Strategies for Regulating Reactive Oxygen Species in Carbon Nitride-Based Photocatalysis
Abstract
1. Introduction
2. Generation of ROS on PCN
2.1. Superoxide Anion Radical
2.2. Singlet Oxygen
2.3. Hydrogen Peroxide
2.4. Hydroxyl Radical
2.5. Summary
3. Strategies for Regulating Specific ROS in PCN
3.1. Energy Band Engineering Toward Selective •O2− Formation
3.2. Regulation of Reaction Pathways Toward Selective H2O2 Formation
3.3. Regulation Toward Selective 1O2 Formation
3.4. Regulation Toward Selective •OH Formation
4. Applications of ROS from PCN
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Le, S.; Zhu, C.; Cao, Y.; Wang, P.; Liu, Q.; Zhou, H.; Chen, C.; Wang, S.; Duan, X. V2O5 nanodot-decorated laminar C3N4 for sustainable photodegradation of amoxicillin under solar light. Appl. Catal. B 2022, 303, 120903. [Google Scholar] [CrossRef]
- Bi, Y.; Zhang, R.; Niu, K.; Yu, S.; Liu, H.; Xing, L. Construction of a three-step sequential energy transfer system with selective enhancement of superoxide anion radicals for photocatalysis. Chin. Chem. Lett. 2025, 36, 110311. [Google Scholar] [CrossRef]
- Liu, P.; Liang, T.; Li, Y.; Zhang, Z.; Li, Z.; Bian, J.; Jing, L. Photocatalytic H2O2 production over boron-doped g-C3N4 containing coordinatively unsaturated FeOOH sites and CoOx clusters. Nat. Commun. 2024, 15, 9224. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-C.; Cheng, S.-L.; Liao, F.-T.; Chen, C.; Long, M.-C. Research progress on hydrogen peroxide photosynthesis from only water and oxygen over polymer photocatalysts. Rare Met. 2024, 43, 6144–6163. [Google Scholar] [CrossRef]
- Teng, Z.Y.; Yang, H.B.; Zhang, Q.T.; Cai, W.A.; Lu, Y.R.; Kato, K.; Zhang, Z.Z.; Ding, J.; Sun, H.; Liu, S.X.; et al. Atomically dispersed low-valent Au boosts photocatalytic hydroxyl radical production. Nat. Chem. 2024, 16, 1250. [Google Scholar] [CrossRef]
- Nosaka, Y.; Nosaka, A. Understanding Hydroxyl Radical (•OH) Generation Processes in Photocatalysis. ACS Energy Lett. 2016, 1, 356–359. [Google Scholar] [CrossRef]
- Leandri, V.; Gardner, J.M.; Jonsson, M. Coumarin as a Quantitative Probe for Hydroxyl Radical Formation in Heterogeneous Photocatalysis. J. Phys. Chem. C 2019, 123, 6667–6674. [Google Scholar] [CrossRef]
- Ullattil, S.G.; Zavašnik, J.; Maver, K.; Finšgar, M.; Novak Tušar, N.; Pintar, A. Defective Grey TiO2 with Minuscule Anatase–Rutile Heterophase Junctions for Hydroxyl Radicals Formation in a Visible Light-Triggered Photocatalysis. Catalysts 2021, 11, 1500. [Google Scholar] [CrossRef]
- Qin, H.; Guo, M.; Zhou, C.; Li, J.; Jing, X.; Wan, Y.; Song, W.; Yu, H.; Peng, G.; Yao, Z.; et al. Enhancing singlet oxygen production of dioxygen activation on the carbon-supported rare-earth oxide nanocluster and rare-earth single atom catalyst to remove antibiotics. Water Res. 2024, 252, 121184. [Google Scholar] [CrossRef]
- Li, P.; Deng, Y.; Wang, H.; Luo, Y.; Che, Y.; Bian, R.; Gao, R.; Wu, X.; Zhang, Z.; Wu, X. Elucidating the Microenvironment Structure-Activity Relationship of Cu Single-Site Catalysts via Unsaturated N,O-Coordination for Singlet Oxygen Production. Adv. Funct. Mater. 2024, 34, 2407147. [Google Scholar] [CrossRef]
