Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = metal oxide thin-film transistors (TFTs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 2242 KiB  
Communication
Stability Improvement of Solution-Processed Metal Oxide Thin-Film Transistors Using Fluorine-Doped Zirconium Oxide Dielectric
by Haoxuan Xu, Bo Deng and Xinan Zhang
Materials 2025, 18(9), 1980; https://doi.org/10.3390/ma18091980 - 27 Apr 2025
Cited by 1 | Viewed by 641
Abstract
Solution-processed metal oxide dielectrics often result in unstable thin-film transistor (TFT) performance, hindering the development of next-generation metal oxide electronics. In this study, we prepared fluorine (F)-doped zirconium oxide (ZrO2) dielectric layers using a chemical solution method to construct TFTs. The [...] Read more.
Solution-processed metal oxide dielectrics often result in unstable thin-film transistor (TFT) performance, hindering the development of next-generation metal oxide electronics. In this study, we prepared fluorine (F)-doped zirconium oxide (ZrO2) dielectric layers using a chemical solution method to construct TFTs. The characterization by X-ray photoelectron spectroscopy (XPS) revealed that appropriate fluoride doping significantly reduces oxygen vacancies and the concentration of hydroxyl groups, thereby suppressing polarization processes. Subsequently, the electrical properties of Al/F:ZrO2/n++Si capacitors were evaluated, demonstrating that the optimized 10% F:ZrO2 dielectric exhibits a low leakage current density and stable capacitance across a wide frequency range. Indium zinc oxide (IZO) TFTs incorporating 10% F:ZrO2 dielectric layers were then fabricated. These devices displayed reliable electrical characteristics, including high mobility over a broad frequency range, reduced dual-sweep hysteresis, and excellent stability under positive-bias stress (PBS) after three months of aging. These findings indicate that the use of the fluorine-doped ZrO2 dielectric is a versatile strategy for achieving high-performance metal oxide thin-film electronics. Full article
(This article belongs to the Special Issue The Optical, Ferroelectric and Dielectric Properties of Thin Films)
Show Figures

Figure 1

17 pages, 2937 KiB  
Review
Recent Advancements in P-Type Inorganic Semiconductor Thin-Film Transistors: A Review
by Narendranaik Mude, Jongsu Lee and Sungwoon Cho
Crystals 2025, 15(4), 341; https://doi.org/10.3390/cryst15040341 - 3 Apr 2025
Viewed by 1042
Abstract
The continuous growth of energy-efficient electronic devices and compact systems has motivated researchers to develop TFTs based on p-type semiconductors. This review examines the developments in p-type thin-film transistors (TFTs) processed using solution methods to achieve integration with complementary metal–oxide–semiconductor technology. Improving organic [...] Read more.
The continuous growth of energy-efficient electronic devices and compact systems has motivated researchers to develop TFTs based on p-type semiconductors. This review examines the developments in p-type thin-film transistors (TFTs) processed using solution methods to achieve integration with complementary metal–oxide–semiconductor technology. Improving organic p-type materials is critical for achieving advanced mobility and stability characteristics with suitable process integration. Scientists study these materials for use in wearable devices which display mechanical strength when fitted onto a curve. This review presents an exclusive discussion about the wide spectrum of applications which involve flexible displays and sensors, together with upcoming technologies such as artificial skin and flexible integrated circuits. The article examines present material challenges, along with device reliability and large-scale production methods, to give a thorough analysis of solution-processed p-type TFTs toward their broad implementation in upcoming electronic devices. By summarizing the developments and most recent studies in the field, this review aims to provide useful information regarding current research into and future trends of p-type TFTs. Full article
(This article belongs to the Special Issue Solution Processing and Properties of Oxide Films and Nanostructures)
Show Figures

