Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (774)

Search Parameters:
Keywords = metal oxide nanomaterials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 3844 KB  
Review
Bioinspired Improvement of Lignocellulosic Bio-Based Materials Against Fire and Fungi—A Comprehensive Review
by Jovale Vincent Tongco and Armando G. McDonald
Bioresour. Bioprod. 2026, 2(1), 3; https://doi.org/10.3390/bioresourbioprod2010003 - 16 Jan 2026
Viewed by 154
Abstract
Lignocellulosic bio-based materials, such as wood, biocomposites, and natural fibers, exhibit desirable structural properties. This comprehensive review emphasizes the foundational and latest advancements in bioinspired improvement strategies, such as direct mineralization, biomineralization, lignocellulosic nanomaterials, protein-based treatments, and metal-chelating processes. Significant focus was placed [...] Read more.
Lignocellulosic bio-based materials, such as wood, biocomposites, and natural fibers, exhibit desirable structural properties. This comprehensive review emphasizes the foundational and latest advancements in bioinspired improvement strategies, such as direct mineralization, biomineralization, lignocellulosic nanomaterials, protein-based treatments, and metal-chelating processes. Significant focus was placed on biomimetics, emulating natural protective mechanisms, with discussions on relevant topics including hierarchical mineral deposition, free-radical formation and quenching, and selective metal ion binding, and relating them to lignocellulosic bio-based material property improvements, particularly against fire and fungi. This review evaluates the effectiveness of different bioinspired processes: mineralized and biomineralized composites improve thermal stability, nanocellulose and lignin nanoparticles provide physical, thermal, and chemical barriers, proteins offer biochemical inhibition and mineral templating, and chelators interfere with fungal oxidative pathways while simultaneously improving fire retardancy through selective binding with metal ions. Synergistic approaches integrating various mechanisms could potentially lead to long-lasting and multifunctional protection. This review also highlights the research gaps, challenges, and potential for future applications. Full article
Show Figures

Figure 1

21 pages, 4613 KB  
Article
Physiological and Metabolic Changes Induced by Fullerene C60 Derivatives in Zinc-Stressed Cucumber
by Nikolai Bityutskii, Kirill Yakkonen, Roman Puzanskiy, Allexey Shavarda, Konstantin Semenov and Marina Nadporozhskaya
Plants 2026, 15(2), 254; https://doi.org/10.3390/plants15020254 - 14 Jan 2026
Viewed by 211
Abstract
Zinc (Zn) in excess is very toxic for plants and can limit agriculture. Carbon-based engineered nanomaterials with high electron mobility and electron-accepting capability may be essential for mitigating heavy metal stress. In the present study, the protective role of some fullerene C60 [...] Read more.
Zinc (Zn) in excess is very toxic for plants and can limit agriculture. Carbon-based engineered nanomaterials with high electron mobility and electron-accepting capability may be essential for mitigating heavy metal stress. In the present study, the protective role of some fullerene C60 derivatives (fullerenol [C60(OH)22–24] and the arginine C60 [C60(C6H13N4O2)8H8]) were tested for the first time against Zn toxicity in Cucumis sativus L. (cucumber). Plants were grown hydroponically at three concentrations of fullerenes (0, 2, and 10 mg L−1) without or with 40 µM Zn for 17 days. Plant growth, leaf chlorosis, and nutritional imbalances in combination with a metabolomics approach were analyzed. The Zn-treated plants show chlorotic leaves, the retarded growth of shoots (−20%), and roots (−49%) and nutrient imbalance. Addition of fullerene C60 derivatives suppressed loss in the dry biomass of leaves (15%) and roots (40%; fullerenol only) induced by high Zn. However, they did not alter leaf chlorophyll, shoot dry biomass, and elemental composition, including leaf Zn. Moreover, the Zn of xylem sup from roots remained unchanged by fullerenes. In an adsorption experiment, the amounts of Zn adsorbed by tested C60 were below the detection limits. The addition of C60 derivatives slightly changed the metabolite profiling in stressed plants. Nevertheless, in fullerene-treated plants, the abundance of some Zn-responsible metabolites tended to be altered in the opposite direction as compared with the metabolic responses to excessive Zn alone. There were several up-regulated metabolites protecting plants under oxidative stress. We speculate that fullerene C60 derivatives have the ability to increase antioxidant non-enzyme activity at least, improving some growth parameters. However, fullerenes did not reduce Zn transport from the root to the shoots. We concluded that the low capacity of these compounds to buffer Zn in the root zone might limit the efficiency of fullerene derivatives against Zn toxicity. Our results provide new evidence for the crucial role of Zn–fullerene interactions in the amelioration of Zn toxicity in plants. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Graphical abstract

21 pages, 1259 KB  
Review
Transition Metal-Doped ZnO and ZrO2 Nanocrystals: Correlations Between Structure, Magnetism, and Vibrational Properties—A Review
by Izabela Kuryliszyn-Kudelska and Witold Daniel Dobrowolski
Appl. Sci. 2026, 16(2), 786; https://doi.org/10.3390/app16020786 - 12 Jan 2026
Viewed by 101
Abstract
Transition metal (TM)-doped zinc oxide (ZnO) and zirconium dioxide (ZrO2) nanocrystals exhibit complex correlations between crystal structure, defect chemistry, vibrational properties, and magnetic behavior that are strongly governed by synthesis route and dopant incorporation mechanisms. This review critically summarizes recent progress [...] Read more.
Transition metal (TM)-doped zinc oxide (ZnO) and zirconium dioxide (ZrO2) nanocrystals exhibit complex correlations between crystal structure, defect chemistry, vibrational properties, and magnetic behavior that are strongly governed by synthesis route and dopant incorporation mechanisms. This review critically summarizes recent progress on Fe-, Mn-, and Co-doped ZnO and ZrO2 nanocrystals synthesized by wet chemical, hydrothermal, and microwave-assisted hydrothermal methods, with emphasis on synthesis-driven phase evolution and apparent solubility limits. ZnO and ZrO2 are treated as complementary host lattices: ZnO is a semiconducting, piezoelectric oxide with narrow solubility limits for most 3d dopants, while ZrO2 is a dielectric, polymorphic oxide in which transition metal doping may stabilize tetragonal or cubic phases. Structural and microstructural studies using X-ray diffraction, electron microscopy, Raman spectroscopy, and Mössbauer spectroscopy demonstrate that at low dopant concentrations, TM ions may be partially incorporated into the host lattice, giving rise to diluted or defect-mediated magnetic behavior. When solubility limits are exceeded, nanoscopic secondary oxide phases emerge, leading to superparamagnetic, ferrimagnetic, or spin-glass-like responses. Magnetic measurements, including DC magnetization and AC susceptibility, reveal a continuous evolution from paramagnetism in lightly doped samples to dynamic magnetic states characteristic of nanoscale magnetic entities. Vibrational spectroscopy highlights phonon confinement, surface optical phonons, and disorder-activated modes that sensitively reflect nanocrystal size, lattice strain, and defect populations, and often correlate with magnetic dynamics. Rather than classifying these materials as diluted magnetic semiconductors, this review adopts a synthesis-driven and correlation-based framework that links dopant incorporation, local structural disorder, vibrational fingerprints, and magnetic response. By emphasizing multi-technique characterization strategies required to distinguish intrinsic from extrinsic magnetic contributions, this review provides practical guidelines for interpreting magnetism in TM-doped oxide nanocrystals and outlines implications for applications in photocatalysis, sensing, biomedicine, and electromagnetic interference (EMI) shielding. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

30 pages, 1761 KB  
Review
Harnessing Optical Energy for Thermal Applications: Innovations and Integrations in Nanoparticle-Mediated Energy Conversion
by José Rubén Morones-Ramírez
Processes 2026, 14(2), 236; https://doi.org/10.3390/pr14020236 - 9 Jan 2026
Viewed by 251
Abstract
Nanoparticle-mediated photothermal conversion exploits the unique light-to-heat transduction properties of engineered nanomaterials to address challenges in energy, water, and healthcare. This review first examines fundamental mechanisms—localized surface plasmon resonance (LSPR) in plasmonic metals and broadband interband transitions in semiconductors—demonstrating how tailored nanoparticle compositions [...] Read more.
Nanoparticle-mediated photothermal conversion exploits the unique light-to-heat transduction properties of engineered nanomaterials to address challenges in energy, water, and healthcare. This review first examines fundamental mechanisms—localized surface plasmon resonance (LSPR) in plasmonic metals and broadband interband transitions in semiconductors—demonstrating how tailored nanoparticle compositions can achieve >96% absorption across 250–2500 nm and photothermal efficiencies exceeding 98% under one-sun illumination (1000 W·m−2, AM 1.5G). Next, we highlight advances in solar steam generation and desalination: floating photothermal receivers on carbonized wood or hydrogels reach >95% efficiency in solar-to-vapor conversion and >2 kg·m−2·h−1 evaporation rates; three-dimensional architectures recapture diffuse flux and ambient heat; and full-spectrum nanofluids (LaB6, Au colloids) extend photothermal harvesting into portable, scalable designs. We then survey photothermal-enhanced thermal energy storage: metal-oxide–paraffin composites, core–shell phase-change material (PCM) nanocapsules, and MXene– polyethylene glycol—PEG—aerogels deliver >85% solar charging efficiencies, reduce supercooling, and improve thermal conductivity. In biomedicine, gold nanoshells, nanorods, and transition-metal dichalcogenide (TMDC) nanosheets enable deep-tissue photothermal therapy (PTT) with imaging guidance, achieving >94% tumor ablation in preclinical and pilot clinical studies. Multifunctional constructs combine PTT with chemotherapy, immunotherapy, or gene regulation, yielding synergistic tumor eradication and durable immune responses. Finally, we explore emerging opto-thermal nanobiosystems—light-triggered gene silencing in microalgae and poly(N-isopropylacrylamide) (PNIPAM)–gold nanoparticle (AuNP) membranes for microfluidic photothermal filtration and control—demonstrating how nanoscale heating enables remote, reversible biological and fluidic functions. We conclude by discussing challenges in scalable nanoparticle synthesis, stability, and integration, and outline future directions: multicomponent high-entropy alloys, modular photothermal–PCM devices, and opto-thermal control in synthetic biology. These interdisciplinary innovations promise sustainable solutions for global energy, water, and healthcare demands. Full article
(This article belongs to the Special Issue Transport and Energy Conversion at the Nanoscale and Molecular Scale)
Show Figures

Figure 1

21 pages, 266 KB  
Proceeding Paper
Metal Oxide Nanomaterials for Energy Density Improvement in Lithium-Ion and Solid-State Batteries
by Partha Protim Borthakur, Pranjal Sarmah, Madhurjya Saikia, Tamanna Afruja Hussain and Nayan Medhi
Mater. Proc. 2025, 25(1), 17; https://doi.org/10.3390/materproc2025025017 - 7 Jan 2026
Viewed by 195
Abstract
Metal oxide nanomaterials have emerged as transformative materials in the quest to enhance the energy density and overall performance of lithium-ion batteries (LIBs) and solid-state batteries (SSBs). Their unique properties—including their large surface areas and short ion diffusion pathways—make them ideal for next-generation [...] Read more.
Metal oxide nanomaterials have emerged as transformative materials in the quest to enhance the energy density and overall performance of lithium-ion batteries (LIBs) and solid-state batteries (SSBs). Their unique properties—including their large surface areas and short ion diffusion pathways—make them ideal for next-generation energy storage technologies. In LIBs, the high surface-to-volume ratio of metal oxide nanomaterials significantly enlarges the active interfacial area and shortens the lithium-ion diffusion paths, leading to an improved high-rate performance and enhanced energy density. Transition metal oxides (TMOs) such as nickel oxide (NiO), copper oxide (CuO), and zinc oxide (ZnO) have demonstrated significant theoretical capacities, while binary systems like NiCuO offer further improvements in cycling stability and energy output. Additionally, layered lithium-based TMOs, particularly those incorporating nickel, cobalt, and manganese, have shown remarkable promise in achieving high specific capacities and long-term stability. The synergistic integration of metal oxides with carbon-based nanostructures, such as carbon nanotubes (CNTs), enhances the electrical conductivity and structural durability further, leading to a superior electrochemical performance in LIBs. In SSBs, the use of oxide-based solid electrolytes like garnet-type Li7La3Zr2O12 (LLZO) and sulfide-based electrolytes has facilitated the development of high-energy-density systems with excellent ionic conductivity and chemical stability. However, challenges such as high interfacial resistance at the electrode–electrolyte interface persist. Strategies like the application of lithium niobate (LiNbO3) coatings have been employed to enhance interfacial stability and maintain electrochemical integrity. Furthermore, two-dimensional (2D) metal oxide nanomaterials, owing to their high active surface areas and rapid ion transport, have demonstrated considerable potential to boost the performance of SSBs. Despite these advancements, several challenges remain. Morphological optimization of nanomaterials, improved interface engineering to reduce the interfacial resistance, and solutions to address dendrite formation and mechanical degradation are critical to achieving the full potential of these materials. Full article
(This article belongs to the Proceedings of The 5th International Online Conference on Nanomaterials)
24 pages, 876 KB  
Review
Evolution of Biosensors and Current State-of-the-Art Applications in Diabetes Control
by Yahya Waly, Abdullah Hussain, Abdulrahman Al-Majmuei, Mohammad Alatoom, Ahmed J. Alaraibi, Ahmed Alaysereen and G. Roshan Deen
Biosensors 2026, 16(1), 39; https://doi.org/10.3390/bios16010039 - 3 Jan 2026
Viewed by 648
Abstract
Diabetes is a chronic metabolic disorder that poses a growing global health challenge, currently affecting nearly 500 million people. Over the past four decades, the rising prevalence of diabetes has highlighted the urgent need for innovations in monitoring and management. Traditional enzymatic methods, [...] Read more.
Diabetes is a chronic metabolic disorder that poses a growing global health challenge, currently affecting nearly 500 million people. Over the past four decades, the rising prevalence of diabetes has highlighted the urgent need for innovations in monitoring and management. Traditional enzymatic methods, including those using glucose oxidase, glucose dehydrogenase, and hexokinase, are widely adopted due to their specificity and relative ease of use. However, they are hindered by issues of instability, environmental sensitivity, and interference from other biomolecules. Non-enzymatic sensors, which employ metals and nanomaterials for the direct oxidation of glucose, offer an attractive alternative. These platforms demonstrate higher sensitivity and cost-effectiveness, though they remain under refinement for routine use. Non-invasive glucose detection represents a futuristic leap in diabetes care. By leveraging alternative biofluids such as saliva, tears, sweat, and breath, these methods promise enhanced patient comfort and compliance. Nonetheless, their limited sensitivity continues to challenge widespread adoption. Looking forward, the integration of nanotechnology, wearable biosensors, and artificial intelligence paves the way for personalized, affordable, and patient-centered diabetes management, marking a transformative era in healthcare. This review explores the evolution of glucose monitoring, from early chemical assays to advanced state-of-the-art nanotechnology-based approaches. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Figure 1

19 pages, 6840 KB  
Article
Magnetically Recoverable ICT-Functionalized Fe3O4 Nanoparticles for Efficient Horseradish Peroxidase Immobilization
by Katarina Isaković, Marko Jonović, Dušan Sredojević, Marko Bošković, Jovana Periša, Zorica Knežević-Jugović and Vesna Lazić
Molecules 2026, 31(1), 178; https://doi.org/10.3390/molecules31010178 - 2 Jan 2026
Viewed by 390
Abstract
The formation of interfacial charge transfer (ICT) complexes between phenolic ligands and metal oxide surfaces enables surface functionalization strategies with potential applications in catalysis and bioconjugation. In this study, magnetite (Fe3O4) nanoparticles were modified with two phenolic ligands, 5-aminosalicylic [...] Read more.
The formation of interfacial charge transfer (ICT) complexes between phenolic ligands and metal oxide surfaces enables surface functionalization strategies with potential applications in catalysis and bioconjugation. In this study, magnetite (Fe3O4) nanoparticles were modified with two phenolic ligands, 5-aminosalicylic acid (5ASA) and caffeic acid (CA), to generate ICT complexes capable of covalent or non-covalent enzyme immobilization, respectively. The modified nanomaterials were structurally characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FTIR). Horseradish peroxidase (HRP) was immobilized on these functionalized supports using varying nanoparticle amounts (10–30 mg) and initial enzyme concentrations (25–250 µg mL−1). Catalytic activity was evaluated using pyrogallol oxidation assays. The Fe3O4/5ASA–HRP system exhibited a maximum activity of 2.5 U per 20 mg of support (approximately 125 U g−1), whereas Fe3O4/CA showed minimal activity under the same conditions. Enzyme loading studies confirmed that 5ASA-enabled covalent attachment resulted in significantly higher immobilization efficiency (up to 1068 mg g−1) compared to the CA system. Reusability tests demonstrated that the Fe3O4/5ASA system retained high absolute catalytic activity during the initial reaction cycles and consistently outperformed the non-covalently immobilized Fe3O4/CA system upon repeated reuse. The magnetic properties of Fe3O4 allowed rapid recovery of the biocatalysts using an external magnetic field. These results highlight the effectiveness of ICT-based functionalization for enzyme immobilization, positioning Fe3O4/5ASA as a promising platform for robust and reusable biocatalysts in environmental and industrial applications. Full article
Show Figures

Graphical abstract

43 pages, 5874 KB  
Review
Photocatalytic Degradation of Antibiotics Using Nanomaterials: Mechanisms, Applications, and Future Perspectives
by Jianwei Liu, Hongwei Ruan, Pengfei Duan, Peng Shao, Yang Zhou, Ying Wang, Yudi Chen, Zhiyong Yan and Yang Liu
Nanomaterials 2026, 16(1), 49; https://doi.org/10.3390/nano16010049 - 29 Dec 2025
Viewed by 594
Abstract
Widespread antibiotic residues in aquatic environments pose escalating threats to ecological stability and human health, highlighting the urgent demand for effective remediation strategies. In recent years, photocatalytic technology based on advanced nanomaterials has emerged as a sustainable and efficient strategy for antibiotic degradation, [...] Read more.
Widespread antibiotic residues in aquatic environments pose escalating threats to ecological stability and human health, highlighting the urgent demand for effective remediation strategies. In recent years, photocatalytic technology based on advanced nanomaterials has emerged as a sustainable and efficient strategy for antibiotic degradation, enabling the effective utilization of solar energy for environmental remediation. This review provides an in-depth discussion of six representative categories of photocatalytic nanomaterials that have demonstrated remarkable performance in antibiotic degradation, including metal oxide-based systems with defect engineering and hollow architectures, bismuth-based semiconductors with narrow band gaps and heterojunction designs, silver-based plasmonic composites with enhanced light harvesting, metal–organic frameworks (MOFs) featuring tunable porosity and hybrid interfaces, carbon-based materials such as g-C3N4 and biochar that facilitate charge transfer and adsorption, and emerging MXene–semiconductor hybrids exhibiting exceptional conductivity and interfacial activity. The photocatalytic performance of these nanomaterials is compared in terms of degradation efficiency, recyclability, and visible-light response to evaluate their suitability for antibiotic degradation. Beyond parent compound removal, we emphasize transformation products, mineralization, and post-treatment toxicity evolution as critical metrics for assessing true detoxification and environmental risk. In addition, the incorporation of artificial intelligence into photocatalyst design, mechanistic modeling, and process optimization is highlighted as a promising direction for accelerating material innovation and advancing toward scalable, safe, and sustainable photocatalytic applications. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

9 pages, 4681 KB  
Article
Facile Galvanic Replacement Toward One-Dimensional Cu-Based Bimetallic Nanobelts
by Ying Xie, Qitong Sun, Yuanyuan Li, Wanwan Li, Zhiwei Hou, Lihui Wei and Sujun Guan
Nanomaterials 2026, 16(1), 38; https://doi.org/10.3390/nano16010038 - 26 Dec 2025
Viewed by 369
Abstract
We report a galvanic replacement-driven strategy for the in situ growth of highly uniform one-dimensional (1D) Cu@CuO-X (X = Ag, Bi) nanobelts directly on aluminum foils. Unlike conventional multi-step coating or hard-template replication strategies, the formation of these heterostructured nanobelts is governed by [...] Read more.
We report a galvanic replacement-driven strategy for the in situ growth of highly uniform one-dimensional (1D) Cu@CuO-X (X = Ag, Bi) nanobelts directly on aluminum foils. Unlike conventional multi-step coating or hard-template replication strategies, the formation of these heterostructured nanobelts is governed by a spontaneous interfacial galvanic replacement process between Cu and the introduced metal species, ensuring in situ growth and intimate interfacial integration. Comprehensive SEM, TEM, XRD, and XPS characterizations confirm the successful formation of Cu@CuO-Ag and Cu@CuO-Bi architectures, where Bi predominantly exists in the oxidized Bi3+ state, forming Bi2O3-like surface species. Benefiting from their 1D anisotropic framework and controllable heterointerfaces, this work underscores the distinctiveness and versatility of the self-templated galvanic replacement strategy for the design of multifunctional nanomaterials. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

26 pages, 2490 KB  
Review
Nano-Elicitation Approaches for Boosting Secondary Metabolites in Medicinal Plant Cell Cultures
by Pooran Golkar, Edgar Vázquez-Núñez and José R. Peralta-Videa
Plants 2026, 15(1), 46; https://doi.org/10.3390/plants15010046 - 23 Dec 2025
Viewed by 450
Abstract
Medicinal plants are a rich source of diverse secondary metabolites (SMs) with significant industrial and medicinal applications. However, the natural content of these compounds is often low and influenced by various environmental and biological factors, making large-scale extraction from conventionally cultivated plants challenging. [...] Read more.
Medicinal plants are a rich source of diverse secondary metabolites (SMs) with significant industrial and medicinal applications. However, the natural content of these compounds is often low and influenced by various environmental and biological factors, making large-scale extraction from conventionally cultivated plants challenging. This review comprehensively examines the efficacy and benefits of plant in vitro culture techniques, specifically, callus, cell suspension, and hairy root cultures, for enhanced SMs production. A primary focus is placed on the elicitation effects of various nanomaterials and their mechanisms of action in boosting SMs synthesis. We present successful case studies utilizing different classes of nanomaterials, including metal oxides, non-metal oxides, carbon-based materials, polysaccharides, and quantum dots, as nano-elicitors. Furthermore, the review discusses the advantages and current challenges of nanomaterial-based elicitation, as well as its future applications and prospects. The insights consolidated in this review underscore the potential of nanoparticle-mediated elicitation as a robust strategy for the efficient production of valuable SMs in plant cell cultures. Finally, we emphasize the broad utility of diverse nanomaterials and highlight critical areas requiring further investigation in this field. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

35 pages, 6966 KB  
Review
Electrochemical Synthesis of Nanomaterials Using Deep Eutectic Solvents: A Comprehensive Review
by Ana T. S. C. Brandão and Sabrina State
Nanomaterials 2026, 16(1), 15; https://doi.org/10.3390/nano16010015 - 22 Dec 2025
Viewed by 653
Abstract
Deep eutectic solvents (DES) have emerged as a versatile and sustainable medium for the green synthesis of nanomaterials, offering a viable alternative to conventional organic solvents and ionic liquids. Nanomaterials can be synthesised in DESs via multiple routes, including chemical reduction, solvothermal, and [...] Read more.
Deep eutectic solvents (DES) have emerged as a versatile and sustainable medium for the green synthesis of nanomaterials, offering a viable alternative to conventional organic solvents and ionic liquids. Nanomaterials can be synthesised in DESs via multiple routes, including chemical reduction, solvothermal, and electrochemical methods. Among the different pathways, this review focuses on the electrochemical synthesis of nanomaterials in DESs, as it offers several advantages: low cost, scalability for large-scale production, and low-temperature processing. The size, shape, and morphology (e.g., nanoparticles, nanoflowers, nanowires) of the resulting nanostructures can be tuned by adjusting the concentration of the electroactive species, the applied potential, the current density, mechanical agitation, and the electrolyte temperature. The use of DES as an electrolytic medium represents an environmentally friendly alternative. From an electrochemical perspective, it exhibits high electrochemical stability, good solubility for a wide range of precursors, and a broad electrochemical window. Furthermore, their low surface tensions promote high nucleation rates, and their high ionic strengths induce structural effects such as templating, capping and stabilisation, that play a crucial role in controlling particle morphology, size distribution and aggregation. Despite significant progress, key challenges persist, including incomplete mechanistic understanding, limited recyclability, and difficulties in scaling up synthesis while maintaining structural precision. This review highlights recent advances in the development of metal, alloy, oxide, and carbon-based composite nanomaterials obtained by electrochemical routes from DESs, along with their applications. Full article
Show Figures

Graphical abstract

30 pages, 3933 KB  
Review
Next-Generation Electrically Conductive Polymers: Innovations in Solar and Electrochemical Energy Devices
by Thirukumaran Periyasamy, Shakila Parveen Asrafali and Jaewoong Lee
Polymers 2025, 17(24), 3331; https://doi.org/10.3390/polym17243331 - 17 Dec 2025
Viewed by 727
Abstract
The emergence of electrically conductive polymeric materials has revolutionized the landscape of sustainable energy technologies, presenting unprecedented opportunities for advancing both photovoltaic conversion systems and electrochemical energy-storage platforms. These remarkable macromolecular materials exhibit distinctive characteristics including adjustable electronic band structures, exceptional mechanical adaptability, [...] Read more.
The emergence of electrically conductive polymeric materials has revolutionized the landscape of sustainable energy technologies, presenting unprecedented opportunities for advancing both photovoltaic conversion systems and electrochemical energy-storage platforms. These remarkable macromolecular materials exhibit distinctive characteristics including adjustable electronic band structures, exceptional mechanical adaptability, solution-phase processability, and cost-effective manufacturing potential. This extensive review provides an in-depth examination of the fundamental principles governing charge carrier mobility in conjugated polymer systems, explores diverse synthetic methodologies for tailoring molecular architectures, and analyzes their transformative applications across multiple energy technology domains. In photovoltaic technologies, electrically conductive polymers have driven major advancements in organic solar cells and photoelectrochemical systems, significantly improving energy conversion efficiency while reducing manufacturing costs. In electrochemical energy storage, their integration into supercapacitors and rechargeable lithium-based batteries has enhanced charge storage capability, accelerated charge–discharge processes, and extended operational lifespan compared with conventional electrode materials. This comprehensive analysis emphasizes emerging developments in hybrid composite architectures that combine conductive polymers with carbon-based nanomaterials, metal oxides, and other functional components to create next-generation flexible, lightweight, and wearable energy systems. By synthesizing fundamental materials chemistry with device engineering perspectives, this review illuminates the transformative potential of electrically conductive polymers in establishing sustainable, efficient, and resilient energy infrastructures for future technological landscapes. Full article
Show Figures

Figure 1

29 pages, 4009 KB  
Article
Plant-Mediated Synthesis of Electrocatalytically Active Cd–Cs Mixed Oxide Nanocomposites and Their Multifunctional Antioxidant and Anticorrosive Performance
by Shivani Naik, Ruchi Bharti, Renu Sharma, Sónia A. C. Carabineiro and Manas Sutradhar
Surfaces 2025, 8(4), 91; https://doi.org/10.3390/surfaces8040091 - 17 Dec 2025
Viewed by 481
Abstract
Mild steel readily corrodes in acidic environments, and most industrial corrosion inhibitors are synthetic, often toxic, and environmentally harmful. In this study, electrocatalytically active Cd–Cs mixed oxide nanocomposites were synthesized via a green route using an aqueous extract of Trachyspermum ammi (ajwain) seeds [...] Read more.
Mild steel readily corrodes in acidic environments, and most industrial corrosion inhibitors are synthetic, often toxic, and environmentally harmful. In this study, electrocatalytically active Cd–Cs mixed oxide nanocomposites were synthesized via a green route using an aqueous extract of Trachyspermum ammi (ajwain) seeds as a natural reducing, stabilizing, and capping agent. This eco-friendly method eliminates harsh chemicals while producing nanomaterials with active surfaces capable of facilitating electron transfer and scavenging free radicals. Incorporation of cesium introduces basic, electron-rich sites on the Cd–Cs oxide surface, serving as inhibition promoters that enhance charge transfer at the metal/electrolyte interface and assist in the formation of an adsorbed protective film on steel. The nanocomposites were optimized by adjusting precursor ratios, pH, temperature, and reaction time, and were characterized by UV–Vis, FTIR, XRD, SEM–EDS, HR-TEM EDS, BET, DLS, XPS, and zeta potential analyses. Strong antioxidant activity in ABTS and DPPH assays confirmed efficient catalytic quenching of reactive radicals. Corrosion inhibition potential, evaluated by using potentiodynamic polarization, electrochemical impedance spectroscopy, and gravimetric analysis in 0.5 M HCl, shows an inhibition efficiency of 90–91%. This performance is associated with an electrocatalytically active, adsorbed barrier layer that suppresses both anodic dissolution and cathodic hydrogen evolution, which depicts mixed-type inhibition. Overall, the biosynthesized Cd–Cs mixed oxide nanocomposites function as promising green synthesized nanomaterial with dual antioxidant and corrosion-inhibiting functions, underscoring their potential for advanced surface engineering and corrosion protection. Full article
(This article belongs to the Special Issue Recent Advances in Catalytic Surfaces and Interfaces, 2nd Edition)
Show Figures

Graphical abstract

31 pages, 1574 KB  
Review
Nanoparticle-Based Assays for Antioxidant Capacity Determination
by Jolanta Flieger, Natalia Żuk, Ewelina Grabias-Blicharz, Piotr Puźniak and Wojciech Flieger
Antioxidants 2025, 14(12), 1506; https://doi.org/10.3390/antiox14121506 - 15 Dec 2025
Viewed by 636
Abstract
Thanks to both endogenous and exogenous antioxidants (AOs), the antioxidant defense system ensures redox homeostasis, which is crucial for protecting the body from oxidative stress and maintaining overall health. The food industry also exploits the antioxidant properties to prevent or delay the oxidation [...] Read more.
Thanks to both endogenous and exogenous antioxidants (AOs), the antioxidant defense system ensures redox homeostasis, which is crucial for protecting the body from oxidative stress and maintaining overall health. The food industry also exploits the antioxidant properties to prevent or delay the oxidation of other molecules during processing and storage. There are many classical methods for assessing antioxidant capacity/activity, which are based on mechanisms such as hydrogen atom transfer (HAT), single electron transfer (SET), electron transfer with proton conjugation (HAT/SET mixed mode assays) or the chelation of selected transition metal ions (e.g., Fe2+ or Cu1+). The antioxidant capacity (AOxC) index value can be expressed in terms of standard AOs (e.g., Trolox or ascorbic acid) equivalents, enabling different products to be compared. However, there is currently no standardized method for measuring AOxC. Nanoparticle sensors offer a new approach to assessing antioxidant status and can be used to analyze environmental samples, plant extracts, foodstuffs, dietary supplements and clinical samples. This review summarizes the available information on nanoparticle sensors as tools for assessing antioxidant status. Particular attention has been paid to nanoparticles (with a size of less than 100 nm), including silver (AgNPs), gold (AuNPs), cerium oxide (CeONPs) and other metal oxide nanoparticles, as well as nanozymes. Nanozymes belong to an advanced class of nanomaterials that mimic natural enzymes due to their catalytic properties and constitute a novel signal transduction strategy in colorimetric and absorption sensors based on the localized surface plasmon resonance (LSPR) band. Other potential AOxC sensors include quantum dots (QDs, <10 nm), which are particularly useful for the sensitive detection of specific antioxidants (e.g., GSH, AA and baicalein) and can achieve very good limits of detection (LOD). QDs and metallic nanoparticles (MNPs) operate on different principles to evaluate AOxC. MNPs rely on optical changes resulting from LSPR, which are monitored as changes in color or absorbance during synthesis, growth or aggregation. QDs, on the other hand, primarily utilize changes in fluorescence. This review aims to demonstrate that, thanks to its simplicity, speed, small sample volumes and relatively inexpensive instrumentation, nanoparticle-based AOxC assessment is a useful alternative to classical approaches and can be tailored to the desired aim and analytes. Full article
Show Figures

Figure 1

27 pages, 3101 KB  
Review
Recent Progress in Nanomaterials for Electrochemical Sensing of Natural Bioactive Compounds
by Branka B. Petković, Miloš Ognjanović and Dalibor M. Stanković
Chemosensors 2025, 13(12), 429; https://doi.org/10.3390/chemosensors13120429 - 11 Dec 2025
Viewed by 627
Abstract
The market for bioactive compounds of natural origin has expanded greatly over the past few years. These compounds can be found as individual supplements or food additives. Due to the importance of this market, incorrect data on their composition can often be found. [...] Read more.
The market for bioactive compounds of natural origin has expanded greatly over the past few years. These compounds can be found as individual supplements or food additives. Due to the importance of this market, incorrect data on their composition can often be found. Therefore, monitoring their concentration is of great importance. Although there are various methods for their selective and sensitive determination, electrochemical sensors represent an important tool in this field. With the development of nanotechnology, additional importance has been given to these sensors. Strictly controlled synthesis procedures can yield nanomaterials with unique morphological properties and significantly improved electrocatalytic capabilities. The integration of two or more nanomaterials in the form of a nanocomposite and/or nanohybrids allows for the synergistic effect of each of the components. Thus, excellent final characteristics are obtained in the field of electrochemical sensors, such as improved sensor stability, selectivity, and lower detection limits. In recent years, various forms of carbon nanomaterials, polymer films, metal and metal oxide nanoparticles (or simply metal/metal oxide nanoparticles), MOFs, porous nanomaterials, MXenes, and others with clearly defined characteristics represent an important step forward in this field. Carefully prepared, these materials achieve strong interactions with selected analytes, which results in significant progress in analytical methods for monitoring biologically active compounds. Therefore, this review summarizes the latest trends in this field, focusing on the method of material preparation, final morphology and electrocatalytic properties, selectivity, and sensitivity. Conclusions and expected future directions in this field are also given in order to improve current analytical performance. Full article
(This article belongs to the Special Issue Nanostructured Materials for Electrochemical Sensing)
Show Figures

Figure 1

Back to TopTop