
Citation: Chang, Y.; Bukke, R.N.;

Bae, J.; Jang, J. Low-Temperature

Solution-Processed HfZrO Gate

Insulator for High-Performance of

Flexible LaZnO Thin-Film Transistor.

Nanomaterials 2023, 13, 2410.

https://doi.org/10.3390/

nano13172410

Academic Editors: Jose Maria De

Teresa, Ricardo Lopez Anton,

Yia-Chung Chang and Sion

Federico Olive Méndez

Received: 5 July 2023

Revised: 1 August 2023

Accepted: 16 August 2023

Published: 25 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Article

Low-Temperature Solution-Processed HfZrO Gate Insulator for
High-Performance of Flexible LaZnO Thin-Film Transistor
Yeoungjin Chang 1,2, Ravindra Naik Bukke 3,* , Jinbaek Bae 1 and Jin Jang 1,*

1 Advanced Display Research Center, Department of Information Display, Kyung Hee University,
Seoul 02447, Republic of Korea; yjchang@gachon.ac.kr (Y.C.); jbbae@tft.khu.ac.kr (J.B.)

2 Department of Semiconductor Display, Gachon University, Seongnam-si 13120, Republic of Korea
3 School of Mechanical & Materials Engineering, Indian Institute of Technology Mandi,

Mandi Pradesh 175075, India
* Correspondence: ravindra@iitmandi.ac.in (R.N.B.); jjang@khu.ac.kr (J.J.)

Abstract: Metal-oxide-semiconductor (MOS)-based thin-film transistors (TFTs) are gaining significant
attention in the field of flexible electronics due to their desirable electrical properties, such as high
field-effect mobility (µFE), lower IOFF, and excellent stability under bias stress. TFTs have widespread
applications, such as printed electronics, flexible displays, smart cards, image sensors, virtual reality
(VR) and augmented reality (AR), and the Internet of Things (IoT) devices. In this study, we approach
using a low-temperature solution-processed hafnium zirconium oxide (HfZrOx) gate insulator (GI) to
improve the performance of lanthanum zinc oxide (LaZnO) TFTs. For the optimization of HfZrO GI,
HfZrO films were annealed at 200, 250, and 300 ◦C. The optimized HfZrO-250 ◦C GI-based LaZnO
TFT shows the µFE of 19.06 cm2V−1s−1, threshold voltage (VTH) of 1.98 V, hysteresis voltage (VH) of
0 V, subthreshold swing (SS) of 256 mV/dec, and ION/IOFF of ~108. The flexible LaZnO TFT with
HfZrO-250 ◦C GI exhibits negligible ∆VTH of 0.25 V under positive-bias-temperature stress (PBTS).
The flexible hysteresis-free LaZnO TFTs with HfZrO-250 ◦C can be widely used for flexible electronics.
These enhancements were attributed to the smooth surface morphology and reduced defect density
achieved with the HfZrO gate insulator. Therefore, the HfZrO/LaZnO approach holds great promise
for next-generation MOS TFTs for flexible electronics.

Keywords: flexible; hafnium zirconium oxide; lanthanum zinc oxide; solution-processed; spray
pyrolysis; thin-film transistor