Figure 1

22 pages, 2821 KiB  
Review
Pixel Circuit Designs for Active Matrix Displays
by Dan-Mei Wei, Hua Zheng, Chun-Hua Tan, Shenghao Zhang, Hua-Dan Li, Lv Zhou, Yuanrui Chen, Chenchen Wei, Miao Xu, Lei Wang, Wei-Jing Wu, Honglong Ning and Baohua Jia
Appl. Syst. Innov. 2025, 8(2), 46; https://doi.org/10.3390/asi8020046 - 31 Mar 2025
Cited by 1 | Viewed by 2976
Abstract
Pixel circuits are key components of flat panel displays, including liquid crystal displays (LCDs), organic light-emitting diode displays (OLEDs), and micro light-emitting diode displays (micro-LEDs). Depending on the active layer material of the thin film transistor (TFT), pixel circuits are categorised into amorphous [...] Read more.
Pixel circuits are key components of flat panel displays, including liquid crystal displays (LCDs), organic light-emitting diode displays (OLEDs), and micro light-emitting diode displays (micro-LEDs). Depending on the active layer material of the thin film transistor (TFT), pixel circuits are categorised into amorphous silicon (a-Si) technology, low-temperature polycrystalline silicon (LTPS) technology, metal oxide (MO) technology, and low-temperature polycrystalline silicon and oxide (LTPO) technology. In this review, we outline the fundamental display principles and four major TFT technologies, covering conventional single-gated TFTs to novel two-gated TFTs. We focus on novel pixel circuits for three glass-based display technologies with additional mention of pixel circuits for silicon-based OLED and silicon-based micro-LED. Full article
(This article belongs to the Section Control and Systems Engineering)
Show Figures

Figure 1

10 pages, 2729 KiB  
Article
High-Mobility Tellurium Thin-Film Transistor: Oxygen Scavenger Effect Induced by a Metal-Capping Layer
by Seung-Min Lee, Seong Cheol Jang, Ji-Min Park, Jaewon Park, Nayoung Choi, Kwun-Bum Chung, Jung Woo Lee and Hyun-Suk Kim
Nanomaterials 2025, 15(6), 418; https://doi.org/10.3390/nano15060418 - 8 Mar 2025
Cited by 1 | Viewed by 1496
Abstract
With the ongoing development of electronic devices, there is an increasing demand for new semiconductors beyond traditional silicon. A key element in electronic circuits, complementary metal-oxide semiconductor (CMOS), utilizes both n-type and p-type semiconductors. While the advancements in n-type semiconductors have been substantial, [...] Read more.
With the ongoing development of electronic devices, there is an increasing demand for new semiconductors beyond traditional silicon. A key element in electronic circuits, complementary metal-oxide semiconductor (CMOS), utilizes both n-type and p-type semiconductors. While the advancements in n-type semiconductors have been substantial, the development of high-mobility p-type semiconductors has lagged behind. Recently, tellurium (Te) has been recognized as a promising candidate due to its superior electrical properties and the capability for large-area deposition via vacuum processes. In this work, an innovative approach involving the addition of a metal-capping layer onto Te thin-film transistors (TFTs) is proposed, which significantly enhances their electrical characteristics. In particular, the application of an indium (In) metal-capping layer has led to a dramatic increase in the field-effect mobility of Te TFTs from 2.68 to 33.54 cm2/Vs. This improvement is primarily due to the oxygen scavenger effect, which effectively minimizes oxidation and eliminates oxygen from the Te layer, resulting in the production of high-quality Te thin films. This progress in high-mobility p-type semiconductors is promising for the advancement of high-performance electronic devices in various applications and industries. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

22 pages, 5992 KiB  
Review
IGZO-Based Electronic Device Application: Advancements in Gas Sensor, Logic Circuit, Biosensor, Neuromorphic Device, and Photodetector Technologies
by Youngmin Han, Juhyung Seo, Dong Hyun Lee and Hocheon Yoo
Micromachines 2025, 16(2), 118; https://doi.org/10.3390/mi16020118 - 21 Jan 2025
Cited by 1 | Viewed by 3664
Abstract
Metal oxide semiconductors, such as indium gallium zinc oxide (IGZO), have attracted significant attention from researchers in the fields of liquid crystal displays (LCDs) and organic light-emitting diodes (OLEDs) for decades. This interest is driven by their high electron mobility of over ~10 [...] Read more.
Metal oxide semiconductors, such as indium gallium zinc oxide (IGZO), have attracted significant attention from researchers in the fields of liquid crystal displays (LCDs) and organic light-emitting diodes (OLEDs) for decades. This interest is driven by their high electron mobility of over ~10 cm2/V·s and excellent transmittance of more than ~80%. Amorphous IGZO (a-IGZO) offers additional advantages, including compatibility with various processes and flexibility making it suitable for applications in flexible and wearable devices. Furthermore, IGZO-based thin-film transistors (TFTs) exhibit high uniformity and high-speed switching behavior, resulting in low power consumption due to their low leakage current. These advantages position IGZO not only as a key material in display technologies but also as a candidate for various next-generation electronic devices. This review paper provides a comprehensive overview of IGZO-based electronics, including applications in gas sensors, biosensors, and photosensors. Additionally, it emphasizes the potential of IGZO for implementing logic gates. Finally, the paper discusses IGZO-based neuromorphic devices and their promise in overcoming the limitations of the conventional von Neumann computing architecture. Full article
(This article belongs to the Special Issue Semiconductor and Energy Materials and Processing Technology)
Show Figures

Figure 1

14 pages, 5762 KiB  
Article
Application of Solution-Processed High-Entropy Metal Oxide Dielectric Layers with High Dielectric Constant and Wide Bandgap in Thin-Film Transistors
by Jun Liu, Xin Xiong, Han Li, Xiangchen Huang, Yajun Wang, Yifa Sheng, Zhihao Liang, Rihui Yao, Honglong Ning and Xiaoqin Wei
Micromachines 2024, 15(12), 1465; https://doi.org/10.3390/mi15121465 - 30 Nov 2024
Cited by 3 | Viewed by 1843
Abstract
High-k metal oxides are gradually replacing the traditional SiO2 dielectric layer in the new generation of electronic devices. In this paper, we report the production of five-element high entropy metal oxides (HEMOs) dielectric films by solution method and analyzed the role of [...] Read more.
High-k metal oxides are gradually replacing the traditional SiO2 dielectric layer in the new generation of electronic devices. In this paper, we report the production of five-element high entropy metal oxides (HEMOs) dielectric films by solution method and analyzed the role of each metal oxide in the system by characterizing the film properties. On this basis, we found optimal combination of (AlGaTiYZr)Ox with the best dielectric properties, exhibiting a low leakage current of 1.2 × 10−8 A/cm2 @1 MV/cm and a high dielectric constant, while the film’s visible transmittance is more than 90%. Based on the results of factor analysis, we increased the dielectric constant up to 52.74 by increasing the proportion of TiO2 in the HEMOs and maintained a large optical bandgap (>5 eV). We prepared thin film transistors (TFTs) based on an (AlGaTiYZr)Ox dielectric layer and an InGaZnOx (IGZO) active layer, and the devices exhibit a mobility of 18.2 cm2/Vs, a threshold voltage (Vth) of −0.203 V, and an subthreshold swing (SS) of 0.288 V/dec, along with a minimal hysteresis, which suggests a good prospect of applying HEMOs to TFTs. It can be seen that the HEMOs dielectric films prepared based on the solution method can combine the advantages of various high-k dielectrics to obtain better film properties. Moreover, HEMOs dielectric films have the advantages of simple processing, low-temperature preparation, and low cost, which are expected to be widely used as dielectric layers in new flexible, transparent, and high-performance electronic devices in the future. Full article
(This article belongs to the Special Issue Thin Film Microelectronic Devices and Circuits)
Show Figures

Figure 1

10 pages, 2127 KiB  
Article
Polymer Coating Enabled Carrier Modulation for Single-Walled Carbon Nanotube Network Inverters and Antiambipolar Transistors
by Zhao Li, Jenner H. L. Ngai and Jianfu Ding
Nanomaterials 2024, 14(18), 1477; https://doi.org/10.3390/nano14181477 - 11 Sep 2024
Viewed by 1168
Abstract
The control of the performance of single-walled carbon nanotube (SWCNT) random network-based transistors is of critical importance for their applications in electronic devices, such as complementary metal oxide semiconducting (CMOS)-based logics. In ambient conditions, SWCNTs are heavily p-doped by the H2O/O [...] Read more.
The control of the performance of single-walled carbon nanotube (SWCNT) random network-based transistors is of critical importance for their applications in electronic devices, such as complementary metal oxide semiconducting (CMOS)-based logics. In ambient conditions, SWCNTs are heavily p-doped by the H2O/O2 redox couple, and most doping processes have to counteract this effect, which usually leads to broadened hysteresis and poor stability. In this work, we coated an SWCNT network with various common polymers and compared their thin-film transistors’ (TFTs’) performance in a nitrogen-filled glove box. It was found that all polymer coatings will decrease the hysteresis of these transistors due to the partial removal of charge trapping sites and also provide the stable control of the doping level of the SWCNT network. Counter-intuitively, polymers with electron-withdrawing functional groups lead to a dramatically enhanced n-branch in their transfer curve. Specifically, SWCNT TFTs with poly (vinylidene fluoride) coating show an n-type mobility up to 61 cm2/Vs, with a decent on/off ratio and small hysteresis. The inverters constructed by connecting two ambipolar TFTs demonstrate high gain but with certain voltage loss. P-type or n-type doping from polymer coating layers could suppress unnecessary n- or p-branches, shift the threshold voltage and optimize the performance of these inverters to realize rail-to-rail switching. Similar devices also demonstrate interesting antiambipolar performance with tunable on and off voltage when tested in a different configuration. Full article
Show Figures

