Research Progress on the Preparation, Modification, and Applications of g-C3N4 in Photocatalysis and Piezoelectric Photocatalysis
Abstract
1. Introduction
2. Introduction to Photocatalysis
2.1. Principles of Photocatalytic Technology
2.2. Problems Faced by Photocatalytic Technology
2.3. Classification and Research Status of Common Photocatalysts
3. Study Progress of the g-C3N4 Photocatalysts
3.1. Introduction to g-C3N4 Photocatalysts
3.2. Preparation Method of g-C3N4 Photocatalysts
3.3. Defects of g-C3N4 Photocatalysts
4. g-C3N4 Photocatalyst Modification Measures
4.1. Formal Modification
4.2. Defect Engineering
4.3. Element Doping
4.4. Heterojunctions Structure Construction
5. Integration of Multiple Catalytic Technologies: Piezoelectric–Photocatalytic Technology
5.1. Materials Research for Piezoelectric–Photocatalytic Technology
5.2. Research on Flexible Films of Polyvinylidene Fluoride
5.3. Synergistic Effect of g-C3N4 in Piezoelectric Photocatalysis
5.3.1. Theoretical Basis of Synergistic Mechanism
5.3.2. Construction Strategy of g-C3N4-Based Piezoelectric–Photocatalytic System
- (1)
- Intrinsic piezoelectric regulation of g-C3N4 can be achieved through structural optimization by adjusting high-temperature polycondensation conditions, selecting appropriate precursors such as melamine, urea, and thiourea, and introducing pore-forming agents. These modifications enhance the layered structure of g-C3N4, increase interlayer spacing, and introduce structural defects, such as nitrogen vacancies, which may marginally improve its inherent piezoelectric response. The primary sources of its piezoelectric contribution are interlayer shear slip and out-of-plane deformation. Additionally, elemental doping serves as a technique to modify the lattice of g-C3N4 [102]. The introduction of metal ions (e.g., K+, Na+) [103] or non-metal elements (e.g., P, B, O) into the lattice can disrupt the symmetry of g-C3N4 and alter its electronic structure, thereby enhancing both light absorption and piezoelectric properties. Liang et al. [104] synthesized g-C3N4 nanoplates by a new self-template process, and then ultrasonically exfoliated to produce porous g-C3N4 nanoplates with a thickness of 1.5–2.0 nm. Piezoelectric response force microscopy shows that the material exhibits excellent piezoelectric response. In addition, the material exhibits obvious piezoelectric–photocatalytic degradation of RhB, showing the best first-order rate constant. Under visible light and ultrasonic excitation, it is 2.3 times under visible light irradiation alone and 9.7 times under ultrasonic excitation alone. The piezoelectric field generated by ultrasonic excitation drives the opposite direction of photogenerated electrons and holes to migrate to the surface of the nanosheets, resulting in more reactive free radicals, thereby accelerating the degradation of RhB.
- (2)
- Composite materials incorporating strong piezoelectric substances, such as perovskite types (e.g., BaTiO3 [105], BiFeO3 [106], Bi4Ti3O12 [107]), exhibit notable piezoelectric properties, and their band structures can readily align with g-C3N4 to form effective heterojunctions. Wurtzite-type materials, including ZnO and ZnS, are straightforward to synthesize and possess commendable piezoelectric characteristics. Layered transition metal sulfides, such as MoS2 and WS2 [108], not only display piezoelectric properties but also exhibit outstanding photoelectric and electrochemical behaviors. In designing composite structures, a critical factor is the construction of tight heterointerfaces (e.g., 0D/2D, 2D/2D, 3D/0D) [109], which ensures efficient transfer of photogenerated carriers and effective penetration of the piezoelectric polarization field at the interface. Core–shell structures and Z-type heterojunction [110] designs have been demonstrated to utilize synergistic effects more efficiently. Cai Jing et al. [111] synthesized a Z-type heterojunction/g-C3N4/BiOCl material incorporating graphene quantum dots using a one-step hydrothermal technique. The material demonstrated high photocatalytic stability. The researchers assessed the piezoelectric–photocatalytic performance of the material by immobilizing N2 under simulated sunlight. The results indicated that the photocatalytic activity of the material was significantly superior to that of pure g-C3N4 and BiOCl, with a formation rate of 1773.8 μmol/(h·g), which is 7.3 times greater than that of pure g-C3N4 and 5.2 times greater than that of BiOCl, respectively.
- (3)
- Organic Piezoelectric Composite: Utilizing the excellent piezoelectric properties and flexibility of ferroelectric polymers, such as PVDF and PVDF-TrFE [112], these materials are combined with g-C3N4 to prepare flexible piezoelectric–photocatalytic films or fibers. This combination allows for the efficient collection of low-frequency mechanical energy from the environment, including wind energy, water flow energy, and human motion energy. Huang et al. [113] developed a modified g-C3N4/PVDF membrane, referred to as the MCU-g-C3N4/PVDF membrane, based on the original PVDF membrane. The experimental results demonstrated that the MCU-g-C3N4/PVDF membrane achieved 84.24% and 71.26% removal rates for rhodamine B and tetracycline hydrochloride, respectively, thereby confirming its excellent photocatalytic performance.
5.3.3. Application of g-C3N4 in Piezoelectric Photocatalysis
5.3.4. Summary of g-C3N4 Photocatalytic Application Cases
- At present, the understanding of basic scientific problems such as how to coordinate piezoelectric effect and photocatalytic effect, how to separate and transfer interface charge, and accurate identification of active species still needs to be deepened, especially in complex real water environment, the mechanism of catalytic process may be more complicated.
- Most of the research is still carried out in a single pollutant solution configured in the laboratory. The actual wastewater composition is complex, and there may be anions, natural organic matter, suspended solids, etc., which may compete with pollutants for active sites or quench active species, thereby significantly inhibiting catalytic efficiency. The anti-interference ability and long-term stability of the catalyst need to be more fully verified in the real environment.
- Although solar energy is free, the input of mechanical energy (ultrasound) still needs to consume electricity. Although airlift reactors and the use of environmental mechanical energy contribute to energy conservation, the overall energy consumption and economic costs of large-scale applications still need to be carefully evaluated. The preparation cost of high-performance catalysts also needs to be considered.
- Scale-up of laboratory reactors is a key step towards engineering applications. This involves the optimization of a series of engineering problems such as mass transfer, heat transfer, light distribution, and sound field distribution, which requires the cross-cooperation of materials, chemistry, environment, machinery, and other disciplines.
- At present, many studies focus on the removal rate of pollutants, but the identification of degradation intermediates, the degree of mineralization, and the environmental toxicity analysis of the final products are not sufficient. Ensuring that pollutants are completely mineralized or converted into non-toxic and harmless substances is the bottom-line requirement for environmental technology applications.