1. Introduction

Metal oxide semiconductors (MOS) are gaining significant interest as channel layers in
thin-film transistors (TFTs), particularly for active-matrix light-emitting diode (AMOLED)
displays [1–3]. These materials exhibit desirable electrical properties, such as high mobility,
near-zero threshold voltage, low off-state current, excellent area uniformity, reliability, and
cost-effective mass production. MOS-based TFTs hold the potential to supplant conven-
tional polycrystalline-Si (Poly-Si) or amorphous-Si (a-Si) TFTs across diverse applications.
Their appeal lies in offering higher performance characteristics, including improved carrier
mobility and lower off-state leakage. Moreover, MOS-based TFTs can be fabricated via
cost-effective and scalable processes, making them a viable candidate for next-generation
electronic devices. As a result, these TFTs present a compelling alternative for enhancing
electronic technologies and fostering innovation in various industries [1–3]. The fabrication
of MOS TFTs can be achieved through either solution [1–5] or vacuum process [1,6]. Solu-
tion processes [1–5], including spray pyrolysis, spin coating, and inkjet printing, are com-
monly employed for MOS TFT fabrication [7–19]. Solution processes offer the advantage of
operating at low temperatures, facilitating the deposition of metal-oxide-semiconductor
(MOS) films on flexible substrates. This characteristic is essential for the development of
flexible electronics as it avoids substrate damage and allows for the fabrication of bendable
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and stretchable devices [1]. In solution-processed oxide TFTs, high-k dielectric materials,
for example, aluminum oxide (AlOx) [12,20], hafnium oxide (HfOx) [21], zirconium ox-
ide (ZrOx) [2,10,17,22], aluminum zirconium oxide (AlZrOx) [13,23], boron-doped ZrOx
(BZrO) [9], hafnium zirconium oxide (HfZrOx) [24], and lanthanum-doped ZrOx (LaZrO),
are employed to achieve high-performance devices. While other MO semiconductors, such
as indium gallium tin oxide (IGTO) [25,26] and indium gallium zinc oxide (IGZO) [5] TFTs,
typically utilize a SiO2 gate insulator, solution-processed oxide TFTs offer the advantage of
utilizing high-k dielectrics for improved performance [8].

The utilization of high-k gate dielectric materials through solution processes holds
tremendous promise in realizing high-performance thin-film transistors (TFTs). These
materials offer advantageous electrical properties, such as higher dielectric constants,
enabling enhanced control of charge carriers in the transistors. Additionally, the solution-
based approach allows for cost-effective and scalable fabrication, making it a viable option
for advancing next-generation electronic devices with improved efficiency and functionality.
J. Li et al. report ZTO/AlZrOx TFT with µsat of 12.5 cm2V−1s−1, VTH of 0.3 V, ION/IOFF
of 8 × 107, and SS of 0.150 V/dec [27]. Tue et al. demonstrated the use of LaZrO gate
dielectric in ZrInZnO TFTs, resulting in a saturated mobility (µsat) of 6.23 cm2V−1s−1,
ION/IOFF of 109, and SS of 0.19 V/dec [8]. Park et al. report In2O3/ZrO2:B TFT with
µsat of 39.3 cm2V−1s−1, VTH of 2.46 V, ION/IOFF of 107, and SS of 0.263 V/dec [9]. When
considering practical applications, TFTs are fabricated on flexible plastic substrates, such
as polyethylene naphthalate (PEN), polyethylene terephthalate (PET), and polyimide (PI).
These plastic substrates offer mechanical flexibility, making them ideal candidates for
foldable or flexible electronics and displays. Consequently, a low-temperature process
becomes essential for compatibility with these substrates. Numerous research groups have
focused on developing doped ZrOx gate insulators to enhance the performance of flexible
metal oxide TFTs [2,22].

In this study, we present the utilization of a low-temperature solution-processed
hafnium zirconium oxide (HfZrOx) GI to achieve high-performance LaZnO TFTs. The
HfZrO films were carefully annealed at a temperature of 200, 250, and 300 ◦C, respec-
tively, for optimization. The optimized HfZrO-250 ◦C GI-based LaZnO TFT demonstrates
an impressive field-effect mobility (µFE) of 19.06 cm2V−1s−1, a low threshold voltage
(VTH) of 1.98 V, and an exceptionally sharp subthreshold swing (SS) of 256 mV/dec. No-
tably, the device exhibits zero hysteresis voltage (VH) and an outstanding ION/IOFF ra-
tio of ~108, ensuring high-performance transistor operation. Furthermore, the flexible
HfZrO-250 ◦C/LaZnO TFT exhibits remarkable stability under positive-bias-temperature
stress (PBTS) with minimal ∆VTH, indicating the reliability of the device over the ex-
tended operation. These exceptional enhancements can be attributed to the smooth surface
morphology achieved by the HfZrO GI and the reduced defects at the interface between
the HfZrO gate insulator and the oxide semiconductor (LaZnO). Our findings establish
the HfZrO/LaZnO approach as a highly promising avenue for developing flexible oxide
TFTs, especially for next-generation flexible displays. The novel combination of materi-
als and the low-temperature solution processing offer significant potential for advancing
flexible electronics.

2. Materials and Methods

To prepare the HfZrO precursor solution, we dissolved zirconyl chloride hydrated
(ZrOCl·8H2O) and hafnium chloride (HfCl4) in a mixture of ethylene glycol (65%) and ace-
tonitrile (35%). The resulting solution, 20 mL in volume, was transferred to a 0.250 L flask.
The temperature was steadily increased from room temperature (RT) to 95 ◦C in 10 ◦C
increments. The solution was maintained at 95 ◦C for 10 min, resulting in the formation
of a transparent precursor solution after cooling to RT. For the synthesis of the 0.2 M
LaZnO precursor solution, zinc acetate dihydrate, lanthanum (III) nitrate hexahydrate,
and ammonium acetate were added to a solvent called 2-Methoxyenthonal (2ME). The
stoichiometry of HZO and LaZnO films are H0.10Z0.90O and La0.10Zn0.90O, respectively.
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The detailed method for preparing the HZO and LaZnO precursor solution can be found
elsewhere [2,24]. The precursor solutions were stirred for 2 h under an N2 environment to
ensure homogeneity. Finally, a 0.45 µm polytetrafluoroethylene (PTFE) filter was employed
to obtain particle-free precursor solutions.

The HfZrO film was deposited via spin coating onto a glass substrate at room tempera-
ture in the ambient environment. After deposition, the sample was placed on a hot plate at
140 ◦C for 5 min and subsequently annealed in an air furnace at temperatures ranging from
200 to 300 ◦C. The resulting HfZrO thin films were labeled as HfZrO-200 ◦C, HfZrO-250 ◦C,
and HfZrO-300 ◦C, corresponding to the annealing temperatures. The LaZnO film, on
the other hand, was deposited using spray pyrolysis onto a glass substrate at a substrate
temperature of 350 ◦C.

In our fabrication process, we employed a bottom gate and top contact configuration
for the LaZnO TFTs. Initially, a 40 nm molybdenum (Mo) film was sputtered onto the
substrate and patterned to create the gate electrodes. Following the deposition of the
HfZrO film, the sample was subjected to a 5 min treatment on a hotplate at 140 ◦C. The
LaZnO solution was then deposited onto the substrate at a temperature of 350 ◦C using
spray pyrolysis. The thickness of the LaZnO films was measured using the Alpha-Step
D-500 Stylus Profiler (D-500 Stylus Profiler, KLA Instrument, Hayward, CA, USA). The
LaZnO layer was patterned using conventional photolithography to form the active island.
Finally, a 40 nm thick Mo layer was sputtered and patterned to create the source/drain
(S/D) electrodes.

For the fabrication of flexible LaZnO TFTs, we employed a bottom gate and top contact
(BGTC) structure on a polyimide (PI) substrate. Initially, a thin layer of carbon nanotube-
graphene oxide (CNT:GO) composite was deposited through spray pyrolysis at 100 ◦C [3,8].
Subsequently, a 10 µm thick PI layer was spin-coated onto the CNT:GO layer and annealed
for 2 h under a nitrogen (N2) atmosphere. To provide a gas barrier, a SiNx/SiOx buffer
layer with a total thickness of 125 nm (25 nm for each layer) was deposited. The LaZnO
channel layer was then deposited at a substrate temperature of 350 ◦C via spray pyrolysis.
The LaZnO active islands were patterned. Finally, a 40 nm molybdenum (Mo) layer was
sputtered and patterned to create the source/drain (S/D) contacts. For a detailed fabrication
process flow of the LaZnO TFT, refer to the appropriate literature [2,17].

