R.; Su, D.; Zhao, D.; Wang, A.; Feng, T. Temporal trends in the prevalence of Parkinson’s disease from 1980 to 2023: A systematic review and meta-analysis. Lancet Healthy Longev. 2024, 5, 464–479. [Google Scholar] [CrossRef]
- Chen, Y.; Gu, Y.; Wang, B.; Wei, A.; Dong, N.; Jiang, Y.; Liu, X.; Zhu, L.; Zhu, F.; Tan, T.; et al. Synaptotagmin-11 deficiency mediates schizophrenia-like behaviors in mice via dopamine over-transmission. Nat. Commun. 2024, 15, 10571. [Google Scholar] [CrossRef] [PubMed]
- Latif, S.; Jahangeer, M.; Razia, D.M.; Ashiq, M.; Ghaffar, A.; Akram, M.; El Allam, A.; Bouyahya, A.; Garipova, L.; Shariati, M.A.; et al. Dopamine in Parkinson’s disease. Clin. Chim. Acta 2021, 522, 114–126. [Google Scholar] [CrossRef]
- Wu, L.; Feng, L.; Ren, J.; Qu, X. Electrochemical detection of dopamine using porphyrin-functionalized graphene. Biosens. Bioelectron. 2012, 34, 57–62. [Google Scholar] [CrossRef]
- Dai, F.; Fan, W.; Bi, J.; Jiang, P.; Liu, D.; Zhang, X.; Lin, H.; Gong, C.; Wang, R.; Zhang, L.; et al. A lead-porphyrin metal-organic framework: Gas adsorption properties and electrocatalytic activity for water oxidation. Dalton Trans. 2016, 45, 61–65. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Krivosudský, L.; Cherevan, A.; Eder, D. Polyoxometalate-based porphyrinic metal-organic frameworks as heterogeneous catalysts. Coordin. Chem. Rev. 2024, 508, 215764. [Google Scholar] [CrossRef]
- Chiu, Y.; Chan, W.; Chen, T. Electrochemical CO2 reduction by heterogeneous catalysts of 2D metal-organic frameworks comprising metal-coordinated porphyrins. Electrochim. Acta 2025, 511, 145389. [Google Scholar] [CrossRef]
- Hang, L.; Li, M.; Zhang, Y.; Li, W.; Fang, L.; Chen, Y.; Zhou, C.; Qu, H.; Shao, L.; Jiang, G. Mn (II) Optimized Sono/Chemodynamic Effect of Porphyrin-Metal–Organic Framework Nanosheets for MRI-Guided Colon Cancer Therapy and Metastasis Suppression. Small 2024, 20, 2306364. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Zhao, Y.; Sun, S.; Wang, L.; Sun, L.; Li, W.; Wang, Z.; Wang, J.; Pei, R. A metal–organic framework complex for enhancing tumor treatments through synergistic effect of chemotherapy and photodynamic therapy. J. Mater. Chem. B 2023, 11, 10706–10716. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Wang, J.; Yan, R.; Zhao, Y.; Han, S.; Zhang, Z.; Zhao, Y. Progress of metal-organic frameworks in improving the effect of sonodynamic therapy. Biomed. Technol. 2025, 9, 100070. [Google Scholar] [CrossRef]
- Zhou, Z.; Mukherjee, S.; Hou, S.; Li, W.; Elsner, M.; Fischer, R.A. Porphyrinic MOF film for multifaceted electrochemical sensing. Angew. Chem. Int. Ed. 2021, 60, 20551–20557. [Google Scholar] [CrossRef]
- Liu, C.; Du, H.Y.; Xin, C.; Di, X. Synthesis of porphyrin-based metal-organic framework and biomass-derived carbon composite for electrochemical detection of Rutin. J. Electroanal. Chem. 2025, 984, 119058. [Google Scholar] [CrossRef]
- Jiang, R.; Pang, Y.H.; Yang, Q.Y.; Wan, C.Q.; Shen, X.F. Copper porphyrin metal-organic framework modified carbon paper for electrochemical sensing of glyphosate. Sens. Actuators B-Chem. 2022, 358, 131492. [Google Scholar] [CrossRef]