5.3.5. Challenges and Prospects
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vasu, D.; Ravi, P.V.; Subramaniyam, V.; Moorthi, P.; You, Y.F.; Chiu, T.W. Green Fluorine-Confined 2D Layered Graphitic Carbon Nitride (g-C3N4) Nanosheets for Electrocatalysts and Photocatalysts toward the Detection and Degradation of Metol Drugs in Wastewater. ACS Appl. Eng. Mater. 2023, 1, 1866–1880. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Zhang, W.; Du, G. Effects of Greenhouse Effect on Freshwater Ecosystem. Beijing Water 2004, 1, 3. [Google Scholar]
- Zhao, Y.; Su, Q.; Li, B.; Zhang, Y.; Wang, X.; Zhao, H.; Guo, S. Have Those Countries Declaring “Zero Carbon” or “Carbon Neutral” Climate Goals Achieved Carbon Emissions-Economic Growth Decoupling? J. Clean. Prod. 2022, 363, 132450. [Google Scholar] [CrossRef]
- Li, Y.; Ding, L.; Guo, Y.; Liang, Z.; Cui, H.; Tian, J. Boosting the Photocatalytic Ability of g-C3N4 for Hydrogen Production by Ti3C2 MXene Quantum Dots. ACS Appl. Mater. Interfaces 2019, 11, 41440–41447. [Google Scholar] [CrossRef]
- Heo, Y.J.; Seong, D.B.; Park, S.J. Synthesis of Polyethylenimine-Impregnated Titanate Nanotubes for CO2 Capture: Influence of Porosity and Nitrogen Content on Amine-Modified Adsorbents. J. CO2 Util. 2019, 34, 472–478. [Google Scholar] [CrossRef]
- Lin, B.; Xia, M.; Xu, B.; Chong, B.; Chen, Z.; Yang, G. Bio-inspired nanostructured g-C3N4-based photocatalysts: A comprehensive review. Chin. J. Catal. 2022, 43, 2141–2172. [Google Scholar] [CrossRef]
- Zou, C.; Xiong, B.; Xue, H.; Zheng, D.; Ge, Z.; Wang, Y.; Jiang, L.; Pan, S.; Wu, S. The Role of New Energy in Carbon Neutral. Pet. Explor. Dev. 2021, 48, 480–491. [Google Scholar] [CrossRef]
- Yu, W.; Gao, Y.; Chen, Z.; Zhao, Y.; Wu, Z.; Wang, L. Strategies for Optimizing Electrocatalytic Hydrogen Evolution Performance of Metal Phosphides. Chin. J. Catal. 2021, 42, 1876–1902. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, Y.; Wang, J.; Zhou, Y.; Liu, X.; Hao, M.; Chen, Z.; Wang, S.; Yang, H.; Wang, X. Application of Single-Atom-Based Photocatalysts in Environmental Pollutant Removal and Renewable Energy Production. Crit. Rev. Environ. Sci. Technol. 2023, 53, 1064–1109. [Google Scholar]
- Zhu, Q.; Zhang, K.; Li, D.; Li, N.; Xu, J.; Bahnemann, D.; Wang, C. Polarization-Enhanced Photocatalytic Activity in Non-Centrosymmetric Materials Based Photocatalysis: A Review. Chem. Eng. J. 2021, 426, 131681. [Google Scholar] [CrossRef]
- Saravanan, A.; Kumar, P.S.; Vo, D.-V.N.; Yaashikaa, P.R.; Karishma, S.; Jeevanantham, S.; Gayathri, B.; Bharathi, V.D. Photocatalysis for Removal of Environmental Pollutants and Fuel Production: A Review. Environ. Chem. Lett. 2020, 19, 441–463. [Google Scholar] [CrossRef]
- Yang, T.; Wang, B.; Zhu, J.; Xia, J.; Li, M. Enhanced Photocatalytic Performance of In2S3 Multi-Level Pore Structure Nanomaterials Derived from Sacrificial Metal–Organic Frameworks. Chin. J. Catal. 2024, 59, 204–213. [Google Scholar] [CrossRef]
- Guo, C.; Zhao, G.; Feng, Y.; Chen, D.; Loh, T.P.; Wang, D.; Jia, Z. Recyclable g-C3N4-Catalyzed Decarboxylative Alkenylation of N-Aryl Glycines with Vinyl Sulfones under Visible-Light Irradiation. Org. Chem. Front. 2025, 12, 2409–2414. [Google Scholar] [CrossRef]
- Loeb, S.K.; Alvarez, P.J.J.; Brame, J.A.; Cates, E.L.; Choi, W.; Crittenden, J.; Dionysiou, D.D.; Li, Q.; Li-Puma, G.; Quan, X.; et al. The Technology Horizon for Photocatalytic Water Treatment: Sunrise or Sunset? Environ. Sci. Technol. 2018, 53, 2937–2947. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Koshy, P.; Chen, W.-F.; Qi, S.; Sorrell, C.C. Photocatalytic Materials and Technologies for Air Purification. J. Hazard. Mater. 2016, 325, 340–366. [Google Scholar] [CrossRef]
- Xu, J.; Antonietti, M.; Shalom, M. Moving Graphitic Carbon Nitride from Electrocatalysis and Photocatalysis to a Potential Electrode Material for Photoelectric Devices. Chem. Asian J. 2016, 11, 2499–2512. [Google Scholar] [CrossRef]
- Wei, H.; Liang, L.; Ma, T.; Han, H.; Zhu, J.; Liu, Y.; Fang, Z.; Yang, Z.; Guo, K. Controllable-Morphology CoFe2O4/g-C3N4 p–n Heterojunction Photocatalysts with Built-In Electric Field Enhance Photocatalytic Performance. Appl. Catal. B 2022, 306, 121107. [Google Scholar]
- Li, Y.; Wang, L.; Gao, X.; Xue, Y.; Li, B.; Zhu, X. Construction of Graphitic Carbon Nitride-Based Photocatalyst with Strong Built-In Electric Field via π–π Stacking Interaction Boosting Photocatalytic CO2 Reduction. J. Mater. Chem. A 2024, 12, 7807–7816. [Google Scholar] [CrossRef]
- Hama Aziz, K.H.; Mustafa, F.S.; Omer, K.M.; Hama, S.; Hamarawf, R.F.; Rahman, K.O. Heavy metal pollution in the aquatic environment: Efficient and low-cost removal approaches to eliminate their toxicity: A review. RSC Adv. 2023, 13, 17595–17610. [Google Scholar] [CrossRef]
- Zhu, W.; Yue, Y.; Wang, H.; Zhang, B.; Hou, R.; Xiao, J.; Huang, X.; Ishag, A.; Sun, Y. Recent advances on energy and environmental application of graphitic carbon nitride (g-C3N4)-based photocatalysts: A review. J. Environ. Chem. Eng. 2023, 11, 110164. [Google Scholar] [CrossRef]
- Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A Metal-Free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light. Nat. Mater. 2009, 8, 76–80. [Google Scholar] [CrossRef]
- Ong, W.J.; Tan, L.L.; Ng, Y.H.; Yong, S.T.; Chai, S.P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer to Achieving Sustainability? Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef]
- He, B.; Chen, S.; Cui, Y.; Chen, X.; Lei, Y.; Sun, J. Hollow polymeric ionic liquid spheres with hierarchical electron distribution: A novel composite of g-C3N4 for visible light photocatalytic water splitting enhancement. Chem. Eng. J. 2022, 440, 135625. [Google Scholar] [CrossRef]
- Rajput, Y.; Kumar, P.; Zhang, T.C.; Kumar, D.; Nemiwal, M. Recent advances in g-C3N4-based photocatalysts for hydrogen evolution reactions. Int. J. Hydrogen Energy 2022, 47, 38533–38555. [Google Scholar] [CrossRef]