To characterize the HfZrOx films, we conducted UV-visible spectroscopy (transmit-
tance and absorbance) using a Scinco S-4100 instrument. The film thickness was measured
with an Alpha step, while the refractive index was determined using ellipsometry. Surface
morphology (including RMS roughness) was examined using atomic force microscopy
(AFM). Chemical composition and elemental analysis of the metal oxide films were studied
through X-ray photoelectron spectroscopy (XPS) with a PHI 5000 Versa Probe (PHI 5000
Versa Probe, Ulvac-PHI, Chigasaki, Japan) under pressure of 7.5 × 10−5 mTorr.

The electrical properties of TFTs were measured using an Agilent 4156C semiconductor
parameter analyzer. The measurements were conducted at room temperature under dark
conditions. The VTH was determined by employing the linear extrapolation method on
the (IDS)1/2 vs. VGS plot, using the x-axis intercept. The µsat was obtained from the linear
section of the (IDS)1/2 vs. VGS curve. The SS was determined from the linear region of the
log (IDS) vs. VGS fit using Formula (2).

IDS =
1
2

W
L

µsatCox (V GS − VTH)
2, (1)

SS =
dVGS

d(log I DS)
(2)

where IDS, W/L, µsat, Cox, VTH, and VGS are the drain current, channel width, channel
length, saturation mobility, gate oxide capacitance, threshold voltage, and gate voltage,
respectively.
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3. Results and Discussion

Figure 1a illustrates the process flow for fabricating the HfZrOx thin film on a glass
substrate. Further details can be found in the Materials and Methods Section. In Figure 1b,
it is evident that the HfZrOx thin film exhibits transmittances exceeding 90% in the visible
region. The optical band gaps of HfZrO-200 ◦C, HfZrO-250 ◦C, and HfZrO-300 ◦C thin films
are shown in Figure 1c. For the UV-Vis experiment, the HfZrOx films were deposited on the
glass, where the absorption of a glass substrate can be negligible [2]. The band gap (Eg) of
HfZrO-250 ◦C is 5.85 eV, as can be seen in Figure 1c [2,28–31]. The Eg was extracted using
the formula: αhν = A (hν − Eg)1/n, where hν, n, A, and α are the photon energy, optical
transition exponent, a proportionality constant in the absorption process, and absorption
coefficient, respectively. The refractive index (R.I.) of HfZrOx films was measured by
ellipsometry. Figure 1d displays the refractive indices (RI) of HfZrO-200 ◦C, HfZrO-250 ◦C,
and HfZrO-300 ◦C, with corresponding values of 1.68, 1.79, and 1.83, respectively. The
increase in film density is evident from the RI values observed in the visible range. In metal
oxide thin film, the composition of the film density can be correlated with RI values. As
the annealing temperature increases, the film density of HfZrOx also increases. A lower RI
value indicates an increase in film porosity, which subsequently affects both the optical and
electrical properties [2,17,28–30].
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Figure 1. (a) Schematic representation of HfZrOx thin film deposited by spin coating. (b) The
transmittances of HfZrO-200 ◦C, HfZrO-250 ◦C, and HfZrO-300 ◦C thin films are higher than 90% in
the visible region. (c) The bandgap of HfZrO-250 ◦C thin film obtained from the Tauc plot. The inset of
(c) shows a photograph of HfZrO-250 ◦C thin film placed on the ADRC logo. (d) The refractive index
as a function of the photon energy of HfZrO-200 ◦C, HfZrO-250 ◦C, and HfZrO-300 ◦C thin films.

Figure 2 illustrates the frequency-dependent capacitance of the HfZrO-200 ◦C, HfZrO-
250 ◦C, and HfZrO-300 ◦C GIs. The capacitance was measured with a frequency from
20 Hz to 2 MHz. The capacitance values of HfZrO-200 ◦C, HfZrO-250 ◦C, and HfZrO-300 ◦C
are 384, 455, and 476 nF/cm2, respectively. In the capacitance curve of the HfZrOx film
annealed at 200 ◦C, a decrease in capacitance is observed from around 10 kHz, while
the capacitance remains constant up to 300 kHz for HfZrOx-300 ◦C, with degradation
commencing at 300 kHz. This behavior is attributed to the lower defect density present
in the HfZrOx film annealed at 200 ◦C [24]. The inset in Figure 2 depicts the MIM
(Mo/HfZrOx/Mo) structure.
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Figure 2. Capacitance vs. frequency of HfZrO-200 ◦C, HfZrO-250 ◦C, and HfZrO-300 ◦C gate
insulators (GIs) annealed at different temperatures.

Figure 3a–c presents the surface morphology of HfZrO-200 ◦C, HfZrO-250 ◦C, and
HfZrO-300 ◦C films. The root-mean-square roughness (RRMS) values for the HfZrOx
films annealed at 200 ◦C, 250 ◦C, and 300 ◦C are determined to be 0.57 nm, 0.36 nm, and
0.29 nm, respectively, with a scanning area of 2 µm × 2 µm. With increasing annealing
temperature, the surface roughness decreases, resulting in a smoother surface morphol-
ogy [20]. The improved smoothness of the HfZrOx film surface enhances the interface
quality with the channel layer. Consequently, the favorable interface between the gate
insulator and the channel layer contributes to the enhanced electrical properties of the
LaZnO TFT [2,8,12,20,24–26,29,30].
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Figure 3. AFM images (Scan size 2 µm × 2 µm) of (a) HfZrO-200 ◦C, (b) HfZrO-250 ◦C,
and (c) HfZrO-300 ◦C thin films. The RRMS values of 0.57, 0.36, and 0.29 nm indicate smooth
surface morphology.

The O1s XPS spectra were analyzed to investigate the chemical composition of the
HfZrO films (Figure 4a–c). The O 1s peak was deconvoluted into three sub-peaks cen-
tered around ~529.5 eV (metal oxide, M-O), ~530.5 eV (oxygen vacancy, Vo), and ~532 eV
(hydroxyl groups, -OH). The percentages of M-O-M, Vo, and -OH in the HfZrOx films an-
nealed at different temperatures (200 ◦C, 250 ◦C, and 300 ◦C) were determined. The M-O-M
percentages were found to be 64.75%, 75.39%, and 77.65%, while the Vo ratios were 24.75%,
17.28%, and 15.98%, and the -OH ratios were 10.50%, 7.33%, and 6.37%, respectively [2,15].
The higher M-O-M content indicates a reduction in oxygen-related defects (Vo + -OH), re-
sulting in fewer defects at the interface between the gate insulator and channel layers. This
contributes to improved device performance and interface quality [5,10,14,15,27,31–33].
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The electrical properties of LaZnO TFTs with HfZrO (HfZrO-200 ◦C, HfZrO-250 ◦C,
and HfZrO-300 ◦C) gate insulators were studied by measuring the I-V (transfer) curves of
TFTs. Figure 5a–c depicts the transfer curves of LaZnO TFTs with HfZrO-200 ◦C, HfZrO-
250 ◦C, and HfZrO-300 ◦C, illustrating their hysteresis characteristics, with corresponding
electrical properties, such as µFE of (8.49, 19.06, and 22.28) cm2V−1s−1, VTH of (2.60, 1.98,
and 1.87) V, VH of (0.03, 0, and 0) V, and SS of (295, 256, and 231) mV/dec, respectively. The
hysteresis curves for the LaZnO TFTs with HfZrO-200 ◦C, HfZrO-250 ◦C, and HfZrO-300 ◦C
show the negligible VH, indicating a favorable gate insulator (GI)/channel interface. The
reduced number of traps at the GI/channel interface contributes to higher ION and lower
SS, as shown in Figure 5a–c. Achieving a higher M-O-M ratio and minimizing oxygen-
related defects leads to smoother charge transport and reduced charge trapping, resulting
in enhanced carrier mobility and stable device operation. With an increase in HfZrOx
annealing temperature, the VTH shifts to a positive VGS due to a decrease in trap states at
the interface [2,10,24,33]. The output curves of LaZnO TFTs with HfZrO-200 ◦C, HfZrO-
250 ◦C, and HfZrO-300 ◦C are presented in Figure 6a–c, exhibiting clear pinch-off and
saturation behavior. The TFTs were tested with VDS sweeping from 0 to +5 V and VGS
sweeping from 0 to +5 V (step = 1 V). The absence of current crowding in the low VDS
region confirms excellent ohmic contact between the source/drain electrodes and channel
layers [5,10,16,29].
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Figure 5. (a–c) The transfer characteristics with hysteresis curves for the LaZnO TFTs with
HfZrO-200 ◦C, HfZrO-250 ◦C, and HfZrO-300 ◦C GIs. Hysteresis voltage was obtained at
IDS = 10−10 A. IG represents the gate leakage current.

Figure 7a presents an optical photograph of the measurement setup for the flexible
LaZnO TFT fabricated on a PI substrate with a HfZrO-250 ◦C gate insulator (GI). Figure 7b
displays the transfer curve of the flexible LaZnO TFT, measured at VDS of 0.1 V by sweeping
VGS from −5 to +5 V. The IDS

1/2 vs. VGS plot with a linear extrapolation line is shown
on the right side of the y-axis. The flexible LaZnO TFT with HfZrO-250 ◦C GI exhibits a
µFE of 20.55 cm2V−1s−1, VTH of 1.12 V, and SS of 264 mV/dec. Compared with TFTs on
glass substrates, the electrical properties of the flexible LaZnO TFT show almost negligible
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changes. To assess the bias stability of the LaZnO TFT with HfZrO-250 ◦C GI, PBTS was
performed on the TFT (at VGS = 5 V for 1 h), as shown in Figure 7c. The evaluation of the
transfer curve under PBTS reveals a threshold voltage shift (∆VTH) of 0.25 V. The positive
shift in VTH is attributed to electron trapping at the interface between the HfZrO and
LaZnO layers. However, the SS of the LaZnO TFT undergoes a negligible change after
1 h of bias stress, indicating fewer interfacial traps. A higher M-O-M ratio and reduced
oxygen-related defects significantly enhance mobility and excellent bias stability of the
metal oxide TFT. Thus, the interface quality between HfZrOx and LaZnO plays a crucial
role in improving the electrical properties of the TFT.
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Figure 7. (a) Photograph of the measurement setup of LaZnO TFT with HfZrO-250 ◦C gate insulator
fabricated on a PI substrate. (b) The transfer curve of the LaZnO TFT measured at the drain voltage
VDS = 0.1 V by sweeping VGS from −5 to +5 V. (c) Transfer curve of the LaZnO TFT under PBTS for
1 h at 60 ◦C.

To validate the accuracy of the performances of HfZrO-250 ◦C/LaZnO TFTs, we fabri-
cated the TFTs in four different runs to ensure precise and reliable data collection. The mFE,
VON, and SS values of the HfZrO-250 ◦C/LaZnO TFT for Run-I, Run-II, Run-III, and Run-IV
are (17.50 ± 2.20, 16.95 ± 2.85, 18.99 ± 2.15, and 18.50 ± 1.98) cm2V−1s−1, (−1.62 ± 0.18,
−1.56 ± 0.14, −1.72 ± 0.21, and −1.69 ± 0.23) V, (253 ± 13.22, 264 ± 11.94, 249 ± 10.89, and
261 ± 8.58) mV/dec, respectively, as shown in Figure 8a–c. The small deviation in these
values indicates the high reliability and consistency of the fabrication process. The narrow
range of fluctuations highlights the robustness of the HfZrO-250 ◦C/LaZnO TFT perfor-
mance across multiple runs, reaffirming its potential for practical applications in electronic
devices. The HZO film deposited at 350 ◦C is prone to crystallization and can be a ferro-
electric material [33]. As a result, we used spin-coating for the HZO film at 250 ◦C, which
provides a more favorable gate insulator for the LaZnO TFT. The electrical properties of the
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solution-processed ZnO-based TFTs with various solution-processed gate dielectrics are
reported in the literature, as shown in Table 1 [34–39]. H. Liu et al., demonstrate hysteresis-
free Indium gallium zinc oxide (IGZO) TFT with HfOx gate insulator (GI), which exhibits
excellent performance characteristics, including a high mobility of 30 cm2V−1s−1, an SS
of 68 mV/dec, and a high ION/IOFF of 106 [40]. In the present work, our HfZrO/LaZnO
TFTs display superior performance with high mobility, low subthreshold swing, and a
high ION/IOFF ratio. Furthermore, we successfully fabricated flexible LaZnO TFTs with
HfZrO-250 ◦C GI, which exhibited hysteresis-free behavior, leading to improved electronic
device performance and enhanced stability for a wide range of applications [34–36,41].
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Table 1. Comparison of the electrical properties of the solution-processed ZnO-based TFTs with
various solution-processed gate dielectrics reported in the literature.

Active/GI TFT W/L
[µm/µm]

Mobility
[cm2V−1s−1]

SS
[mV/dec]

Stability
(∆VTH, [V]) Ref.

(a) LaZnO/(b) ZrOx 50/10 8.31 218 PBTS (0.10) [2]
(b) ZnO/(b) AlOx 60/10 6.05 550 - [34]

(a) ZnO/(a) AlTiOx 2000/20 10.00 550 - [35]
(a) ZnO/(a) HfOx 2000/20 42.00 - - [36]

(b) ZnO/(b) LaZrOx 50/10 11.58 249 PBS (0.20) [37]
(b) ZnO/(b) SiO2 1000/50 3.20 600 - [38]
(a) ZnO/(b) ZrOx 50/10 12.76 260 PBS (0.01) [39]

(a) LaZnO/(b) HfZrO 50/10 19.06 256 PBTS (0.23) [This work]
(a) Spray Pyrolysis; (b) Spin Coating.

4. Conclusions

In summary, this study investigates the use of a low-temperature solution-processed
HfZrOx gate insulator (GI) to improve the performance of LaZnO thin-film transistors
(TFTs) for potential applications in next-generation flexible displays. To optimize the HfZrO
GI, annealing was performed at 200, 250, or 300 ◦C. The LaZnO TFT with HfZrO-250 ◦C
GI exhibits a µFE of 19.06 cm2V−1s−1, VTH of 1.98 V, hysteresis voltage (VH) of 0 V, SS
of 256 mV/dec, and ION/IOFF ratio of ~108. The decrease in hysteresis voltage is critical
as it helps to ensure the stability and reliability of the TFT operation. Additionally, the
steep subthreshold slope (SS) of 256 mV/dec indicates a sharp turn-on behavior, which is
essential for achieving efficient switching. Moreover, the on/off current ratio (ION/IOFF)
of ~108 highlights the ability of the transistor to efficiently control the flow of currents.
Under PBTS, the HfZrO-250 ◦C/LaZnO TFT experiences a threshold voltage shift (∆VTH)
of 0.23 V. These enhancements can be attributed to the smooth surface morphology and
reduced defects in the HfZrO gate insulator. Therefore, these findings significantly advance
our understanding of the underlying phenomena and pave the way for the development of
flexible metal-oxide-semiconductor TFTs for future-generation flexible displays.
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