- DuBois, D.B.; Rivera, I.; Liu, Q.; Yu, B.; Singewald, K.; Millhauser, G.L.; Saltikov, C.; Chen, S. Photocatalytic Generation of Singlet Oxygen by Graphitic Carbon Nitride for Antibacterial Applications. Materials 2024, 17, 3787. [Google Scholar] [CrossRef]
- Kuk, S.K.; Ji, S.M.; Kang, S.; Yang, D.S.; Kwon, H.J.; Koo, M.S.; Oh, S.; Lee, H.C. Singlet-oxygen-driven photocatalytic degradation of gaseous formaldehyde and its mechanistic study. Appl. Catal. B 2023, 328, 122463. [Google Scholar] [CrossRef]
- Xie, L.; Wang, P.; Li, Y.; Zhang, D.; Shang, D.; Zheng, W.; Xia, Y.; Zhan, S.; Hu, W. Pauling-type adsorption of O2 induced electrocatalytic singlet oxygen production on N–CuO for organic pollutants degradation. Nat. Commun. 2022, 13, 5560. [Google Scholar] [CrossRef]
- Zhang, J.; Balasubramanian, R.; Yang, X. Novel 3D multi-layered carbon nitride/indium sulfide heterostructure for boosted superoxide anion radical generation and enhanced photocatalysis under visible light. Chem. Eng. J. 2023, 453, 139776. [Google Scholar] [CrossRef]
- Zhu, H.-J.; Yang, Y.-K.; Li, M.-H.; Zou, L.-N.; Zhao, H.-T. Photocatalytic in situ H2O2 production and activation for enhanced ciprofloxacin degradation over CeO2-Co3O4/g-C3N4: Key role of CeO2. Rare Met. 2024, 43, 2695–2707. [Google Scholar] [CrossRef]
- Wang, X.-J.; Yuan, S.-S.; Yang, L.; Dong, Y.; Chen, Y.-M.; Zhang, W.-X.; Chen, C.-X.; Zhang, Q.-T.; Ohno, T. Spatially charge-separated 2D homojunction for photocatalytic hydrogen production. Rare Met. 2023, 42, 3952–3959. [Google Scholar] [CrossRef]
- Yang, L.; Gao, T.; Yuan, S.; Dong, Y.; Chen, Y.; Wang, X.; Chen, C.; Tang, L.; Ohno, T. Spatial charge separated two-dimensional/two-dimensional Cu-In2S3/CdS heterojunction for boosting photocatalytic hydrogen production. J. Colloid Interface Sci. 2023, 652 Pt B, 1503–1511. [Google Scholar] [CrossRef]
- Xu, B.; Jia, L.; Yang, H.; Wang, Y.; Fan, S.-Y.; Yuan, S.-S.; Zhang, Q.-T.; Zhang, M.; Ohno, T. Improved photocatalytic performance of acetaldehyde degradation via crystal plane regulation on truncated octahedral CeO2. Rare Met. 2024, 43, 2026–2038. [Google Scholar] [CrossRef]
- Dai, X.; Zhu, Y.; Xu, X.; Weng, J. Photocatalysis with g-C3N4 Applied to Organic Synthesis. Chin. J. Ogr. Chem. 2017, 37, 577. [Google Scholar] [CrossRef]
- Wu, C.; Wu, S.; Huang, Q.; Sun, K.; Huang, X.; Wang, J.; Yu, B. Potassium-modified carbon nitride photocatalyzed-aminoacylation of N-sulfonyl ketimines. Chin. Chem. Lett. 2025, 36, 110250. [Google Scholar] [CrossRef]
- Yu, W.; Zhang, T.; Zhao, Z. Garland-like intercalated carbon nitride prepared by an oxalic acid-mediated assembly strategy for highly-efficient visible-light-driven photoredox catalysis. Appl. Catal. B 2020, 278, 119342. [Google Scholar] [CrossRef]
- Ma, S.; Zhan, S.; Jia, Y.; Shi, Q.; Zhou, Q. Enhanced disinfection application of Ag-modified g-C3N4 composite under visible light. Appl. Catal. B 2016, 186, 77–87. [Google Scholar] [CrossRef]