- Gimeno, I.; Luis, F.; Marcuello, C.; Pallarés, M.C.; Lostao, A.; Calero de Ory, M.; Gomez, A.; Granados, D.; Tejedor, I.; Natividad, E.; et al. Localized nanoscale formation of vanadyl porphyrin 2D MOF nanosheets and their optimal coupling to lumped element superconducting resonators. J. Phys. Chem. C 2025, 129, 973–982. [Google Scholar] [CrossRef]
- Ishihara, S.; Labuta, J.; Van Rossom, W.; Ishikawa, D.; Minami, K.; Hill, J.P.; Ariga, K. Porphyrin-based sensor nanoarchitectonics in diverse physical detection modes. Phys. Chem. Chem. Phys. 2014, 21, 9713–9746. [Google Scholar] [CrossRef]
- Chen, L.; Li, N.; Yu, X.; Zhang, S.; Liu, C.; Song, Y.; Li, Z.; Han, S.; Wang, W.; Yang, P.; et al. A general way to manipulate electrical conductivity of graphene. Chem. Eng. J. 2023, 462, 142139. [Google Scholar] [CrossRef]
- Kang, H.E.; Ko, J.; Song, S.G.; Yoon, Y.S. Recent progress in utilizing carbon nanotubes and graphene to relieve volume expansion and increase electrical conductivity of Si-based composite anodes for lithium-ion batteries. Carbon 2024, 219, 118800. [Google Scholar] [CrossRef]
- Hummers, W.S.; Offeman, R.E. Functionalized graphene and graphene oxide: Materials synthesis. J. Am. Chem. Soc. 1958, 80, 1339–1344. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, J.; Cai, X.; Ding, P.; Lv, H.; Pei, R. Metal–organic frameworks with enhanced photodynamic therapy: Synthesis, erythrocyte membrane camouflage, and aptamer-targeted aggregation. ACS Appl. Mater. Interfaces 2020, 12, 23697–23706. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Kuang, Y.; Liu, M.; Wang, J.; Pei, R. Synthesis of metal–organic framework nanosheets with high relaxation rate and singlet oxygen yield. Chem. Mater. 2018, 30, 7511–7520. [Google Scholar] [CrossRef]
- Ma, J.; Bai, W.; Liu, X.; Zheng, J. Electrochemical dopamine sensor based on bi-metallic Co/Zn porphyrin metal–organic framework. Microchim. Acta 2022, 189, 20. [Google Scholar] [CrossRef]
- Sun, H.; Dan, J.; Liang, Y.; Li, M.; Zhuo, J.; Kang, Y.; Su, Z.; Zhang, Q.; Wang, J.; Zhang, W. Dimensionality reduction boosts the peroxidase-like activity of bimetallic MOFs for enhanced multidrug-resistant bacteria eradication. Nanoscale 2022, 14, 11693–11702. [Google Scholar] [CrossRef]
- Chang, Y.N.; Shen, C.H.; Huang, C.W.; Tsai, M.D.; Kung, C.W. Defective Metal-Organic Framework Nanocrystals as Signal Amplifiers for Electrochemical Dopamine Sensing. ACS Appl. Nano Mater. 2023, 65, 3675–3684. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, P.; Duan, X.Y.; Gao, X.Y.; Gao, L. Advances in precise synthesis of metal nanoclusters and their applications in electrochemical biosensing of disease biomarkers. Nanoscale 2025, 17, 3616–3634. [Google Scholar] [CrossRef]
- Chiang, Y.T.; Gu, Y.J.; Song, Y.D.; Wang, Y.C.; Kung, C.W. Cerium-based metal-organic framework as an electrocatalyst for the reductive detection of dopamine. Electrochem. Commun. 2022, 135, 107206. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Zhang, Y.H.; Cao, T.T.; Zhou, Y.C.; Dong, L.; Liu, L.; Tong, Z.W. Synthesis of manganese porphyrins/electrochemical reduction of graphene oxide nanocomposite to simultaneously detect dopamine and uric acid under the interference of ascorbic acid. Mater. Chem. Phys. 2023, 307, 128225. [Google Scholar] [CrossRef]
- Khoshraftar, R.; Shishehbore, M.R.; Sheibani, A. Synthesis and characterization of graphene oxide- Cu NPs-Fe-MOF nanocomposite and its application to simultaneous determination of Eskazina and Dopamine in real samples. J. Electroanal. Chem. 2022, 926, 116945. [Google Scholar] [CrossRef]
- Luhana, C.; Mashazi, P. Simultaneous detection of dopamine and paracetamol on electroreduced graphene oxide-cobalt phthalocyanine polymer nanocomposite electrode. Electrocatalysis 2023, 14, 406–417. [Google Scholar] [CrossRef]
- Roostaee, M.; Beitollahi, H.; Sheikhshoaie, I. Simultaneous determination of dopamine and uric acid in real samples using a voltammetric nanosensor based on Co-MOF, Graphene Oxide, and 1-Methyl-3-butylimidazolium Bromide. Micromachines 2022, 13, 1834. [Google Scholar] [CrossRef]
- Wei, C.Y.; Tu, J.F.; Liu, H.Q.; Mei, Z.; Gao, X.Y.; Yu, J.S.; Cai, X.; Li, X.Y.; Chen, Y.L. A porphyrin-functionalized graphene oxide nanocomposite for simultaneous detection of dopamine and uric Acid. Chemnanomat 2022, 8, e202200229. [Google Scholar] [CrossRef]
- Kandel, E.R. The molecular biology of memory storage: A dialogue between genes and synapses. Science 2001, 294, 1030–1038. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, L.; Gao, C. A multifunctional luminescence Metal-Organic Framework sensor for the neuropathy biomarker glutamic Acid. Chem. Lett. 2021, 52, 201–204. [Google Scholar] [CrossRef]
Electrode | LDR (μM) | LOD (μM) | Samples | Refs |
---|---|---|---|---|
GO-UiO-66-RT | 2~200 | 2.1 | 0.5 M KCl | [27] |
SO3-MOF-808 | 50~500 | 2.3 | 0.5 M KCl | [28] |
Ce-MOF-808 | 20~200 | 1.3 | --- | [29] |
AuPd/UiO-66-NH2/GN | 0.9~300 | 0.21 | Serum | [30] |
CoNi-MOF@ERGO | 0.1~400 | 0.086 | Serum | [31] |
ERGO-MnTMPyP | 2.23~10.76 | 0.29 | Serum | [32] |
GO-Cu NPs-Fe-MOF/CPE | 0.4~495.2 | 0.1 | Serum, urine | [33] |
ERGO/polyCoTAPc | 2.0~100 | 0.095 | urine | [34] |
CoMOF-GO/1-M,3-BB | 0.01~300 | 0.04 | urine | [35] |
TAPP@GO | 0.1~300 | 0.038 | urine | [36] |
CoTCPP(Fe)/rGO/Nafion | 0.1~100 | 0.014 | urine | this work |
Sample | Added (μM) | Found (μM) | Recovery (%) | RSD (%) |
---|---|---|---|---|
1 | 3.000 | 2.84 | 94.58 | 2.19 |
2 | 4.000 | 3.95 | 98.87 | 0.66 |
3 | 5.000 | 5.10 | 102.71 | 0.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, R.; Zhao, Y.; Geng, H.; Yan, M.; Wang, J.; Han, S. Electrochemical Sensor Capable of Enhancing Dopamine Sensitivity Based on Micron-Sized Metal–Organic Frameworks. Biosensors 2025, 15, 348. https://doi.org/10.3390/bios15060348
Yan R, Zhao Y, Geng H, Yan M, Wang J, Han S. Electrochemical Sensor Capable of Enhancing Dopamine Sensitivity Based on Micron-Sized Metal–Organic Frameworks. Biosensors. 2025; 15(6):348. https://doi.org/10.3390/bios15060348
Chicago/Turabian StyleYan, Ruhui, Yuewu Zhao, Huaixiao Geng, Mengxia Yan, Jine Wang, and Shuang Han. 2025. "Electrochemical Sensor Capable of Enhancing Dopamine Sensitivity Based on Micron-Sized Metal–Organic Frameworks" Biosensors 15, no. 6: 348. https://doi.org/10.3390/bios15060348
APA StyleYan, R., Zhao, Y., Geng, H., Yan, M., Wang, J., & Han, S. (2025). Electrochemical Sensor Capable of Enhancing Dopamine Sensitivity Based on Micron-Sized Metal–Organic Frameworks. Biosensors, 15(6), 348. https://doi.org/10.3390/bios15060348