Figure 1

10 pages, 4059 KiB  
Brief Report
A Simple Scan Driver Circuit Suitable for Depletion-Mode Metal-Oxide Thin-Film Transistors in Active-Matrix Displays
by Yikyoung You, Junhyung Lim, Kyoungseok Son, Jaybum Kim, Youngoo Kim, Kyunghoe Lee, Kyunghoon Chung and Keechan Park
Electronics 2024, 13(12), 2254; https://doi.org/10.3390/electronics13122254 - 8 Jun 2024
Cited by 2 | Viewed by 1880
Abstract
Metal-oxide (MOx) thin-film transistors (TFTs) require complex circuit structures to cope with their depletion mode characteristics, making them applicable only to large-area active matrix (AM) displays despite their low manufacturing cost and decent performance. In this paper, we report a simple MOx 10T-2C [...] Read more.
Metal-oxide (MOx) thin-film transistors (TFTs) require complex circuit structures to cope with their depletion mode characteristics, making them applicable only to large-area active matrix (AM) displays despite their low manufacturing cost and decent performance. In this paper, we report a simple MOx 10T-2C scan driver circuit that overcomes the depletion mode characteristics using a series-connected two transistor (STT) configuration and clock signals with two kinds of low-voltage levels. The proposed circuit has a wide operating range of TFT characteristics, i.e., −2.8 V ≤ VTH ≤ +3.0 V. Through the measurement results of the manufactured sample, it was confirmed that the performance and area of our circuit are suitable for high-resolution mobile displays. Full article
Show Figures

Figure 1

21 pages, 10710 KiB  
Article
Effects of Laser Treatment of Terbium-Doped Indium Oxide Thin Films and Transistors
by Rihui Yao, Dingrong Liu, Nanhong Chen, Honglong Ning, Guoping Su, Yuexin Yang, Dongxiang Luo, Xianzhe Liu, Haoyan Chen, Muyun Li and Junbiao Peng
Nanomaterials 2024, 14(11), 908; https://doi.org/10.3390/nano14110908 - 22 May 2024
Cited by 2 | Viewed by 1693
Abstract
In this study, a KrF excimer laser with a high-absorption coefficient in metal oxide films and a wavelength of 248 nm was selected for the post-processing of a film and metal oxide thin film transistor (MOTFT). Due to the poor negative bias illumination [...] Read more.
In this study, a KrF excimer laser with a high-absorption coefficient in metal oxide films and a wavelength of 248 nm was selected for the post-processing of a film and metal oxide thin film transistor (MOTFT). Due to the poor negative bias illumination stress (NBIS) stability of indium gallium zinc oxide thin film transistor (IGZO-TFT) devices, terbium-doped Tb:In2O3 material was selected as the target of this study. The XPS test revealed the presence of both Tb3+ and Tb4+ ions in the Tb:In2O3 film. It was hypothesized that the peak of the laser thermal effect was reduced and the action time was prolonged by the f-f jump of Tb3+ ions and the C-T jump of Tb4+ ions during the laser treatment. Studies related to the treatment of Tb:In2O3 films with different laser energy densities have been carried out. It is shown that as the laser energy density increases, the film density increases, the thickness decreases, the carrier concentration increases, and the optical band gap widens. Terbium has a low electronegativity (1.1 eV) and a high Tb-O dissociation energy (707 kJ/mol), which brings about a large lattice distortion. The Tb:In2O3 films did not show significant crystallization even under laser energy density treatment of up to 250 mJ/cm2. Compared with pure In2O3-TFT, the doping of Tb ions effectively reduces the off-state current (1.16 × 10−11 A vs. 1.66 × 10−12 A), improves the switching current ratio (1.63 × 106 vs. 1.34 × 107) and improves the NBIS stability (ΔVON = −10.4 V vs. 6.4 V) and positive bias illumination stress (PBIS) stability (ΔVON = 8 V vs. 1.6 V). Full article
(This article belongs to the Special Issue Nano-Structured Thin Films: Growth, Characteristics, and Application)
Show Figures

Figure 1

14 pages, 3924 KiB  
Article
Effects of Annealing Temperature on Bias Temperature Stress Stabilities of Bottom-Gate Coplanar In-Ga-Zn-O Thin-Film Transistors
by Yuyun Chen, Yi Shen, Yuanming Chen, Guodong Xu, Yudong Liu and Rui Huang
Coatings 2024, 14(5), 555; https://doi.org/10.3390/coatings14050555 - 30 Apr 2024
Cited by 1 | Viewed by 1671
Abstract
Defect annihilation of the IGZO/SiO2 layer is of great importance to enhancing the bias stress stabilities of bottom-gate coplanar thin-film transistors (TFTs). The effects of annealing temperatures (Ta) on the structure of the IGZO/SiO2 layer and the stabilities of [...] Read more.
Defect annihilation of the IGZO/SiO2 layer is of great importance to enhancing the bias stress stabilities of bottom-gate coplanar thin-film transistors (TFTs). The effects of annealing temperatures (Ta) on the structure of the IGZO/SiO2 layer and the stabilities of coplanar IGZO TFTs were investigated in this work. An atomic depth profile showed that the IGZO/SiO2 layer included an IGZO layer, an IGZO/SiO2 interfacial mixing layer, and a SiO2 layer. Higher Ta had only one effect on the IGZO layer and SiO2 layer (i.e., strengthening chemical bonds), while it had complex effects on the interfacial mixing layer—including weakening M-O bonds (M: metallic elements in IGZO), strengthening damaged Si-O bonds, and increasing O-related defects (e.g., H2O). At higher Ta, IGZO TFTs exhibited enhanced positive bias temperature stress (PBTS) stabilities but decreased negative bias temperature stress (NBTS) stabilities. The enhanced PBTS stabilities were correlated with decreased electron traps due to the stronger Si-O bonds near the interfacial layer. The decreased NBTS stabilities were related to increased electron de-trapping from donor-like defects (e.g., weak M-O bonds and H2O) in the interfacial layer. Our results suggest that although higher Ta annihilated the structural damage at the interface from ion bombardment, it introduced undesirable defects. Therefore, to comprehensively improve electrical stabilities, controlling defect generation (e.g., by using a mild sputtering condition of source/drain electrodes and oxides) was more important than enhancing defect annihilation (e.g., through increasing Ta). Full article
(This article belongs to the Special Issue Advanced Metal Oxide Films: Materials and Applications)
Show Figures

Figure 1

9 pages, 1809 KiB  
Article
Performance Improvement of In-Ga-Zn Oxide Thin-Film Transistors by Excimer Laser Annealing
by Xiaohui Zhang, Yaping Li, Yanwei Li, Xinwang Xie and Longhai Yin
Micromachines 2024, 15(2), 225; https://doi.org/10.3390/mi15020225 - 31 Jan 2024
Viewed by 2086
Abstract
We applied excimer laser annealing (ELA) on indium-zinc oxide (IZO) and IZO/indium-gallium-zinc oxide (IGZO) heterojunction thin-film transistors (TFTs) to improve their electrical characteristics. The IZO and IZO/IGZO heterojunction thin films were prepared by the physical vapor deposition method without any other annealing process. [...] Read more.
We applied excimer laser annealing (ELA) on indium-zinc oxide (IZO) and IZO/indium-gallium-zinc oxide (IGZO) heterojunction thin-film transistors (TFTs) to improve their electrical characteristics. The IZO and IZO/IGZO heterojunction thin films were prepared by the physical vapor deposition method without any other annealing process. The crystalline state and composition of the as-deposited film and the excimer-laser-annealed films were analyzed by X-ray diffraction and X-ray photoelectron spectroscopy. In order to further enhance the electrical performance of TFT, we constructed a dual-heterojunction TFT structure. The results showed that the field-effect mobility could be improved to 9.8 cm2/V·s. Surprisingly, the device also possessed good optical stability. The electron accumulation at the a-IZO/HfO, HfO/a-IGZO, and a-IGZO/gate insulator (GI) interfaces confirmed the a-IGZO-channel conduction. The dual-heterojunction TFT with IZO/HfO/a-IGZO-assisted ELA provides a guideline for overcoming the trade-off between high mobility (μ) and positive VTh control for stable enhancement mode operation with increased ID. Full article
(This article belongs to the Special Issue Future Prospects of Thin-Film Transistors and Their Applications)
Show Figures

Figure 1

21 pages, 8312 KiB  
Review
Active-Matrix Array Based on Thin-Film Transistors Using Emerging Materials for Application: From Lab to Industry
by Seongjae Kim and Hocheon Yoo
Electronics 2024, 13(1), 241; https://doi.org/10.3390/electronics13010241 - 4 Jan 2024
Cited by 4 | Viewed by 5362
Abstract
The active-matrix technology incorporates a transistor to exert precise control over each pixel within a pixel array, eliminating the issue of crosstalk between neighboring pixels that is prevalent in the passive-matrix approach. Consequently, the active-matrix method facilitates the realization of high-resolution arrays, and [...] Read more.
The active-matrix technology incorporates a transistor to exert precise control over each pixel within a pixel array, eliminating the issue of crosstalk between neighboring pixels that is prevalent in the passive-matrix approach. Consequently, the active-matrix method facilitates the realization of high-resolution arrays, and this inherent advantage has propelled its widespread adoption, not only in display applications but also in diverse sensor arrays from lab to industry. In this comprehensive review, we delve into instances of active-matrix arrays utilizing thin-film transistors (TFTs) that leverage emerging materials such as organic semiconductors, metal oxide semiconductors, two-dimensional materials, and carbon nanotubes (CNTs). Our examination encompasses a broad classification of active-matrix research into two main categories: (i) displays and (ii) sensors. We not only assess the performance of TFTs based on emerging materials within the active-matrix framework, but also explore the evolving trends and directions in active-matrix-based displays and sensors. Full article
Show Figures

Figure 1

14 pages, 2807 KiB  
Article
Influence of NF3 Plasma-Treated HfO2 Gate Insulator Surface on Tin Oxide Thin-Film Transistors
by Christophe Avis and Jin Jang
Materials 2023, 16(22), 7172; https://doi.org/10.3390/ma16227172 - 15 Nov 2023
Cited by 2 | Viewed by 1977
Abstract
We studied the impact of NF3 plasma treatment on the HfO2 gate insulator of amorphous tin oxide (a-SnOx) thin-film transistors (TFTs). The plasma treatment was for 0, 10, or 30 s. The HfO2 insulator demonstrated a slightly higher [...] Read more.
We studied the impact of NF3 plasma treatment on the HfO2 gate insulator of amorphous tin oxide (a-SnOx) thin-film transistors (TFTs). The plasma treatment was for 0, 10, or 30 s. The HfO2 insulator demonstrated a slightly higher breakdown voltage, whereas the capacitance value remained almost constant (~150 nF/cm2). The linear mobility slightly increased from ~30 to ~35 cm2/Vs when the treatment time increased from 0 to 10 s, whereas a 30 s-treated TFT demonstrated a decreased mobility of ~15 cm2/Vs. The subthreshold swing and the threshold voltage remained in the 100–120 mV/dec. range and near 0 V, respectively. The hysteresis dramatically decreased from ~0.5 V to 0 V when a 10 s treatment was applied, and the 10 s-treated TFT demonstrated the best stability under high current stress (HCS) of 100 μA. The analysis of the tin oxide thin film crystallinity and oxygen environment demonstrated that the a-SnOx remained amorphous, whereas more metal–oxygen bonds were formed with a 10 s NF3 plasma treatment. We also demonstrate that the density of states (DOS) significantly decreased in the 10 s-treated TFT compared to the other conditions. The stability under HCS was attributed to the HfO2/a-SnOx interface quality. Full article
Show Figures

Figure 1

11 pages, 2875 KiB  
Article
Composition Engineering of Indium Zinc Oxide Semiconductors for Damage-Free Back-Channel Wet Etching Metallization of Oxide Thin-Film Transistors
by Xuan Zhang and Sung Woon Cho
Micromachines 2023, 14(10), 1839; https://doi.org/10.3390/mi14101839 - 27 Sep 2023
Cited by 2 | Viewed by 2217
Abstract
In contrast to lift-off and shadow mask processes, the back-channel wet etching (BCWE) process is suitable for industrial-scale metallization processes for the large-area and mass production of oxide thin-film transistors (TFTs). However, chemical attacks caused by the corrosive metal etchants used in the [...] Read more.
In contrast to lift-off and shadow mask processes, the back-channel wet etching (BCWE) process is suitable for industrial-scale metallization processes for the large-area and mass production of oxide thin-film transistors (TFTs). However, chemical attacks caused by the corrosive metal etchants used in the BCWE process cause unintended performance degradation of oxide semiconductors, making it difficult to implement oxide TFT circuits through industrial-scale metallization processes. Herein, we propose composition engineering of oxide semiconductors to enhance the chemical durability and electrical stability of oxide semiconductors. The chemical durability of InZnO against Al etchants can be improved by increasing the content of indium oxide, which has a higher chemical resistance than zinc oxide. As a result, A damage-free BCWE-based metallization process was successfully demonstrated for oxide TFTs using In-rich InZnO semiconductors. Furthermore, In-rich InZnO TFTs with wet-etched Al electrodes exhibited electrical performance comparable to that of lift-off Al electrodes, without chemical attack issues. Full article
(This article belongs to the Special Issue Semiconductors and Nanostructures for Electronics and Photonics)
Show Figures

Figure 1

10 pages, 4307 KiB  
Article
Low-Temperature Solution-Processed HfZrO Gate Insulator for High-Performance of Flexible LaZnO Thin-Film Transistor
by Yeoungjin Chang, Ravindra Naik Bukke, Jinbaek Bae and Jin Jang
Nanomaterials 2023, 13(17), 2410; https://doi.org/10.3390/nano13172410 - 25 Aug 2023
Cited by 3 | Viewed by 2088
Abstract
Metal-oxide-semiconductor (MOS)-based thin-film transistors (TFTs) are gaining significant attention in the field of flexible electronics due to their desirable electrical properties, such as high field-effect mobility (μFE), lower IOFF, and excellent stability under bias stress. TFTs have widespread applications, [...] Read more.
Metal-oxide-semiconductor (MOS)-based thin-film transistors (TFTs) are gaining significant attention in the field of flexible electronics due to their desirable electrical properties, such as high field-effect mobility (μFE), lower IOFF, and excellent stability under bias stress. TFTs have widespread applications, such as printed electronics, flexible displays, smart cards, image sensors, virtual reality (VR) and augmented reality (AR), and the Internet of Things (IoT) devices. In this study, we approach using a low-temperature solution-processed hafnium zirconium oxide (HfZrOx) gate insulator (GI) to improve the performance of lanthanum zinc oxide (LaZnO) TFTs. For the optimization of HfZrO GI, HfZrO films were annealed at 200, 250, and 300 °C. The optimized HfZrO-250 °C GI-based LaZnO TFT shows the μFE of 19.06 cm2V−1s−1, threshold voltage (VTH) of 1.98 V, hysteresis voltage (VH) of 0 V, subthreshold swing (SS) of 256 mV/dec, and ION/IOFF of ~108. The flexible LaZnO TFT with HfZrO-250 °C GI exhibits negligible ΔVTH of 0.25 V under positive-bias-temperature stress (PBTS). The flexible hysteresis-free LaZnO TFTs with HfZrO-250 °C can be widely used for flexible electronics. These enhancements were attributed to the smooth surface morphology and reduced defect density achieved with the HfZrO gate insulator. Therefore, the HfZrO/LaZnO approach holds great promise for next-generation MOS TFTs for flexible electronics. Full article
(This article belongs to the Topic Advances in Functional Thin Films)
Show Figures

Figure 1

Back to TopTop