- Dong, W.; Chang, Q.; Wang, W.; Yang, S. Research Progress in Preparing Methods of g-C3N4 Nanosheets by Exfoliation. J. Chin. Ceram. Soc. 2023, 51, 1868–1882. [Google Scholar]
- Sun, X.; Huang, H.; Shi, W.; Sun, L.; Song, Z. Research Progress on Preparation and Application of Modified g-C3N4 Photocatalytic Materials. Prog. Fine Petrochem. 2025, 26, 35–41. [Google Scholar]
- Hossain, S.M.; Park, H.; Kang, H.-J.; Mun, J.S.; Tijing, L.; Rhee, I.; Kim, J.-H.; Jun, Y.-S.; Shon, H.K. Synthesis and NOx Removal Performance of Anatase S–TiO2/g-C3N4 Heterojunction Formed from Dye Wastewater Sludge. Chemosphere 2021, 275, 130020. [Google Scholar] [CrossRef] [PubMed]
- Lau, V.W.H.; Lotsch, B.V. A Tour-Guide through Carbon Nitride-Land: Structure- and Dimensionality-Dependent Properties for Photo(Electro)Chemical Energy Conversion and Storage. Adv. Energy Mater. 2022, 12, 2101078. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Kamat, P.V. A Conversation with Akira Fujishima. ACS Energy Lett. 2017, 2, 1586–1587. [Google Scholar] [CrossRef]
- Suresh, R.; Gnanasekaran, L.; Rajendran, S.; Soto-Moscoso, M.; Chen, W.-H.; Show, P.L.; Khoo, K.S. Application of Nanocomposites in Integrated Photocatalytic Techniques for Water Pollution Remediation. Environ. Technol. Innov. 2023, 31, 103149. [Google Scholar] [CrossRef]
- Yang, Y.; Ling, R.; Zhou, S.; Duan, Y.; Jiang, P.; Wang, K. Research Progress on the Application of Photocatalytic Technology in Water Treatment. Fine Chem. Ind. 2024, 41, 707–718. [Google Scholar]
- Xavier, M.M.; Mohanapriya, S.; Divya, K.S.; Adarsh, N.N.; Nair, P.R.; Mathew, S. Exploring the Effect of Precursors of Polymeric Carbon Nitride Nanosheets on Their Photo- and Electrocatalytic Applications. ChemistrySelect 2020, 5, 12679–12689. [Google Scholar] [CrossRef]
- Cai, T.; Liu, Y.; Wang, L.; Dong, W.; Zeng, G. Recent Advances in Round-the-Clock Photocatalytic System: Mechanisms, Characterization Techniques and Applications. J. Photochem. Photobiol. C 2019, 39, 58–75. [Google Scholar] [CrossRef]
- Xin, X.; Shunheng, T.; Mingli, L.; Zhong, H.; Zheng, C.; Zuo, X.; Nan, J. Discussion on the Reaction Mechanism of the Photocatalytic Degradation of Organic Contaminants from a Viewpoint of Semiconductor Photo-Induced Electrocatalysis. Appl. Catal. B 2016, 198, 124–132. [Google Scholar]
- Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Emerging S-Scheme Photocatalyst. Adv. Mater. 2021, 34, 2107668. [Google Scholar] [CrossRef]
- Agustina, M.; Lucila, M.S.; Orlando, M.A. Photocatalytic Reactors with Suspended and Immobilized TiO2: Comparative Efficiency Evaluation. Chem. Eng. J. 2017, 326, 29–36. [Google Scholar]
- Jafari Foruzin, L.; Rezvani, Z.; Nejati, K.; Hou, Z.; Dai, H.; Asadpour-Zeynali, K. High Quantum Efficiency of Photocatalytic Water Oxidation over the TiO2/MMO Nanocomposite under Visible-Light Irradiation. J. Mol. Liq. 2019, 288, 111035. [Google Scholar] [CrossRef]
- Mehtab, A.; Banerjee, S.; Mao, Y.; Ahmad, T. Type-II CuFe2O4/Graphitic Carbon Nitride Heterojunctions for High-Efficiency Photocatalytic and Electrocatalytic Hydrogen Generation. ACS Appl. Mater. Interfaces 2022, 14, 44317–44329. [Google Scholar] [CrossRef]
- Wu, X.; Xie, S.; Zhang, H.; Zhang, Q.; F.Sels, B.; Wang, Y. Metal Sulfide Photocatalysts for Lignocellulose Valorization. Adv. Mater. 2021, 33, 2007129. [Google Scholar] [CrossRef]
- Samanta, S.; Srivastava, R. Catalytic Conversion of CO2 to Chemicals and Fuels: The Collective Thermocatalytic/Photocatalytic/Electrocatalytic Approach with Graphitic Carbon Nitride. Mater. Adv. 2020, 1, 1506–1545. [Google Scholar] [CrossRef]
- Cui, Q.; Li, Z.; Zhang, B.; Zhao, Y.; Nan, F. A Meta-Analysis on the Effects of Freeze–Thaw Cycles on Soil Soluble Carbon and Nitrogen and Microbial Biomass Carbon and Nitrogen Content. J. Ecol. Environ. 2022, 31, e008031. [Google Scholar]
- Tian, H.F.; Song, L.M. Research Progress of g-C3N4 Photocatalyst. J. Tianjin Univ. Technol. 2012, 31, 5. [Google Scholar]
- Yang, N.; Chen, Z.; Zhao, Z.; Cui, Y. Electrochemical Fabrication of Ultrafine g-C3N4 Quantum Dots as a Catalyst for the Hydrogen Evolution Reaction. New Carbon Mater. 2022, 37, 392–399. [Google Scholar] [CrossRef]
- Miao, W.; Liu, Y.; Chen, X.; Zhao, Y.; Mao, S. Tuning Layered Fe-Doped g-C3N4 Structure through Pyrolysis for Enhanced Fenton and Photo-Fenton Activities. Carbon 2020, 159, 461–470. [Google Scholar] [CrossRef]
- Zhang, X.; He, S.; Jiang, S.P. WOx/g-C3N4 Layered Heterostructures with Controlled Crystallinity towards Superior Photocatalytic Degradation and H2 Generation. Carbon 2020, 156, 488–498. [Google Scholar] [CrossRef]
- Wang, X.; Sang, L.; Zhang, L.; Yang, G.; Guo, Y.; Yang, Y. Controllable Synthesis for Carbon Self-Doping and Structural Defect Co-Modified g-C3N4: Enhanced Photocatalytic Oxidation Performance and Mechanism Insight. J. Alloys Compd. 2023, 941, 168921. [Google Scholar] [CrossRef]
- Liu, C.; Liu, L.; Tian, X.; Wang, Y.; Li, R.; Zhang, Y.; Song, Z.; Xu, B.; Chu, W.; Qi, F.; et al. Coupling Metal–Organic Frameworks and g-C3N4 to Derive Graphene-Like Carbon for Peroxymonosulfate Activation: Upgrading Framework Stability and Performance. Appl. Catal. B 2019, 255, 117763. [Google Scholar] [CrossRef]
- Oh, Y.; Hwang, J.; Lee, E.-S.; Yoon, M.; Le, V.-D.; Kim, Y.-H.; Kim, D.; Kim, S. Divalent Fe Atom Coordination in Two-Dimensional Microporous Graphitic Carbon Nitride. ACS Appl. Mater. Interfaces 2016, 8, 38. [Google Scholar] [CrossRef]
- Jung, H.; Pham, T.-T.; Shin, E.W. Effect of g-C3N4 Precursors on the Morphological Structures of g-C3N4/ZnO Composite Photocatalysts. J. Alloys Compd. 2019, 788, 1084–1092. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, P.; Zhang, G.; Hu, L.; Wang, P. Visible-Light Responsive g-C3N4 Coupled with ZnS Nanoparticles via a Rapid Microwave Route: Characterization and Enhanced Photocatalytic Activity. Appl. Surf. Sci. 2019, 488, 360–369. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, Y.; Liu, C.; Li, X.; Song, K.; Wang, R.; Chen, W.; Zhao, G.; Liu, R.; Wang, H.; et al. Oxygen-Doped Porous g-C3N4 via Oxalic Acid-Assisted Thermal Polycondensation as a Visible-Light-Driven Photocatalyst for Bisphenol A Degradation. ACS Appl. Nano Mater. 2023, 6, 16567–16579. [Google Scholar] [CrossRef]