- Sun, L.; Du, T.; Hu, C.; Chen, J.; Lu, J.; Lu, Z.; Han, H. Antibacterial Activity of Graphene Oxide/g-C3N4 Composite through Photocatalytic Disinfection under Visible Light. ACS Sustain. Chem. Eng. 2017, 5, 8693–8701. [Google Scholar] [CrossRef]
- Xing, Z.; Guo, J.; Wu, Z.; He, C.; Wang, L.; Bai, M.; Liu, X.; Zhu, B.; Guan, Q.; Cheng, C. Nanomaterials-Enabled Physicochemical Antibacterial Therapeutics: Toward the Antibiotic-Free Disinfections. Small 2023, 19, 2303594. [Google Scholar] [CrossRef]
- Wu, K.; Jin, J.-K.; Liu, X.-Y.; Huang, Y.-L.; Cheng, P.-W.; Xie, M.; Zheng, J.; Lu, W.; Li, D. Thiadiazole-functionalized metal–organic frameworks for photocatalytic C–N and C–C coupling reactions: Tuning the ROS generation efficiencyviacobalt introduction. J. Mater. Chem. C 2022, 10, 11967–11974. [Google Scholar] [CrossRef]
- Liu, H.; Yi, W.-W.; Li, Q.-Q.; Zhao, S.-Y. Visible-light-active benzothiadiazole-based MOFs as efficient ROS generators for the synthesis of benzimidazoles and benzothiazoles. Inorg. Chem. Front. 2024, 11, 5973–5978. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, Y.; Li, D.; Jiang, H.-L. Recent advances in MOF composites for photocatalysis. Chem. Sci. 2025, 16, 13149–13172. [Google Scholar] [CrossRef]
- He, K.; Huang, Z.; Chen, C.; Qiu, C.; Zhong, Y.L.; Zhang, Q. Exploring the Roles of Single Atom in Hydrogen Peroxide Photosynthesis. Nano-Micro Lett. 2023, 16, 23. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Shao, H. What Insights Can the Development of Single-Atom Photocatalysts Provide for Water and Air Disinfection? ACS ES&T Eng. 2022, 2, 1053–1067. [Google Scholar] [CrossRef]
- Zhou, Y.; Qin, F.; Wang, W.; Qin, D.; Liu, X.; Liu, X.; Wang, Z.; Huang, C.; Luo, H.; Hou, C.; et al. Crystallinity modulation and microenvironment engineering synergistically manipulate ROS generation on Ni single-atom photocatalysts. Chem. Eng. J. 2024, 494, 152896. [Google Scholar] [CrossRef]
- Dhakshinamoorthy, A.; Asiri, A.M.; Garcia, H. 2D Metal–Organic Frameworks as Multifunctional Materials in Heterogeneous Catalysis and Electro/Photocatalysis. Adv. Mater. 2019, 31, 1900617. [Google Scholar] [CrossRef]
- Bai, W.; Shi, L.; Li, Z.; Liu, D.; Liang, Y.; Han, B.; Qi, J.; Li, Y. Recent progress on the preparation and application in photocatalysis of 2D MXene-based materials. Mater. Today Energy 2024, 41, 101547. [Google Scholar] [CrossRef]
- Balarabe, B.Y.; Atabaev, T.S. Advancing Photocatalysis: Insights from 2D Materials and Operational Parameters for Organic Pollutants Removal. Adv. Sustain. Syst. 2024, 8, 2400483. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Sundaresan, M.; Yu, Z.-X.; Ferrans, V.J.; Irani, K.; Finkel, T. Requirement for Generation of H2O2 for Platelet-Derived Growth Factor Signal Transduction. Science 1995, 270, 296–299. [Google Scholar] [CrossRef]
- Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80. [Google Scholar] [CrossRef]
- Velo-Gala, I.; Torres-Pinto, A.; Silva, C.G.; Ohtani, B.; Silva, A.M.T.; Faria, J.L. Graphitic carbon nitride photocatalysis: The hydroperoxyl radical role revealed by kinetic modelling. Catal. Sci. Technol. 2021, 11, 7712–7726. [Google Scholar] [CrossRef]
- Shiraishi, Y.; Kanazawa, S.; Sugano, Y.; Tsukamoto, D.; Sakamoto, H.; Ichikawa, S.; Hirai, T. Highly Selective Production of Hydrogen Peroxide on Graphitic Carbon Nitride (g-C3N4) Photocatalyst Activated by Visible Light. ACS Catal. 2014, 4, 774–780. [Google Scholar] [CrossRef]
- Li, S.; Dong, G.; Hailili, R.; Yang, L.; Li, Y.; Wang, F.; Zeng, Y.; Wang, C. Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies. Appl. Catal. B 2016, 190, 26–35. [Google Scholar] [CrossRef]
- Chu, C.; Zhu, Q.; Pan, Z.; Gupta, S.; Huang, D.; Du, Y.; Weon, S.; Wu, Y.; Muhich, C.; Stavitski, E.; et al. Spatially separating redox centers on 2D carbon nitride with cobalt single atom for photocatalytic H2O2 production. Proc. Natl. Acad. Sci. USA 2020, 117, 6376–6382. [Google Scholar] [CrossRef]
- Zhang, Y.-Z.; Liang, C.; Feng, H.-P.; Liu, W. Nickel single atoms anchored on ultrathin carbon nitride for selective hydrogen peroxide generation with enhanced photocatalytic activity. Chem. Eng. J. 2022, 446, 137379. [Google Scholar] [CrossRef]
- Feng, B.; Liu, Y.; Wan, K.; Zu, S.; Pei, Y.; Zhang, X.; Qiao, M.; Li, H.; Zong, B. Tailored Exfoliation of Polymeric Carbon Nitride for Photocatalytic H2O2 Production and CH4 Valorization Mediated by O2 Activation. Angew. Chem. Int. Ed. 2024, 63, e202401884. [Google Scholar] [CrossRef]
- Praus, P. On electronegativity of graphitic carbon nitride. Carbon 2021, 172, 729–732. [Google Scholar] [CrossRef]
- Liu, J.; Fu, W.; Liao, Y.; Fan, J.; Xiang, Q. Recent advances in crystalline carbon nitride for photocatalysis. J. Mater. Sci. Technol. 2021, 91, 224–240. [Google Scholar] [CrossRef]
- Cheng, H.; Cheng, J.; Wang, L.; Xu, H. Reaction Pathways toward Sustainable Photosynthesis of Hydrogen Peroxide by Polymer Photocatalysts. Chem. Mater. 2022, 34, 4259–4273. [Google Scholar] [CrossRef]
- Liu, W.; Che, H.; Liu, B.; Ao, Y. Unveiling the mechanism on photocatalytic singlet oxygen generation over rationally designed carbonylated carbon nitride. J. Mater. Chem. A 2024, 12, 13427–13434. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.H.; Li, Y.; Xia, X.H.; Yang, H.J.; Kim, J.H.; Zhang, W. Silver single atoms and nanoparticles on floatable monolithic photocatalysts for synergistic solar water disinfection. Nat. Commun. 2025, 16, 981. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, C.; Li, Y.; Zhang, X. Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Phys.-Chim. Sin. 2025, 41, 100107. [Google Scholar] [CrossRef]
- Xu, J.; Tan, X.; Huang, Y. Oriented Singlet Oxygen Generation via Molecular Oxygen Activation on O-Doped FeS2 for the Robust Antibiotics Remediation. ACS ES&T Eng. 2025, 5, 1588–1595. [Google Scholar] [CrossRef]
- Yang, J.; Zeng, X.; Tebyetekerwa, M.; Wang, Z.; Bie, C.; Sun, X.; Marriam, I.; Zhang, X. Engineering 2D Photocatalysts for Solar Hydrogen Peroxide Production. Adv. Energy Mater. 2024, 14, 2400740. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, C.; Jiang, Q.; Lyu, P.; Xu, Y. Structurally Locked High-Crystalline Covalent Triazine Frameworks Enable Remarkable Overall Photosynthesis of Hydrogen Peroxide. J. Am. Chem. Soc. 2024, 146, 29943–29954. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-H.; Ge, Z.-M.; Wang, J.; Zhong, D.-C.; Lu, T.-B. Hydrogen-bonded organic frameworks for photocatalytic synthesis of hydrogen peroxide. Nat. Commun. 2025, 16, 2448. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Chen, C.; Yang, Z.; Li, S.; Chu, C.; Chen, B. Simultaneously Tuning Band Structure and Oxygen Reduction Pathway toward High-Efficient Photocatalytic Hydrogen Peroxide Production Using Cyano-Rich Graphitic Carbon Nitride. Adv. Funct. Mater. 2021, 31, 2105731. [Google Scholar] [CrossRef]
- Hou, H.; Zeng, X.; Zhang, X. Production of Hydrogen Peroxide by Photocatalytic Processes. Angew. Chem. Int. Ed. 2020, 59, 17356–17376. [Google Scholar] [CrossRef]
- Huang, M.H.; Naresh, G.; Chen, H.S. Facet-Dependent Electrical, Photocatalytic, and Optical Properties of Semiconductor Crystals and Their Implications for Applications. ACS Appl. Mater. Interfaces 2018, 10, 4–15. [Google Scholar] [CrossRef]
- Dong, Y.; Gao, T.Y.; Yuan, S.S.; Zhu, C.Z.; Yang, L.; Chen, Y.M.; Wang, X.J.; Yin, Y.; Chen, C.X.; Tang, L.; et al. Ultrathin TiO2(B) nanosheets-decorated hollow CoFeP cube as PMS activator for enhanced photocatalytic activity. Appl. Surf. Sci. 2024, 643, 158667. [Google Scholar] [CrossRef]
- Nguyen, T.H.M.; Nguyen, V.C.; Nguyen, T.H.A. Photo-reduced synthesis of a Z-scheme Ag@Fe3O4/g-C3N4 composite for photoreduction of 4-nitrophenol and photocatalytic activity. Braz. J. Chem. Eng. 2025. [Google Scholar] [CrossRef]
- Shenoy, S.; Chuaicham, C.; Sekar, K.; Sasaki, K. Seamless carbon nitride growth on bimetallic oxide for antibiotic residue degradation. Environ. Chem. Lett. 2025, 23, 33–39. [Google Scholar] [CrossRef]
- Wang, L.; Xu, J.; Zhao, Y.; Zhang, Y.; Wang, Y.; Wu, X.; Yan, D. Designing dual Z-scheme S-doped-g-C3N4/In2O3/In2S3 heterojunctions for efficient visible-light photocatalytic multi-pollutant removal. Inorg. Chem. Commun. 2025, 180, 114930. [Google Scholar] [CrossRef]
- Samanta, S.; Yadav, R.; Kumar, A.; Kumar Sinha, A.; Srivastava, R. Surface modified C, O co-doped polymeric g-C3N4 as an efficient photocatalyst for visible light assisted CO2 reduction and H2O2 production. Appl. Catal. B 2019, 259, 118054. [Google Scholar] [CrossRef]
- Zhou, L.; Feng, J.; Qiu, B.; Zhou, Y.; Lei, J.; Xing, M.; Wang, L.; Zhou, Y.; Liu, Y.; Zhang, J. Ultrathin g-C3N4 nanosheet with hierarchical pores and desirable energy band for highly efficient H2O2 production. Appl. Catal. B 2020, 267, 118396. [Google Scholar] [CrossRef]
- Chen, Y.; Yan, X.; Xu, J.; Wang, L. K+, Ni and carbon co-modification promoted two-electron O2 reduction for photocatalytic H2O2 production by crystalline carbon nitride. J. Mater. Chem. A 2021, 9, 24056–24063. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, Y.; Zhang, W.; Peng, Z.; Xie, H.; Wang, Y.; Guo, X.; Zhang, M.; Li, R.; Huang, Y. Template-free preparation of non-metal (B, P, S) doped g-C3N4 tubes with enhanced photocatalytic H2O2 generation. J. Mater. Sci. Technol. 2021, 95, 127–135. [Google Scholar] [CrossRef]
- Liu, L.-L.; Chen, F.; Wu, J.-H.; Ke, M.-K.; Cui, C.; Chen, J.-J.; Yu, H.-Q. Edge electronic vacancy on ultrathin carbon nitride nanosheets anchoring O2 to boost H2O2 photoproduction. Appl. Catal. B 2022, 302, 120845. [Google Scholar] [CrossRef]
- Luo, P.P.; Li, X.Z.; Qu, B.B.; Xue, H.Y.; Yang, Y.H. Solar-driven seawater production H2O2 catalyzed by hydroxyl functionalized crystalline K-doped g-C3N4 under ambient conditions. Appl. Organomet. Chem. 2023, 37, e7264. [Google Scholar] [CrossRef]
- Miao, W.; Wang, Y.; Liu, Y.; Qin, H.; Chu, C.; Mao, S. Persulfate-Induced Three Coordinate Nitrogen (N3C) Vacancies in Defective Carbon Nitride for Enhanced Photocatalytic H2O2 Evolution. Engineering 2023, 25, 214–221. [Google Scholar] [CrossRef]
- You, Q.; Zhang, C.; Cao, M.; Wang, B.; Huang, J.; Wang, Y.; Deng, S.; Yu, G. Defects controlling, elements doping, and crystallinity improving triple-strategy modified carbon nitride for efficient photocatalytic diclofenac degradation and H2O2 production. Appl. Catal. B 2023, 321, 121941. [Google Scholar] [CrossRef]
- Yuan, J.; Tian, N.; Zhu, Z.; Yu, W.; Li, M.; Zhang, Y.; Huang, H. P, K doped crystalline g-C3N4 grafted with cyano groups for efficient visible-light-driven H2O2 evolution. Chem. Eng. J. 2023, 467, 143379. [Google Scholar] [CrossRef]
- Kofuji, Y.; Ohkita, S.; Shiraishi, Y.; Sakamoto, H.; Tanaka, S.; Ichikawa, S.; Hirai, T. Graphitic Carbon Nitride Doped with Biphenyl Diimide: Efficient Photocatalyst for Hydrogen Peroxide Production from Water and Molecular Oxygen by Sunlight. ACS Catal. 2016, 6, 7021–7029. [Google Scholar] [CrossRef]
- Yang, Y.; Zeng, G.; Huang, D.; Zhang, C.; He, D.; Zhou, C.; Wang, W.; Xiong, W.; Li, X.; Li, B.; et al. Molecular engineering of polymeric carbon nitride for highly efficient photocatalytic oxytetracycline degradation and H2O2 production. Appl. Catal. B 2020, 272, 118970. [Google Scholar] [CrossRef]
- Luo, H.; Shan, T.; Zhou, J.; Huang, L.; Chen, L.; Sa, R.; Yamauchi, Y.; You, J.; Asakura, Y.; Yuan, Z.; et al. Controlled synthesis of hollow carbon ring incorporated g-C3N4 tubes for boosting photocatalytic H2O2 production. Appl. Catal. B 2023, 337, 122933. [Google Scholar] [CrossRef]
- Xia, Y.; Zhu, B.; Qin, X.; Ho, W.; Yu, J. Zinc porphyrin/g-C3N4 S-scheme photocatalyst for efficient H2O2 production. Chem. Eng. J. 2023, 467, 143528. [Google Scholar] [CrossRef]
- Xue, F.; Si, Y.; Wang, M.; Liu, M.; Guo, L. Toward efficient photocatalytic pure water splitting for simultaneous H2 and H2O2 production. Nano Energy 2019, 62, 823–831. [Google Scholar] [CrossRef]
- Yang, Y.; Zeng, Z.; Zeng, G.; Huang, D.; Xiao, R.; Zhang, C.; Zhou, C.; Xiong, W.; Wang, W.; Cheng, M.; et al. Ti3C2 Mxene/porous g-C3N4 interfacial Schottky junction for boosting spatial charge separation in photocatalytic H2O2 production. Appl. Catal. B 2019, 258, 117956. [Google Scholar] [CrossRef]
- Chu, C.; Miao, W.; Li, Q.; Wang, D.; Liu, Y.; Mao, S. Highly efficient photocatalytic H2O2 production with cyano and SnO2 co-modified g-C3N4. Chem. Eng. J. 2022, 428, 132531. [Google Scholar] [CrossRef]
- Xue, F.; Si, Y.; Cheng, C.; Fu, W.; Chen, X.; Shen, S.; Wang, L.; Liu, M. Electron transfer via homogeneous phosphorus bridges enabling boosted photocatalytic generation of H2 and H2O2 from pure water with stoichiometric ratio. Nano Energy 2022, 103, 107799. [Google Scholar] [CrossRef]
- Yang, T.; Shao, Y.; Hu, J.; Qu, J.; Yang, X.; Yang, F.; Ming Li, C. Ultrathin layered 2D/2D heterojunction of ReS2/high-crystalline g-C3N4 for significantly improved photocatalytic hydrogen evolution. Chem. Eng. J. 2022, 448, 137613. [Google Scholar] [CrossRef]
- Yu, W.; Zhu, Z.; Hu, C.; Lin, S.; Wang, Y.; Wang, C.; Tian, N.; Zhang, Y.; Huang, H. Point-to-face Z-scheme junction Cd0.6Zn0.4S/g-C3N4 with a robust internal electric field for high-efficiency H2O2 production. J. Mater. Chem. A 2023, 11, 6384–6393. [Google Scholar] [CrossRef]
- Guan, R.; Li, J.; Zhang, J.; Zhao, Z.; Wang, D.; Zhai, H.; Sun, D. Photocatalytic Performance and Mechanistic Research of ZnO/g-C3N4 on Degradation of Methyl Orange. ACS Omega 2019, 4, 20742–20747. [Google Scholar] [CrossRef]
- Teng, Z.; Zhang, Q.; Yang, H.; Kato, K.; Yang, W.; Lu, Y.-R.; Liu, S.; Wang, C.; Yamakata, A.; Su, C.; et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat. Catal. 2021, 4, 374–384. [Google Scholar] [CrossRef]
- Zhang, X.; Su, H.; Cui, P.; Cao, Y.; Teng, Z.; Zhang, Q.; Wang, Y.; Feng, Y.; Feng, R.; Hou, J.; et al. Developing Ni single-atom sites in carbon nitride for efficient photocatalytic H2O2 production. Nat. Commun. 2023, 14, 7115. [Google Scholar] [CrossRef] [PubMed]
- Brame, J.; Long, M.; Li, Q.; Alvarez, P. Trading oxidation power for efficiency: Differential inhibition of photo-generated hydroxyl radicals versus singlet oxygen. Water Res. 2014, 60, 259–266. [Google Scholar] [CrossRef]
- Zhang, D.P.; Wang, P.F.; Wang, J.H.; Li, Y.X.; Xia, Y.G.; Zhan, S.H. Tailoring of electronic and surface structures boosts exciton-triggering photocatalysis for singlet oxygen generation. Proc. Natl. Acad. Sci. USA 2021, 118, e2114729118. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, W.; Jin, J.; Gan, Y.; Zhang, S. Oxygen-vacancy-mediated energy transfer for singlet oxygen generation by diketone-anchored MIL-125. Appl. Catal. B 2021, 292, 120197. [Google Scholar] [CrossRef]
- Tavakkoli Yaraki, M.; Liu, B.; Tan, Y.N. Emerging Strategies in Enhancing Singlet Oxygen Generation of Nano-Photosensitizers Toward Advanced Phototherapy. Nano-Micro Lett. 2022, 14, 123. [Google Scholar] [CrossRef]
- Xu, L.; Li, L.; Yu, L.; Yu, J.C. Efficient generation of singlet oxygen on modified g-C3N4 photocatalyst for preferential oxidation of targeted organic pollutants. Chem. Eng. J. 2022, 431, 134241. [Google Scholar] [CrossRef]
- Suleman, S.; Zhang, Y.; Qian, Y.; Zhang, J.; Lin, Z.; Metin, Ö.; Meng, Z.; Jiang, H.L. Turning on Singlet Oxygen Generation by Outer-Sphere Microenvironment Modulation in Porphyrinic Covalent Organic Frameworks for Photocatalytic Oxidation. Angew. Chem. Int. Ed. 2023, 63, e202314988. [Google Scholar] [CrossRef]
- Tu, S.; Liu, A.; Zhang, H.; Sun, L.; Luo, M.; Huang, S.; Huang, T.; