Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (93)

Search Parameters:
Keywords = metal nitride carbon composite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2753 KB  
Article
Boosting Photocatalysis: Cu-MOF Functionalized with g-C3N4 QDs for High-Efficiency Degradation of Congo Red
by Yuhao Wang, Yuan Yang, Xinyue Zhang, Yajie Shi, Qiang Liu and Keliang Wu
Catalysts 2025, 15(12), 1169; https://doi.org/10.3390/catal15121169 - 16 Dec 2025
Viewed by 648
Abstract
In recent years, organic dye contamination has posed a significant threat to water safety. This study presents a novel composite photocatalyst comprising graphitic carbon nitride quantum dots (g-C3N4QDs) supported on a copper-based metal–organic framework (Cu-MOF) for efficient visible-light degradation of organic pollutants. The [...] Read more.
In recent years, organic dye contamination has posed a significant threat to water safety. This study presents a novel composite photocatalyst comprising graphitic carbon nitride quantum dots (g-C3N4QDs) supported on a copper-based metal–organic framework (Cu-MOF) for efficient visible-light degradation of organic pollutants. The g-C3N4QDs were synthesized via a facile strategy and subsequently immobilized onto the Cu-MOF support. Comprehensive characterization including SEM, TEM, XRD, BET, UV-Vis DRS, PL, and EIS confirmed the successful formation of a heterostructure, revealing that an optimized loading of g-C3N4QDs significantly enhanced light absorption, facilitated charge separation, and increased the specific surface area, with the optimal composite exhibiting 273 m2/g compared to 112 m2/g for the pristine Cu-MOF. Electrochemical analyses indicated a 2.38-fold enhancement in photocurrent density and a reduced interfacial charge transfer resistance, reflecting superior electron–hole pair separation. Crucially, the optimized g-C3N4QDs/Cu-MOF composite demonstrated exceptional photocatalytic performance, achieving 96.6% degradation of Congo red (100 mg/L) within 30 min under visible light irradiation, substantially outperforming the 77.6% degradation attained by the pristine Cu-MOF. This enhancement is attributed to the synergistic effects of improved light harvesting, efficient interfacial charge transfer across the heterojunction, and an enlarged active surface area. The composite exhibits considerable potential as a high-performance and stable photocatalyst for purifying dye-contaminated wastewater. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

41 pages, 5530 KB  
Review
The Role of Surface Chemistry in Carbon-Supported Metal-Catalyzed Processes of Fine Organic Synthesis
by Linda Zh. Nikoshvili, Elena S. Bakhvalova and Mikhail G. Sulman
Chemistry 2025, 7(6), 198; https://doi.org/10.3390/chemistry7060198 - 11 Dec 2025
Viewed by 913
Abstract
At present, various carbon materials are available as supports for metal-containing catalytic species. Carbon-based materials find application in many industrial heterogeneous catalytic processes, such as selective hydrogenation, oxidation, cross-coupling, etc. The simplicity of preparation, low cost, high stability, and the possibility of tuning [...] Read more.
At present, various carbon materials are available as supports for metal-containing catalytic species. Carbon-based materials find application in many industrial heterogeneous catalytic processes, such as selective hydrogenation, oxidation, cross-coupling, etc. The simplicity of preparation, low cost, high stability, and the possibility of tuning surface composition and porosity cause the widespread use of metal catalysts supported on carbon materials. The surface chemistry of carbon supports plays a crucial role in catalysis, since it allows for control over the sizes of metal particles and their electronic properties. Moreover, metal-free functionalized carbonaceous materials themselves can act as catalysts. In this review, we discuss the recent progress in the field of the application of carbon supports in catalysis by metals, with a focus on the role of carbon surface functionalities and metal-support interactions in catalytic processes used in fine organic synthesis. Among carbon materials, functionalized/doped (O, N, S, P, B) activated carbons, graphenes, carbon nanotubes, graphitic carbon nitride, and carbonizates of polymers are considered supports for mono- and bimetallic nanoparticles. Full article
(This article belongs to the Special Issue Celebrating the 50th Anniversary of Professor Valentine Ananikov)
Show Figures

Graphical abstract

26 pages, 3049 KB  
Review
Progress in Electrode Modifiers for Nitrite Electrochemical Sensing Applications
by Mohammad Aslam, Saood Ali, Khaled Hamdy, Danishuddin, Khursheed Ahmad and Rohit Kumar Singh Gautam
Biosensors 2025, 15(12), 783; https://doi.org/10.3390/bios15120783 - 27 Nov 2025
Viewed by 831
Abstract
It is well known that nitrite is widely used in industrial and agricultural sectors as a preservative, corrosion inhibitor, and intermediate in chemical synthesis; consequently, nitrite residues are often present in food, water, and the environment as a result of meat curing, fertilizer [...] Read more.
It is well known that nitrite is widely used in industrial and agricultural sectors as a preservative, corrosion inhibitor, and intermediate in chemical synthesis; consequently, nitrite residues are often present in food, water, and the environment as a result of meat curing, fertilizer use, and wastewater discharge. Despite having several applications, nitrite exerts toxic effects on human beings and aquatic life. Therefore, the monitoring of nitrite is of particular significance to avoid negative impacts on human health, the environment, and aquatic life. Previously, the electrochemical method has been extensively used for the development of nitrite sensors using various advanced electrode materials. Additionally, zinc oxide (ZnO), cerium oxide (CeO2), titanium dioxide (TiO2), copper oxide (CuO), iron oxides, nickel oxide (NiO), polymers, MXenes, reduced graphene oxide (rGO), carbon nanotubes (CNTs), graphitic carbon nitride (gCN), metal–organic frameworks (MOFs), and other composites have been utilized as electrocatalysts for the fabrication of nitrite electrochemical sensors. This review article provides an overview of the construction of nitrite sensors using advanced electrode materials. The electrochemical activities of the reported nitrite sensors are discussed. Furthermore, limitations and future perspectives regarding the determination of nitrite are discussed. Full article
Show Figures

Figure 1

28 pages, 9180 KB  
Article
Optimized Synthesis Strategy of Mxene-Loaded Graphitic Carbon Nitride (g-C3N4) for Enhanced Photocatalytic Degradation of Rhodamine B
by Bayazid Bustami, Parvej Rahman Alif, Md Mahfuzur Rahman, Mohaiminul Islam and Alam S. M. Nur
ChemEngineering 2025, 9(6), 127; https://doi.org/10.3390/chemengineering9060127 - 10 Nov 2025
Viewed by 1722
Abstract
Developing efficient photocatalysts is essential for sustainable wastewater treatment and tackling global water pollution. Graphitic carbon nitride (g-C3N4) is a promising material because it is active under visible light and chemically stable. However, its practical application is limited by [...] Read more.
Developing efficient photocatalysts is essential for sustainable wastewater treatment and tackling global water pollution. Graphitic carbon nitride (g-C3N4) is a promising material because it is active under visible light and chemically stable. However, its practical application is limited by fast recombination of charge carriers and a low surface area. In this study, we report a simple hydrothermal method to synthesize exfoliated porous g-C3N4 (E-PGCN) combined with Ti3C2 MXene to form a heterojunction composite that addresses these issues. Various characterization techniques (FTIR, XRD, XPS, SEM, BET) confirmed that adding MXene improves light absorption, increases surface area (53.7 m2/g for the composite versus 21.4 m2/g for bulk g-C3N4 (BGCN)), and enhances charge separation at the interface. Under UV-visible light irradiation with Rhodamine B (RhB) as the model pollutant, the E-PGCN/Ti3C2 MXene composite containing 3 wt% MXene demonstrated an impressive degradation efficiency of 93.2%. This performance is superior to BGCN (66.6%), E-PGCN (82.5%), and E-PGCN/Ti3C2 MXene-5 wt% composites (81%). This is due to the excess Mxene which caused agglomeration and reduced activity. Scavenger studies identified electron radicals as the dominant reactive species, with optimal activity at pH ~4.5. This enhanced performance, 1.4 times greater than BGCN and 1.13 times higher than E-PGCN, is ascribed to the synergistic interplay between the excellent electrical conductivity of MXene and the porous structural features of E-PGCN. This work highlights the importance of morphological engineering and heterojunction design for advancing metal-free photocatalysts, offering a scalable strategy for sustainable water purification. Full article
Show Figures

Figure 1

10 pages, 1926 KB  
Article
Transition-Metal Ni6−xCux (x = 0–6)/Hexagonal Boron Nitride Composite for CO Detection: A DFT Study
by Mayra Hernández-Oramas, Diana C. Navarro-Ibarra, Víctor A. Franco-Luján, Ramón Román-Doval, Fernando Toledo-Toledo, Reyna Ojeda-López and Fernando Montejo-Alvaro
J. Compos. Sci. 2025, 9(9), 510; https://doi.org/10.3390/jcs9090510 - 22 Sep 2025
Viewed by 1376
Abstract
The development of highly selective and sensitive gas sensors is essential for detecting toxic pollutants, such as carbon monoxide (CO), which pose severe health and environmental risks. In this work, the adsorption of CO molecules on Ni6−xCux (x = 0–6) [...] Read more.
The development of highly selective and sensitive gas sensors is essential for detecting toxic pollutants, such as carbon monoxide (CO), which pose severe health and environmental risks. In this work, the adsorption of CO molecules on Ni6−xCux (x = 0–6) clusters supported on hexagonal boron nitride quantum dots with nitrogen vacancies (h-BNVQDs) is explored through density functional theory (DFT) calculations. For this purpose, the stability of the metallic clusters supported on the boron nitride sheet was calculated, and the adsorption properties of the CO molecule on the Ni6−xCux (x = 0–6)/h-BNVQDs composite were determined. The results demonstrated a high binding energy between Ni6−xCux (x = 0–6) clusters and the h-BNVQDs sheets, suggesting that Ni-Cu clusters are highly stable on h-BNVQDs sheets. For CO adsorption, adsorption energy and charge transfer calculations indicated that the Ni6 and Ni6−xCux (x = 2 and 3) clusters exhibit the strongest CO binding and highest charge transfer, suggesting them as good candidates for CO gas sensing. These findings provide theoretical insights into the rational design of bimetallic catalysts for gas-sensing applications. Full article
(This article belongs to the Special Issue Theoretical and Computational Investigation on Composite Materials)
Show Figures

Graphical abstract

36 pages, 5122 KB  
Review
Advanced Electrocatalyst Supports for High-Temperature Proton Exchange Membrane Fuel Cells: A Comprehensive Review of Materials, Degradation Mechanisms, and Performance Metrics
by Qingqing Liu, Huiyuan Liu, Weiqi Zhang, Qian Xu and Huaneng Su
Catalysts 2025, 15(9), 871; https://doi.org/10.3390/catal15090871 - 11 Sep 2025
Cited by 2 | Viewed by 2920
Abstract
High-temperature proton exchange membrane fuel cells (HT-PEMFCs) offer distinct advantages over their low-temperature counterparts. However, their commercial viability is significantly hampered by durability challenges stemming from electrocatalyst support degradation in the corrosive phosphoric acid environment. This review provides a comprehensive analysis of advanced [...] Read more.
High-temperature proton exchange membrane fuel cells (HT-PEMFCs) offer distinct advantages over their low-temperature counterparts. However, their commercial viability is significantly hampered by durability challenges stemming from electrocatalyst support degradation in the corrosive phosphoric acid environment. This review provides a comprehensive analysis of advanced strategies to overcome this critical durability issue. Two main research directions are explored. The first involves engineering more robust carbon-based materials, including graphitized carbons, carbon nanostructures (nanotubes and graphene), and heteroatom-doped carbons, which enhance stability by modifying the carbon’s intrinsic structure and surface chemistry. The second direction focuses on replacing carbon entirely with intrinsically stable non-carbonaceous materials. These include metal oxides (e.g., TiO2, SnO2), transition metal carbides (e.g., WC, TiC), and nitrides (e.g., Nb4N5). For these non-carbon materials, a key focus is on overcoming their typically low electronic conductivity through strategies such as doping and the formation of multi-component composites. The analysis benchmarks the performance and durability of these advanced supports, concluding that rationally designed composite materials, which combine the strengths of different material classes, represent the most promising path toward developing next-generation, long-lasting catalysts for HT-PEMFCs. Full article
(This article belongs to the Special Issue Carbon-Based Materials Catalysts for Energy and Hydrogen Productions)
Show Figures

Graphical abstract

17 pages, 3449 KB  
Article
Structure of Cu, Ni, and CuNi Bimetallic Small Clusters Incorporated in g-C3N4: A DFT Study
by Agnieszka Drzewiecka-Matuszek, Priti Sharma and Dorota Rutkowska-Zbik
Catalysts 2025, 15(9), 861; https://doi.org/10.3390/catal15090861 - 6 Sep 2025
Viewed by 1220
Abstract
Graphitic carbon nitride is recognized as a very promising support structure to anchor single atoms and small, sub-nanometric metal clusters, with vast applications in catalysis. In the current manuscript, we aim to study the geometry and electronic structures of the small, sub-nanometric monometallic [...] Read more.
Graphitic carbon nitride is recognized as a very promising support structure to anchor single atoms and small, sub-nanometric metal clusters, with vast applications in catalysis. In the current manuscript, we aim to study the geometry and electronic structures of the small, sub-nanometric monometallic (copper or nickel) and bimetallic (copper–nickel) clusters anchored to the graphitic carbon nitride. Our Density Functional Theory (DFT) study reveals that Cu and Ni, when in the form of isolated single atoms, lie in the plane of the support. Once the atoms agglomerate and form small clusters, they tend to bind above the carbon nitride (C3N4) plane. The nickel atoms form shorter bonds with the support than the copper atoms do, which is reflected by the binding energies. Atoms directly bound to the support become oxidized, forming electrophilic sites at the surface. The computed negative metal–support binding energies mean that the investigated Cu/Ni-C3N4 composites are stable, and the metal species will not easily leach from the support. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

35 pages, 3619 KB  
Review
Research Progress on the Preparation, Modification, and Applications of g-C3N4 in Photocatalysis and Piezoelectric Photocatalysis
by Mengyang Li, Liuqing Yang, Yizhe Song, Hongru Hou, Yujie Fang, Yucheng Liu, Lihao Xie and Dingze Lu
Inorganics 2025, 13(9), 300; https://doi.org/10.3390/inorganics13090300 - 5 Sep 2025
Viewed by 2094
Abstract
The metal-free polymeric semiconductor graphitic carbon nitride (g-C3N4) has emerged as a promising material for photocatalytic applications due to its responsiveness to visible light, adjustable electronic structure, and stability. This review systematically summarizes recent advances in preparation strategies, including [...] Read more.
The metal-free polymeric semiconductor graphitic carbon nitride (g-C3N4) has emerged as a promising material for photocatalytic applications due to its responsiveness to visible light, adjustable electronic structure, and stability. This review systematically summarizes recent advances in preparation strategies, including thermal polycondensation, solvothermal synthesis, and template methods. Additionally, it discusses modification approaches such as heterojunction construction, elemental doping, defect engineering, morphology control, and cocatalyst loading. Furthermore, it explores the diverse applications of g-C3N4-based materials in photocatalysis, including hydrogen (H2) evolution, carbon dioxide (CO2) reduction, pollutant degradation, and the emerging field of piezoelectric photocatalysis. Particular attention is given to g-C3N4 composites that are rationally designed to enhance charge separation and light utilization. Additionally, the synergistic mechanism of photo–piezocatalysis is examined, wherein a mechanically induced piezoelectric field facilitates carrier separation and surface reactions. Despite significant advancements, challenges persist, including limited visible-light absorption, scalability issues, and uncertainties in the multi-field coupling mechanisms. The aim of this review is to provide guidelines for future research that may lead to the development of high-performance and energy-efficient catalytic systems in the context of environmental and energy applications. Full article
(This article belongs to the Special Issue Featured Papers in Inorganic Materials 2025)
Show Figures

Figure 1

21 pages, 5144 KB  
Review
Strategies for Regulating Reactive Oxygen Species in Carbon Nitride-Based Photocatalysis
by Qingyun Liu, Xiaoqiang Li, Yuxiao Chen, Xinhuan Zhang, Bailin Gao, Manqiu Ma, Hui Yang, Saisai Yuan and Qitao Zhang
Molecules 2025, 30(17), 3586; https://doi.org/10.3390/molecules30173586 - 2 Sep 2025
Cited by 1 | Viewed by 2025
Abstract
Reactive oxygen species (ROS) are increasingly recognized as decisive actors in photocatalytic redox chemistry, dictating both the selectivity and efficiency of target reactions, while most photocatalytic systems generate a mixture of ROS under illumination. Recent studies have revealed that tailoring the generation of [...] Read more.
Reactive oxygen species (ROS) are increasingly recognized as decisive actors in photocatalytic redox chemistry, dictating both the selectivity and efficiency of target reactions, while most photocatalytic systems generate a mixture of ROS under illumination. Recent studies have revealed that tailoring the generation of specific ROS, rather than maximizing the overall ROS yield, holds the key to unlocking high-performance and application-specific catalysis. In this context, the selective production of specific ROS has emerged as a critical requirement for achieving target-oriented and sustainable photocatalytic transformations. Among the various photocatalytic materials, polymeric carbon nitride (PCN) has garnered considerable attention due to its metal-free composition, visible-light response, tunable structure, and chemical robustness. More importantly, the tunable band structure, surface chemistry, and interfacial environment of PCN collectively make it an excellent scaffold for the controlled generation of specific ROS. In recent years, numerous strategies including molecular doping, defect engineering, heterojunction construction, and co-catalyst integration have been developed to precisely tailor the ROS profile derived from PCN-based systems. This review provides a comprehensive overview of ROS regulation in PCN-based photocatalysis, with a focus on type-specific strategies. By classifying the discussion according to the major ROS types, we highlight the mechanisms of their formation and the design principles that govern their selective generation. In addition, we discuss representative applications in which particular ROS play dominant roles and emphasize the potential of PCN systems in achieving tunable and efficient photocatalytic performance. Finally, we outline key challenges and future directions for developing next-generation ROS-regulated PCN photocatalysts, particularly in the context of reaction selectivity, dynamic behavior, and practical implementation. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Figure 1

26 pages, 4438 KB  
Review
Carbon Nitride Gels: Synthesis, Modification, and Water Decontamination Applications
by Qinglan Tang, Zhen Zhang, Yuwei Pan, Michael K. H. Leung, Yizhen Zhang and Keda Chen
Gels 2025, 11(9), 685; https://doi.org/10.3390/gels11090685 - 27 Aug 2025
Cited by 2 | Viewed by 1036
Abstract
Graphitic carbon nitride (g-C3N4)-based materials hold significant promise for environmental remediation, particularly water purification, owing to their unique electronic structure, metal-free composition, and robust chemical stability. However, powdered g-C3N4 faces challenges such as particle aggregation, poor [...] Read more.
Graphitic carbon nitride (g-C3N4)-based materials hold significant promise for environmental remediation, particularly water purification, owing to their unique electronic structure, metal-free composition, and robust chemical stability. However, powdered g-C3N4 faces challenges such as particle aggregation, poor recyclability, and limited exposure of active sites. Structuring g-C3N4 into hydrogels or aerogels—three-dimensional porous networks offering high surface area, rapid mass transport, and tunable porosity—represents a transformative solution. This review comprehensively examines recent advances in g-C3N4-based gels, covering synthesis strategies such as crosslinking (physical/chemical), in situ polymerization, and the sol–gel and template method. Modification approaches including chemical composition and structural engineering are systematically categorized to elucidate their roles in optimizing catalytic activity, stability, and multifunctionality. Special emphasis is placed on environmental applications, including the removal of emerging contaminants and heavy metal ions, as well as solar-driven interfacial evaporation for desalination. Throughout, the critical interplay between gel structure/composition and performance is evaluated to establish design principles for next-generation materials. Finally, this review identifies current challenges regarding scalable synthesis, long-term stability, in-depth mechanistic understanding, and performance in complex real wastewater matrices. This work aims to provide valuable insights and guidance for advancing g-C3N4-based hydrogel and aerogel technologies in environmental applications. Full article
(This article belongs to the Topic Wastewater Treatment Based on AOPs, ARPs, and AORPs)
Show Figures

Graphical abstract

38 pages, 6998 KB  
Review
Silicon Carbide (SiC) and Silicon/Carbon (Si/C) Composites for High-Performance Rechargeable Metal-Ion Batteries
by Sara Adnan Mahmood, Nadhratun Naiim Mobarak, Arofat Khudayberdieva, Malika Doghmane, Sabah Chettibi and Kamel Eid
Int. J. Mol. Sci. 2025, 26(16), 7757; https://doi.org/10.3390/ijms26167757 - 11 Aug 2025
Cited by 2 | Viewed by 5161
Abstract
Silicon carbide (SiC) and silicon nanoparticle-decorated carbon (Si/C) materials are electrodes that can potentially be used in various rechargeable batteries, owing to their inimitable merits, including non-flammability, stability, eco-friendly nature, low cost, outstanding theoretical capacity, and earth abundance. However, SiC has inferior electrical [...] Read more.
Silicon carbide (SiC) and silicon nanoparticle-decorated carbon (Si/C) materials are electrodes that can potentially be used in various rechargeable batteries, owing to their inimitable merits, including non-flammability, stability, eco-friendly nature, low cost, outstanding theoretical capacity, and earth abundance. However, SiC has inferior electrical conductivity, volume expansion, a low Li+ diffusion rate during charge–discharge, and inevitable repeated formation of a solid–electrolyte interface layer, which hinders its commercial utilization. To address these issues, extensive research has focused on optimizing preparation methods, engineering morphology, doping, and creating composites with other additives (such as carbon materials, metal oxides, nitrides, chalcogenides, polymers, and alloys). Owing to the upsurge in this research arena, providing timely updates on the use of SiC and Si/C for batteries is of great importance. This review summarizes the controlled design of SiC-based and Si/C composites using various methods for rechargeable metal-ion batteries like lithium-ion (LIBs), sodium-ion (SIBs), zinc-air (ZnBs), and potassium-ion batteries (PIBs). The experimental and predicted theoretical performance of SiC composites that incorporate various carbon materials, nanocrystals, and non-metal dopants are summarized. In addition, a brief synopsis of the current challenges and prospects is provided to highlight potential research directions for SiC composites in batteries. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

20 pages, 3618 KB  
Article
Unraveling the Effect of Synthesis Temperature and Metal Doping on the Structural, Optical, and Photocatalytic Properties of g-C3N4 for Enhanced E. coli Photodisinfection and Self-Cleaning Surface Applications
by D. Fabio Mercado, Isabel Cristina Ortega Bedoya, Gloria Cristina Valencia and Ricardo A. Torres-Palma
Inorganics 2025, 13(8), 262; https://doi.org/10.3390/inorganics13080262 - 11 Aug 2025
Viewed by 1076
Abstract
The development of efficient photocatalytic materials for waterborne pathogen inactivation and self-cleaning surfaces in biomedical applications remains a critical challenge due to the rising prevalence of antimicrobial-resistant bacteria. This study systematically investigates the structural, optical, and photocatalytic disinfection properties of graphitic carbon nitride [...] Read more.
The development of efficient photocatalytic materials for waterborne pathogen inactivation and self-cleaning surfaces in biomedical applications remains a critical challenge due to the rising prevalence of antimicrobial-resistant bacteria. This study systematically investigates the structural, optical, and photocatalytic disinfection properties of graphitic carbon nitride (g-C3N4) synthesized at variable temperatures (450–600 °C) and doped with transition metals (Mn, Co, Cu). Through FTIR and UV/Vis spectroscopy, we demonstrate that synthesis temperatures between 450 and 550 °C yield a well-ordered polymeric network with enhanced π-conjugation and charge separation, while 600 °C induces structural degradation. Metal doping with Mn and Co significantly enhances photocatalytic disinfection, achieving complete E. coli inactivation (6-log reduction) within 6 h via optimized reactive oxygen species (ROS) generation. The best material (g-C3N4 synthesized at 500 °C and doped with Mn) was integrated into sodium alginate hydrogel surfaces, demonstrating reusable self-cleaning functionality with sustained bactericidal activity (5.9-log CFU/mL reduction after five cycles). This work provides a roadmap for tailoring metal-doped g-C3N4 composites for practical antimicrobial applications, emphasizing the interplay between synthesis parameters, ROS dynamics, and real-world performance. Full article
(This article belongs to the Special Issue Transition Metal Catalysts: Design, Synthesis and Applications)
Show Figures

Figure 1

20 pages, 3918 KB  
Article
Engineered Cu0.5Ni0.5Al2O4/GCN Spinel Nanostructures for Dual-Functional Energy Storage and Electrocatalytic Water Splitting
by Abdus Sami, Sohail Ahmad, Ai-Dang Shan, Sijie Zhang, Liming Fu, Saima Farooq, Salam K. Al-Dawery, Hamed N. Harharah, Ramzi H. Harharah and Gasim Hayder
Processes 2025, 13(7), 2200; https://doi.org/10.3390/pr13072200 - 9 Jul 2025
Viewed by 925
Abstract
The rapid growth in population and industrialization have significantly increased global energy demand, placing immense pressure on finite and environmentally harmful conventional fossil fuel-based energy sources. In this context, the development of hybrid electrocatalysts presents a crucial solution for energy conversion and storage, [...] Read more.
The rapid growth in population and industrialization have significantly increased global energy demand, placing immense pressure on finite and environmentally harmful conventional fossil fuel-based energy sources. In this context, the development of hybrid electrocatalysts presents a crucial solution for energy conversion and storage, addressing environmental challenges while meeting rising energy needs. In this study, the fabrication of a novel bifunctional catalyst, copper nickel aluminum spinel (Cu0.5Ni0.5Al2O4) supported on graphitic carbon nitride (GCN), using a solid-state synthesis process is reported. Because of its effective interface design and spinel cubic structure, the Cu0.5Ni0.5Al2O4/GCN nanocomposite, as synthesized, performs exceptionally well in electrochemical energy conversion, such as the oxygen evolution reaction (OER), the hydrogen evolution reaction (HER), and energy storage. In particular, compared to noble metals, Pt/C- and IrO2-based water-splitting cells require higher voltages (1.70 V), while for the Cu0.5Ni0.5Al2O4/GCN nanocomposite, a voltage of 1.49 V is sufficient to generate a current density of 10 mA cm−2 in an alkaline solution. When used as supercapacitor electrode materials, Cu0.5Ni0.5Al2O4/GCN nanocomposites show a specific capacitance of 1290 F g−1 at a current density of 1 A g−1 and maintain a specific capacitance of 609 F g−1 even at a higher current density of 5 A g−1, suggesting exceptional rate performance and charge storage capacity. The electrode’s exceptional capacitive properties were further confirmed through the determination of the roughness factor (Rf), which represents surface heterogeneity and active area enhancement, with a value of 345.5. These distinctive characteristics render the Cu0.5Ni0.5Al2O4/GCN composite a compelling alternative to fossil fuels in the ongoing quest for a viable replacement. Undoubtedly, the creation of the Cu0.5Ni0.5Al2O4/GCN composite represents a significant breakthrough in addressing the energy crisis and environmental concerns. Owing to its unique composition and electrocatalytic characteristics, it is considered a feasible choice in the pursuit of ecologically sustainable alternatives to fossil fuels. Full article
Show Figures

Graphical abstract

28 pages, 3287 KB  
Review
Recent Progress in Photocatalytic Hydrogen Production Using 2D MoS2 Based Materials
by Khursheed Ahmad and Tae Hwan Oh
Catalysts 2025, 15(7), 648; https://doi.org/10.3390/catal15070648 - 2 Jul 2025
Cited by 4 | Viewed by 3132
Abstract
Due to the increase in energy demand, photocatalytic hydrogen (H2) production has received enormous interest from the scientific community due to its simplicity and cost-effectiveness. The photocatalyst (PC) plays a vital role in H2 evolution, and it is well understood [...] Read more.
Due to the increase in energy demand, photocatalytic hydrogen (H2) production has received enormous interest from the scientific community due to its simplicity and cost-effectiveness. The photocatalyst (PC) plays a vital role in H2 evolution, and it is well understood that an efficient PC should have a larger surface area and better charge separation and transport properties. Previously, extensive efforts were made to prepare the efficient PC for photocatalytic H2 production. In some cases, pristine catalyst could not catalyze the catalytic reactions due to a fast recombination rate or poor catalytic behavior. Thus, cocatalysts can be explored to boost the photocatalytic H2 production. In this regard, a promising cocatalyst should have a large surface area, more active sites, decent conductivity, and improved catalytic properties. Molybdenum disulfide (MoS2) is one of the two-dimensional (2D) layered materials that have excellent optical, electrical, and physicochemical properties. MoS2 has been widely utilized as a cocatalyst for the photocatalytic H2 evolution under visible light. Herein, we have reviewed the progress in the fabrication of MoS2 and its composites with metal oxides, perovskite, graphene, carbon nanotubes, graphitic carbon nitrides, polymers, MXenes, metal-organic frameworks, layered double hydroxides, metal sulfides, etc. for photocatalytic H2 evolution. The reports showed that MoS2 is one of the desirable cocatalysts for photocatalytic H2 production applications. The challenges and future perspectives are also mentioned. This study may be beneficial for the researchers working on the design and fabrication of MoS2-based PCs for photocatalytic H2 evolution applications. Full article
Show Figures

Figure 1

24 pages, 3097 KB  
Review
Advancements and Development Trends in Lead-Cooled Fast Reactor Core Design
by Cong Zhang, Ling Chen, Yongfa Zhang and Song Li
Processes 2025, 13(6), 1773; https://doi.org/10.3390/pr13061773 - 4 Jun 2025
Cited by 5 | Viewed by 4243
Abstract
Motivated by the growth of global energy demand and the goal of carbon neutrality, lead-cooled fast reactors, which are core reactor types of fourth-generation nuclear energy systems, have become a global research hotspot due to their advantages of high safety, nuclear fuel breeding [...] Read more.
Motivated by the growth of global energy demand and the goal of carbon neutrality, lead-cooled fast reactors, which are core reactor types of fourth-generation nuclear energy systems, have become a global research hotspot due to their advantages of high safety, nuclear fuel breeding capability, and economic efficiency. However, its engineering implementation faces key challenges, such as material compatibility, closed fuel cycles, and irradiation performance of structures. This paper comprehensively reviews the latest progress in the core design of lead-cooled fast reactors in terms of the innovation of nuclear fuel, optimization of coolant, material adaptability, and design of assemblies and core structures. The research findings indicate remarkable innovation trends in the field of lead-cooled fast reactor core design, including optimizing the utilization efficiency of nuclear fuel based on the nitride fuel system and the traveling wave burnup theory, effectively suppressing the corrosion effect of liquid metal through surface modification technology and the development of ceramic matrix composites; replacing the lead-bismuth eutectic system with pure lead coolant to enhance economic efficiency and safety; and significantly enhancing the neutron economy and system integration degree by combining the collaborative design strategy of the open-type assembly structure and control drums. In the future, efforts should be made to overcome the radiation resistance of materials and liquid metal corrosion technology, develop closed fuel cycle systems, and accelerate the commercialization process through international standardization cooperation to provide sustainable clean energy solutions for basic load power supply, high-temperature hydrogen production, ship propulsion, and other fields. Full article
(This article belongs to the Special Issue Process Safety Technology for Nuclear Reactors and Power Plants)
Show Figures

Figure 1

Back to TopTop