- Cui, L.; Song, J.; McGuire, A.F.; Kang, S.; Fang, X.; Wang, J.; Yin, C.; Li, X.; Wang, Y.; Cui, B. Constructing Highly Uniform Onion-Ring-Like Graphitic Carbon Nitride for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. ACS Nano 2018, 12, 5551–5558. [Google Scholar] [CrossRef]
- Ye, L.; Chen, S. Fabrication and High Visible-Light-Driven Photocurrent Response of g-C3N4 Film: The Role of Thiourea. Appl. Surf. Sci. 2016, 389, 1076–1083. [Google Scholar] [CrossRef]
- Nguyen, P.A.; Nguyen, T.K.A.; Dao, D.Q.; Shin, E.W. Ethanol Solvothermal Treatment on Graphitic Carbon Nitride Materials for Enhancing Photocatalytic Hydrogen Evolution Performance. Nanomaterials 2022, 12, 179. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J.; Iqbal, W.; Shi, M.; Yang, L.; Chang, N.; Qin, C. Morphology-Effects of Four Different Dimensional Graphitic Carbon Nitrides on Photocatalytic Performance of Dye Degradation, Water Oxidation and Splitting. J. Phys. Chem. Solids 2022, 173, 111109. [Google Scholar] [CrossRef]
- Sharma, P.; Sarngan, K.; Lakshmanan, A.; Sarkar, D. One-Step Synthesis of Highly Reactive g-C3N4. J. Mater. Sci. Mater. Electron. 2021, 33, 9116–9125. [Google Scholar] [CrossRef]
- Zhao, B.; Zhong, W.; Chen, F.; Wang, P.; Bie, C.; Yu, H. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application. Chin. J. Catal. 2023, 52, 127–143. [Google Scholar] [CrossRef]
- Tang, S.; Xing, Y.; Wang, Y.; Wei, G. Recent advances in graphitic carbon nitride-based nanocomposites for energy storage and conversion applications. Nanotechnology 2025, 36, 122002. [Google Scholar] [CrossRef]
- Liu, H.; Yang, B.; Liao, G.; Huang, B.; Li, J.; Rodriguez, R.D.; Jia, X. Facilitating carrier kinetics in ultrathin porous carbon nitride through shear-repair strategy for peroxymonosulfate-assisted water purification. Nat. Commun. 2025, 16, 5909. [Google Scholar] [CrossRef]
- Ghosh, U.; Pal, A. Graphitic carbon nitride based Z scheme photocatalysts: Design considerations, synthesis, characterization and applications. J. Ind. Eng. Chem. 2019, 79, 383–408. [Google Scholar] [CrossRef]
- Li, D.; Song, H.; Shen, T.; Sun, J.; Han, W.; Wang, X. Effects of Particle Size on the Structure and Photocatalytic Performance by Alkali-Treated TiO2. Nanomaterials 2020, 10, 546. [Google Scholar]
- Gao, L.; Huang, X. Research Progress on Catalytic Activity of Nano-TiO2 Semiconductor. Electron. Compon. Mater. 2002, 21, 4. [Google Scholar]
- Li, Y.; Jin, R.; Xing, Y.; Li, J.; Song, S.; Liu, X.; Li, M.; Jin, R. Macroscopic Foam-Like Holey Ultrathin g-C3N4 Nanosheets for Drastic Improvement of Visible-Light Photocatalytic Activity. Adv. Energy Mater. 2016, 6, 1601273. [Google Scholar] [CrossRef]
- Xiao, J.; Liu, Q.; Song, M.; Li, X.; Li, Q.; Shang, J. Directing Photocatalytic Pathway to Exceedingly High Antibacterial Activity in Water by Functionalizing Holey Ultrathin Nanosheets of Graphitic Carbon Nitride. Water Res. 2021, 198, 117125. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Wang, X.; Song, C.; Zhou, S.; Yang, F.; Kong, Y. Engineering Carbon-Defects on Ultrathin g-C3N4 Allows One-Pot Output and Dramatically Boosts Photoredox Catalytic Activity. Appl. Catal. B 2021, 295, 120272. [Google Scholar] [CrossRef]
- Xue, Y.; Ma, C.; Yang, Q.; Wang, X.; An, S.; Zhang, X.; Tian, J. Construction of g-C3N4 with Three-Coordinated Nitrogen (N3C) Vacancies for Excellent Photocatalytic Activities of N2 Fixation and H2O2 Production. Chem. Eng. J. 2023, 457, 141146. [Google Scholar] [CrossRef]
- Li, W.; Zeng, H.; Zhou, Z.; Li, L.; Tang, R.; Ding, C.; Gong, D.; Deng, Y. Sulfur-Synergized Dual-Cobalt Anchoring Configuration in Carbon Nitride: Deciphering Cooperative Mechanisms for Boosted Peroxymonosulfate Activation. Chem. Eng. J. 2025, 520, 166214. [Google Scholar] [CrossRef]
- Mottammal, D.; Cherusseri, J.; Thomas, S.A.; R.S., R.L.; N.Rajendran, D.; Choi, M.Y. Toward Doping in Graphitic Carbon Nitride: Progress and Perspectives on Catalytic Hydrogen Production. Adv. Mater. Technol. 2025, e00667. [Google Scholar] [CrossRef]
- Qaraah, F.A.; Mahyoub, S.A.; Shen, H.; Yin, X.; Salah, A.; A.Onaizi, S.; A.Drmosh, Q.; Xin, F. Synergistic Role of Dual-Metal Sites (Ag–Ni) in Hexagonal Porous g-C3N4 Nanostructures for Enhanced Photocatalytic CO2 Reduction. Carbon 2025, 232, 119735. [Google Scholar] [CrossRef]
- Niu, W.; Yang, Y. Graphitic Carbon Nitride for Electrochemical Energy Conversion and Storage. ACS Energy Lett. 2018, 3, 2796–2815. [Google Scholar] [CrossRef]
- Mishra, S.; Kumar, A.; Verma, N. g-C3N4-Supported NiBO3 (B = Ti, Sn) Perovskite-Based Dual-S-Scheme Heterostructure for Efficient Hydrogen Production via Water Splitting. Fuel 2025, 399, 135673. [Google Scholar] [CrossRef]
- Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A.A. Heterojunction Photocatalysts. Adv. Mater. 2017, 29, 1601694. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Fang, J.; Shao, S.; Lai, M.; Lu, C. Compact and Uniform TiO2@g-C3N4 Core–Shell Quantum Heterojunction for Photocatalytic Degradation of Tetracycline Antibiotics. Appl. Catal. B 2017, 217, 57–64. [Google Scholar] [CrossRef]
- Bard, A.J. Photoelectrochemistry and Heterogeneous Photocatalysis at Semiconductors. J. Photochem. 1979, 10, 59–75. [Google Scholar] [CrossRef]
- Cadan, F.M.; Ribeiro, C.; Azevedo, E.B. Improving g-C3N4:WO3 Z-Scheme Photocatalytic Performance under Visible Light by Multivariate Optimization of g-C3N4 Synthesis. Appl. Surf. Sci. 2021, 537, 147904. [Google Scholar] [CrossRef]
- Chen, Y.; Su, F.; Xie, H.; Wang, R.; Ding, C.; Huang, J.; Xu, Y.; Ye, L. One-Step Construction of S-Scheme Heterojunctions of N-Doped MoS2 and S-Doped g-C3N4 for Enhanced Photocatalytic Hydrogen Evolution. Chem. Eng. J. 2020, 404, 126498. [Google Scholar] [CrossRef]
- Zeltner, W.A.; Tompkins, D.T. Shedding Light on Photocatalysis. ASHRAE Trans. 2005, 111 Pt 2, 523–534. [Google Scholar]
- Zheng, Y.; Liu, J.; Liang, J.; Jaroniec, M.; Qiao, S.Z. Graphitic Carbon Nitride Materials: Controllable Synthesis and Applications in Fuel Cells and Photocatalysis. Energy Environ. Sci. 2012, 5, 6717–6731. [Google Scholar] [CrossRef]
- Song, S.; Zhuo, Z.; Huang, M. Research Progress on Piezoelectric-Photocatalytic Technology and Its Application in Degradation of Organic Dye Wastewater. Green Technol. 2022, 24, 86–94. [Google Scholar]
- Wang, Z.; Hu, X.; Liu, Z.; Zou, G.; Wang, G.; Zhang, K. Recent Developments in Polymeric Carbon Nitride-Derived Photocatalysts and Electrocatalysts for Nitrogen Fixation. ACS Catal. 2019, 9, 10260–10278. [Google Scholar] [CrossRef]
- Besharat, F.; Ahmadpoor, F.; Nezafat, Z.; Nasrollahzadeh, M.; Manwar, N.; Fornasiero, P.; Gawande, M. Advances in Carbon Nitride-Based Materials and Their Electrocatalytic Applications. ACS Catal. 2022, 12, 5605–5660. [Google Scholar] [CrossRef]
- Xie, W.; Gao, L.; Wu, L.; Chen, X.; Wang, F.; Tong, D.; Zhang, J.; Lan, J.; He, X.; Mu, X.; et al. A Nonresonant Hybridized Electromagnetic-Triboelectric Nanogenerator for Irregular and Ultralow Frequency Blue Energy Harvesting. Research 2021, 2021, 5963293. [Google Scholar] [CrossRef] [PubMed]
- Ochiai, T. Electrostatics of Optical Rectification in Metallic Particles. J. Opt. Soc. Am. B 2022, 39, 990–1002. [Google Scholar] [CrossRef]
- Toprak, A.; Tigli, O. Piezoelectric Energy Harvesting: State-of-the-Art and Challenges. Appl. Phys. Rev. 2014, 1, 031104. [Google Scholar] [CrossRef]
- Cheng, T.; Gao, Q.; Wang, Z.L. The Current Development and Future Outlook of Triboelectric Nanogenerators: A Survey of Literature. Adv. Mater. Technol. 2019, 4, 1800588. [Google Scholar] [CrossRef]
- Bowen, C.R.; Taylor, J.; LeBoulbar, E.; Zabek, D.; Chauhan, D. Pyroelectric Materials and Devices for Energy Harvesting Applications. Energy Environ. Sci. 2014, 7, 3836–3856. [Google Scholar] [CrossRef]
- Ng, T.; Liao, W. Sensitivity Analysis and Energy Harvesting for a Self-Powered Piezoelectric Sensor. J. Intell. Mater. Syst. Struct. 2005, 16, 785–795. [Google Scholar] [CrossRef]
- Caliò, R.; Rongala, U.B.; Camboni, D.; Milazzo, M.; Stefanini, C.; Petris, G.; Oddo, C. Piezoelectric Energy Harvesting Solutions. Sensors 2014, 14, 4755–4796. [Google Scholar] [CrossRef]
- Ali, F.; Raza, W.; Li, X.; Gul, H.; Kim, K. Piezoelectric Energy Harvesters for Biomedical Applications. Nano Energy 2019, 57, 879–902. [Google Scholar] [CrossRef]
- Wang, J.; Geng, L.; Zhou, S.; Zhang, Z.; Lai, Z.; Yurchenko, D. Design, Modeling and Experiments of Broadband Tristable Galloping Piezoelectric Energy Harvester. Acta Mech. Sin. 2020, 36, 592–605. [Google Scholar] [CrossRef]
- Panda, P.; Sahoo, B. PZT to Lead-Free Piezo Ceramics: A Review. Ferroelectrics 2015, 474, 128–143. [Google Scholar] [CrossRef]
- Le, A.T.; Ahmadipour, M.; Pung, S.-Y. A Review on ZnO-Based Piezoelectric Nanogenerators: Synthesis, Characterization Techniques, Performance Enhancement and Applications. J. Alloys Compd. 2020, 844, 156172. [Google Scholar] [CrossRef]
- Lu, L.J.; Ding, W.Q.; Liu, J.Q.; Yang, B. Flexible PVDF-Based Piezoelectric Nanogenerators. Nano Energy 2020, 78, 105251. [Google Scholar] [CrossRef]
- Piao, H.; Choi, G.; Jin, X.; Hwang, S.; Song, Y.; Cho, S.; Choy, J. Monolayer Graphitic Carbon Nitride as Metal-Free Catalyst with Enhanced Performance in Photo- and Electro-Catalysis. Nano-Micro Lett. 2022, 14, 55. [Google Scholar] [CrossRef]
- Liu, W.; Zhou, C.; Gao, J.; Xue, D.; Zhang, L.; Li, S.; Ren, X. Research Progress of Lead-Free Piezoelectric ceramics. Prog. Chin. Mater. 2016, 35, 423–428. [Google Scholar]
- Kumar, A.; Choudhary, P.; Chhabra, T.; Kaur, H.; Kumar, A.; Qamar, M.; Krishnan, V. Frontier Nanoarchitectonics of Graphitic Carbon Nitride Based Plasmonic Photocatalysts and Photoelectrocatalysts for Energy, Environment and Organic Reactions. Mater. Chem. Front. 2023, 7, 1197–1247. [Google Scholar] [CrossRef]
- Bai, Y.; Zhao, J.; Lv, Z.; Lu, K. Enhanced Piezo-Phototronic Effect of ZnO Nanorod Arrays for Harvesting Low Mechanical Energy. Ceram. Int. 2019, 45, 15065–15072. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, Y.; Zhao, H.; Zhang, Z.; An, B.; Bai, C.; Ren, Z.; Wu, J.; Li, Y.; Liu, W.; et al. Synthesis of Ternary ZnO/ZnS/MoS2 Piezoelectric Nanoarrays for Enhanced Photocatalytic Performance by Conversion of Dual Heterojunctions. Appl. Surf. Sci. 2021, 556, 149695. [Google Scholar] [CrossRef]
- Bayan, S.; Bhattacharya, D.; Mitra, R.K.; Ray, S. Self-Powered Flexible Photodetectors Based on Ag Nanoparticle Loaded g-C3N4 Nanosheets and PVDF Hybrids: Role of Plasmonic and Piezoelectric Effects. Nanotechnology 2020, 31, 365401. [Google Scholar] [CrossRef] [PubMed]
- Dai, B.; Huang, H.; Wang, F.; Lu, C.; Kou, J.; Wang, L.; Xu, Z. Flowing Water Enabled Piezoelectric Potential of Flexible Composite Film for Enhanced Photocatalytic Performance. Chem. Eng. J. 2018, 347, 263–272. [Google Scholar] [CrossRef]
- Nagar, O.P.; Chouhan, N. Non-Metal Doped Graphitic Carbon Nitride (g-C3N4): Prospects and Review on Hydrogen Generation via Water Splitting. Int. J. Hydrogen Energy 2024, 96, 533–565. [Google Scholar] [CrossRef]
- Thennarasu, G.; Rajendran, S.; Kalairaj, A.; Rathore, H.; Panda, R.; Senthivelan, T. A Comprehensive Review on the Application of Semiconductor Nanometal Oxides Photocatalyst for the Treatment of Wastewater. Clean Technol. Environ. Policy 2025, 27, 495–516. [Google Scholar] [CrossRef]
- Liang, F.; Chen, Z.; Lu, Z.; Wang, X. Piezoelectric-Enhanced Photocatalytic Performance of Porous Carbon Nitride Nanosheets. J. Colloid Interface Sci. 2023, 630, 191–203. [Google Scholar] [CrossRef]
- Wu, Z.; Zhu, Z.; Ma, J.; Zhou, M.; Wu, Z.; You, H.; Zhang, H.; Li, N.; Wang, F. High piezo-photocatalysis of BaTiO3 nanofibers for organic dye decomposition. Surf. Interfaces 2024, 48, 104308. [Google Scholar] [CrossRef]
- Lan, S.; Yu, C.; Sun, F.; Chen, Y.; Chen, D.; Mai, W.; Zhu, M. Tuning piezoelectric driven photocatalysis by La-doped magnetic BiFeO3-based multiferroics for water purification. Nano Energy 2022, 93, 106792. [Google Scholar] [CrossRef]
- Xie, Z.; Tang, X.; Shi, J.; Wang, Y.; Yuan, G.; Liu, J.-M. Excellent piezo-photocatalytic performance of Bi4Ti3O12 nanoplates synthesized by molten-salt method. Nano Energy 2022, 98, 107247. [Google Scholar] [CrossRef]
- Abdollahpour, R.; Bazyari, A. Synergistic Photocatalysis: Enhanced Degradation of Organic Dyes Using a Heterojunction Nanocomposite of High-Surface-Area g-C3N4 and TiO2–WO3–Bi2O3/SiO2. Environ. Sci. Pollut. Res. 2025, 32, 17466–17486. [Google Scholar] [CrossRef]
- Tong, H.; Li, F.-F.; Du, M.; Song, H.; Han, B.; Jia, G.; Xu, X.; Zou, X.; Ji, L.; Kai, J.; et al. Interface Engineering, Charge Carrier Dynamics, and Solar-Driven Applications of Halide Perovskite/2D Material Heterostructured Photocatalysts. ACS Appl. Mater. Interfaces 2025, 17, 23431–23465. [Google Scholar] [CrossRef]
- Xu, Y.; Liao, J.; Zhang, L.; Sun, Z.; Ge, C. Dual Sulfur Defect Engineering of Z-Scheme Heterojunction on Ag-CdS1−x@ZnIn2S4−x Hollow Core–Shell for Ultra-Efficient Selective Photocatalytic H2O2 Production. J. Colloid Interface Sci. 2023, 647, 446–455. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Maimaitizi, H.; Okitsu, K.; Tursun, Y.; Abulizi, A. Z-Type Heterojunction of Graphene Quantum Dots/g-C3N4/BiOCl Has Excellent Nitrogen Fixation Photocatalytic Performance. Int. J. Energy Res. 2022, 46, 12147–12159. [Google Scholar] [CrossRef]
- Abdolmaleki, H.; Haugen, A.B.; Buhl, K.B.; Daasbjerg, K.; Agarwala, S. Interface Engineering of PVDF-TrFE to Achieve Higher Piezoelectric, Ferroelectric and Dielectric Properties for Sensing and Energy Harvesting Applications. Adv. Sci. 2023, 10, 2205942. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Hu, J.; Shi, Y.; Zeng, G.; Cheng, W.; Yu, H.; Gu, Y.; Shi, L.; Yi, K. Evaluation of Self-Cleaning and Photocatalytic Properties of Modified g-C3N4-Based PVDF Membranes Driven by Visible Light. J. Colloid Interface Sci. 2019, 541, 356–366. [Google Scholar] [CrossRef]
- Wang, G.; Cheng, H. Application of Photocatalysis and Sonocatalysis for Treatment of Organic Dye Wastewater and the Synergistic Effect of Ultrasound and Light. Molecules 2023, 28, 123456. [Google Scholar] [CrossRef]
- Ye, H.; Guo, T.; Zuo, G. Preparation and Photocatalytic Properties of g-C3N4/BiFeO3 Composite Visible-Light Catalyst. China Ceram. 2016, 52, 5. [Google Scholar]
- Kang, Z.; Ke, K.; Lin, E.; Qin, N.; Wu, J.; Huang, R.; Bao, D. Piezoelectric Polarization Modulated Novel Bi2WO6/g-C3N4/ZnO Z-Scheme Heterojunctions with g-C3N4 Intermediate Layer for Efficient Piezo-Photocatalytic Decomposition of Harmful Organic Pollutants. J. Colloid Interface Sci. 2022, 607, 1589–1602. [Google Scholar] [CrossRef]
- Huang, S.; Xiong, F.; Yu, M.; Zhou, Y.; Xu, J.; Liu, J. Synthesis of Ag-Loaded NaNbO3/g-C3N4 Heterojunction for Enhanced Photocatalytic Degradation of Methyl Orange. Mater. Sci. Semicond. Process. 2025, 192, 109401. [Google Scholar] [CrossRef]
- Liu, G.; Zhao, T.; Wu, J.; Chang, M.; Fei, H.; Li, F.; Yang, S.; Li, Q. Enhanced Removal and Selective Conversion for NO with N-Vacancies g-C3N4/BaTiO3 by Piezo-Photocatalysis. Sep. Purif. Technol. 2025, 360, 130914. [Google Scholar] [CrossRef]
- Di, B.; Wang, Z.; Wang, H.; Gong, S.; Zheng, L.; Min, Y.; Li, H. Piezoelectric Photocatalytic Degradation of Formaldehyde Based on BFO@OCN Heterojunctions. Nano Energy 2024, 132, 110384. [Google Scholar] [CrossRef]
- Kishore, A.; Sunil, S.M.; Viswanathan, R.; Kailaperumal, A.; Ali, B. Different Synthetic Routes and Band-Gap Engineering of Photocatalysts. In Photocatalysts and Electrocatalysts in Water Remediation: From Fundamentals to Full-Scale Applications; Wiley: New York, NY, USA, 2022; pp. 39–80. [Google Scholar]
- Li, H.; Luo, K.Y.; Hu, W.Y.; Li, J.; Wang, Z.; Ma, C.; Pan, Z.; Zhang, Q.; Yuan, H.; Yu, F.; et al. Facile Synthesis of Core–Shell Structure ZnO/g-C3N4 Nanocomposites with Enhanced Photocatalytic Activity. Acta Photonica Sin. 2021, 50, 1116001. [Google Scholar]
- Zhang, B.; Jin, X.; Li, X.; Dong, L.; Liu, D.; Zhang, Y.; Zhao, Z.; Ge, Q.; Zhang, F. Piezoelectric Assisted Boosting Photocatalytic Hydrogen Evolution over a Finely Prepared Pt/TiO2/g-C3N4 Composite System Using Lactic Acid as Sacrificial Agent. Int. J. Hydrogen Energy 2024, 84, 480–490. [Google Scholar] [CrossRef]
- Deng, X.; Chen, P.; Cui, R.; Gong, X.; Li, X.; Wang, X.; Deng, C. Synergistic Polarity Interaction and Structural Reconstruction in Bi2MoO6/C3N4 Heterojunction for Enhancing Piezo-Photocatalytic Nitrogen Oxidation to Nitric Acid. Appl. Catal. B 2024, 351, 123977. [Google Scholar] [CrossRef]
- Guo, Z.; Sun, K.; Zou, S.; Xiong, B.; Wang, L.; Shi, W.; Sun, Y.; Guo, F. Construction of Surface Pit-Structured g-C3N4 by Induced SiO2 Hard Template for Boosted Piezoelectric-Assisted Photocatalytic H2O2 Production. J. Colloid Interface Sci. 2025, 699, 138118. [Google Scholar] [CrossRef]
- Sun, P.; Xiong, J.; Sun, P.; Fang, Y.; Liu, H.; Liu, H.; Xiong, B.; Wang, H.; Li, X.A. Additional O doping significantly improved the catalytic performance of Mn/O co-doped g-C3N4 for activating periodate and degrading organic pollutants. Sep. Purif. Technol. 2024, 331, 125593. [Google Scholar] [CrossRef]
- Wu, H.-H.; Chang, C.-W.; Lu, D.; Maeda, K.; Hu, C. Synergistic Effect of Hydrochloric Acid and Phytic Acid Doping on Polyaniline-Coupled g-C3N4 Nanosheets for Photocatalytic Cr (VI) Reduction and Dye Degradation. ACS Appl. Mater. Interfaces 2019, 11, 35702–35712. [Google Scholar] [CrossRef]
- Sheng, Y.; Wei, Z.; Miao, H.; Yao, W.; Li, H.; Zhu, Y. Enhanced organic pollutant photodegradation via adsorption/photocatalysis synergy using a 3D g-C3N4/TiO2 free-separation photocatalyst. Chem. Eng. J. 2019, 370, 287–294. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, J.; Fan, J.; Zheng, H. Preparation and performance of In(OH)3/g-C3N4 catalyst containing oxygen vacancies for photodegradation of pollutants in water. Journal of civil and environmental engineering. 2020, 42, 207–208. [Google Scholar]
- Zhang, X.; Wu, H.; Lin, L.; Wu, Y.; Wang, M. Degradation mechanism of azo dyes -contaminated wastewater by g-C3N4-P25/photosynthetic bacteria composite. Acta Sci. Circumstantiae 2018, 38, 2632–2640. [Google Scholar]
- Khadim, H.J.; Ammar, S.H.; Al-Farraji, A.; Mohammed, M.S.; Jabbar, Z.H.; Alabdly, H.A. Fabrication of AgBr/Br-doped g-C3N4 hybrids for efficient piezo-photocatalytic degradation of organic pollutants in split-plate airlift reactor. J. Water Process Eng. 2025, 76, 108118. [Google Scholar] [CrossRef]
- Mohammed, M.S.; Ammar, S.H.; Kareem, Y.S.; Al-Farraji, A. Assembly of Fe-doped g-C3N4 as a robust piezophotocatalyst system for degradation of organic dyes. J. Mol. Struct. 2025, 1344, 142962. [Google Scholar] [CrossRef]
- Wu, T.; Liu, Z.; Shao, B.; He, Q.; Pan, Y.; Zhang, X.; Sun, J.; He, M.; Ge, L.; Cheng, C.; et al. Enhanced piezo-photocatalytic degradation of organic pollutants by cambered wall lamellar structure of porous tubular g-C3N4. Nano Energy 2024, 120, 109137. [Google Scholar] [CrossRef]
- Gong, S.; Zhang, W.; Liang, Z.; Zhang, Y.; Gan, T.; Hu, H.; Huang, Z. Construction of a BaTiO3/tubular g-C3N4 dual piezoelectric photocatalyst with enhanced carrier separation for efficient degradation of tetracycline. Chem. Eng. J. 2023, 461, 141947. [Google Scholar] [CrossRef]
- Tang, R.; Gong, D.; Zhou, Y.; Deng, Y.; Feng, C.; Xiong, S.; Huang, Y.; Peng, G.; Li, L.; Zhou, Z. Unique g-C3N4/PDI-g-C3N4 homojunction with synergistic piezo-photocatalytic effect for aquatic contaminant control and H2O2 generation under visible light. Appl. Catal. B. Environ. 2022, 303, 120929. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, Z.; Li, B.; Yan, Y.; Xu, R.; Meng, M.; Yan, Y. Fluid-induced piezoelectric field enhancing photocatalytic hydrogen evolution reaction on g-C3N4/LiNbO3/PVDF membrane. Nano Energy 2022, 99, 107429. [Google Scholar] [CrossRef]
- Wu, J.; Qin, N.; Bao, D. Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration. Nano Energy 2018, 45, 44–51. [Google Scholar] [CrossRef]
- Tong, R.; Sun, Z.; Wang, X.; Yang, L.; Zhai, J.; Wang, S.; Pan, H. Mo incorporated Ni nanosheet as high-efficiency co-catalyst for enhancing the photocatalytic hydrogen production of g-C3N4. Int. J. Hydrogen Energy 2020, 45, 18912–18921. [Google Scholar] [CrossRef]
- Xu, H.; She, X.; Fei, T.; Song, Y.; Liu, D.; Li, H.; Yang, X.; Yang, J.; Li, H.; Song, L.; et al. Metal-Oxide-Mediated Subtractive Manufacturing of Two-Dimensional Carbon Nitride for High-Efficiency and High-Yield Photocatalytic H2 Evolution. ACS Nano 2019, 13, 11294–11302. [Google Scholar] [CrossRef]
- Qin, Y.; Li, H.; Lu, J.; Feng, Y.; Meng, F.; Ma, C.; Yan, Y.; Meng, M. Synergy between van der waals heterojunction and vacancy in ZnIn2S4/g-C3N4 2D/2D photocatalysts for enhanced photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2020, 277, 119254. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, M.; Li, H.; Zhang, J.; Zhang, R. Preparation and Photocatalytic Hydrogen Production Properties of Cyano-modified g-C3N4. J. Synth. Cryst. 2020, 49, 631. [Google Scholar]
- Meng, L.; Zhao, C.; Chu, H.; Li, Y.-H.; Fu, H.; Wang, P.; Wang, C.-C.; Huang, H. Synergetic piezo-photocatalysis of g-C3N4/PCN-224 core-shell heterojunctions for ultrahigh H2O2 generation. Chin. J. Catal. 2024, 59, 346–359. [Google Scholar] [CrossRef]
- Fu, M.; Luo, J.; Shi, B.; Tu, S.; Wang, Z.; Yu, C.; Ma, Z.; Chen, X.; Li, X. Promoting Piezocatalytic H2O2 Production in Pure Water by Loading Metal-Organic Cage-Modified Gold Nanoparticles on Graphitic Carbon Nitride. Angew. Chem. Int. Ed. 2024, 63, e202316346. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Fan, S.; Li, X.; Duan, J.; Zhang, D. Modulating the Molecular Structure of Graphitic Carbon Nitride for Identifying the Impact of the Piezoelectric Effect on Photocatalytic H2O2 Production. ACS Catal. 2023, 13, 9515–9523. [Google Scholar] [CrossRef]
- Liu, P.; Liang, T.; Bian, J.; Li, Z.; Zhang, Z.; Jing, L. Improved photocatalytic H2O2 production of boron doped g-C3N4 by controllably co-modifying nanosized PDI and Ag. Mater. Res. Bull. 2023, 167, 112370. [Google Scholar] [CrossRef]
- Zhou, L.; Feng, J.; Qiu, B.; Zhou, Y.; Lei, J.; Xing, M.; Wang, L.; Zhou, Y.; Liu, Y.; Zhang, J. Ultrathin g-C3N4 nanosheet with hierarchical pores and desirable energy band for highly efficient H2O2 production. Appl. Catal. B Environ. 2020, 267, 118396. [Google Scholar] [CrossRef]
- Chu, C.; Miao, W.; Li, Q.; Wang, D.; Liu, Y.; Mao, S. Highly efficient photocatalytic H2O2 production with cyano and SnO2 co-modified g-C3N4. Chem. Eng. J. 2022, 428, 132531. [Google Scholar] [CrossRef]
Modification Strategy | Target Pollutant | Degradation Product | Degradation Efficiency | Optimum Conditions | Ref. |
---|---|---|---|---|---|
Mn/O co-doped g-C3N4 (MOCN) | Sulfadiazine (SDZ) | Small molecular organic acids (oxalic acid, acetic acid), CO2, H2O | Compared with Mn-doped g-C3N4 (MCN), the rate is increased by 3.5 times. | Visible light, high iodine hydrochloric acid activation | [125] |
Additional O-doped g-C3N4 | Tetracycline | Demethylation/hydroxylation products→ring-opening fatty acids | After 90 min, the removal rate was 90%, and the TOC removal rate was 83.4%. | Neutral pH, visible light | [125] |
HCl/phytic acid co-modified polyaniline-g-C3N4 | Cr(VI), rhodamine b | Cr(III), decolorizing small molecules, CO2 | The reduction rate of Cr (VI) was 98%. The decolorization rate of dye is 95%. | Visible light, pH = 3 | [126] |
3D g-C3N4/TiO2 heterojunction | Methylene blue (MB), phenol | Hydroxylated cyclic intermediate→long chain alkane→CO2 | Compared with pure g-C3N4, the degradation rate of MB increased by 4 times. | Static visible light irradiation | [127] |
Oxygen vacancy In(OH)3/g-C3N4 | Acid orange 7 (AO7) | Deazo product→aniline→ring-opening carboxylic acid→CO2 | 180 min 90% removal | Visible light, wide pH adaptability | [128] |
g-C3N4-P25/photosynthetic bacteria complex | Reactive brilliant red X-3B | Aniline→phenols→long-chain alkanes→ CO2+H2O | The decolorization rate was 94% and the COD removal rate was 84.7%. 84.7% | Visible light-microorganism synergy | [129] |
Modification Strategy | Target Pollutant | Degradation Efficiency | Piezoelectric Synergy Conditions | pH Effect | Kinetic Equation Parameter | Ref. |
---|---|---|---|---|---|---|
AgBr/Br doped g-C3N4 Z-type Heterojunction | Methylene blue (MB) | Degradation 99.7% in 60 min. | Visible light, ultrasound, airlift reactor | Wide range adaptability | k = 0.082 min−1 | [130] |
Ag-PCN/SnO2−g-C3N4 Z-type Heterojunction | Tetracycline (TC) | After 90 min, the removal rate was 90%, and the TOC removal rate was 83.4%. | 40 kHz ultrasound (0.5 W/cm2) | Neutral is the best | k = 0.025 min−1 | [130] |
Fe doped g-C3N4 (FeCN) | Methylene blue (MB) | 97.7% degradation in 60 min. | Visible light, ultrasound, neutral | High efficiency at pH 5–9 | k = 0.051 min−1 | [131] |
Porous tubular g-C3N4 (PTCN) | Tetracycline (TC) | Degradation of 89% in 30 min. | Ultrasound, visible light | Neutrality | First-order kinetics (R2 > 0.98) | [132] |
BaTiO3/tubular g-C3N4 heterojunction | Tetracycline (TC) | The degradation rate was 91.0% in 60 min. | Ultrasound, visible light | Unspecified | The rate increased by 3.2 times | [133] |
g-C3N4/PDI-g-C3N4 homojunction | Ateatrazine (ATZ) | The degradation rate was 94% after 60 min. | Magnetic stirring, visible light | pH = 2.97 | 1.6 times higher than that of pure photocatalysis | [134] |
N-vacancy g-C3N4/BaTiO3 (CNVB) | Nitric oxide (NO) | The removal rate of piezoelectric photocatalysis is 77.9%. | Ultrasound, visible light | Unspecified | The rate constant is increased by 2.21 times | [119] |
Material Systems | Hydrogen Generation Rate | Optimum Conditions | Reaction Mechanism | Ref. |
---|---|---|---|---|
g-C3N4/LiNbO3/PVDF membrane | 136.02 μmol·h−1·g−1 (19.6875 cm2 membrane) | White light irradiation, fluid disturbance (Flow rate 0.5 m/s) | The fluid-induced piezoelectric potential enhances carrier separation, and the membrane structure improves mass transfer efficiency. | [135] |
The tubular g-C3N4/BaTiO3 | Unspecified | 40 kHz ultrasound, visible light | The BaTiO3 piezoelectric layer is superimposed with the built-in electric field to suppress the e−-h+ recombination. | [135,136] |
1D/2D isomorphic g-C3N4 | Unspecified | 20 kHz ultrasound, λ > 420 nm visible light | Ultrasonic excitation strain optimizes carrier migration path. | [135] |
Co3O4/g-C3N4 nanocomposite | 5464 μmol·h−1·g−1 | 40 kHz ultrasound, 3 wt% Co3O4 load | Ultrasound forms a close interface and reduces the charge transfer resistance. | [137] |
2D/2D Co3O4/g-C3N4 Z-junction | 370 μmol·h−1·g−1 | >400 nm light, 0.1 M Na2S/Na2SO3 sacrificial agent | Van der Waals heterojunction accelerates interfacial charge transfer | [138] |
ZnIn2S4-S/CN van der Waals heterojunction | 6095.1 μmol·h−1·g−1 | Visible light, 10% TEOA sacrificial agent | S vacancies enhance light absorption, and the 2D/2D interface promotes charge separation. | [139] |
Cyanide modified g-C3N4 | 4.5 times of the original g-C3N4 | λ ≥ 420 nm, triethanolamine sacrificial agent | The cyano group forms a polarized electric field and inhibits carrier recombination. | [140] |
Material Systems | H2O2 Yield | Reaction Condition | Reaction Mechanism | Ref. |
---|---|---|---|---|
g-C3N4/PCN-224 core–shell heterojunction | 4.86 mmol·g−1·h−1 | Ultrasound (40 kHz) 1, visible light | Piezoelectric field drives Z-type charge transfer, and ·O2− production is increased by 30%. | [141] |
MOC-AuNP/g-C3N4 hydrogen bond assembly | 120.21 μmol·g−1·h−1 | Ultrasound (no light) | The interfacial electric field of AuNP accelerates e− transfer, and MOC inhibits H2O2 decomposition. | [142] |
Phosphorous modified g-C3N4 (CN-P) | 1.46 times pure photocatalysis | Ultrasound, visible light | Piezoelectric coefficient d33 = 12.4 pm/V (PFM verification). | [143] |
Boron doped g-C3N4/PDI-Ag (PDI/BCN-Ag) | 143 μmol·g−1·h−1 | Visible light (without sacrificial agent) | Cascade S-type charge transfer, Ag nanoparticles promote the ·O2− path. | [144] |
Ultrathin porous P-doped g-C3N4 | 1083 μmol·g−1·h−1 | Visible light | Phosphorus doping optimizes energy band structure and mesoporous accelerates mass transfer. | [145] |
N-vacancy g-C3N4/BaTiO3 (CNVB) | 703.4 μmol·g−1·h−1 | Visible light | The cyano group broadens the light absorption, and SnO2 O2/H+ adsorption sites are provided. | [146] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Yang, L.; Song, Y.; Hou, H.; Fang, Y.; Liu, Y.; Xie, L.; Lu, D. Research Progress on the Preparation, Modification, and Applications of g-C3N4 in Photocatalysis and Piezoelectric Photocatalysis. Inorganics 2025, 13, 300. https://doi.org/10.3390/inorganics13090300
Li M, Yang L, Song Y, Hou H, Fang Y, Liu Y, Xie L, Lu D. Research Progress on the Preparation, Modification, and Applications of g-C3N4 in Photocatalysis and Piezoelectric Photocatalysis. Inorganics. 2025; 13(9):300. https://doi.org/10.3390/inorganics13090300
Chicago/Turabian StyleLi, Mengyang, Liuqing Yang, Yizhe Song, Hongru Hou, Yujie Fang, Yucheng Liu, Lihao Xie, and Dingze Lu. 2025. "Research Progress on the Preparation, Modification, and Applications of g-C3N4 in Photocatalysis and Piezoelectric Photocatalysis" Inorganics 13, no. 9: 300. https://doi.org/10.3390/inorganics13090300
APA StyleLi, M., Yang, L., Song, Y., Hou, H., Fang, Y., Liu, Y., Xie, L., & Lu, D. (2025). Research Progress on the Preparation, Modification, and Applications of g-C3N4 in Photocatalysis and Piezoelectric Photocatalysis. Inorganics, 13(9), 300. https://doi.org/10.3390/inorganics13090300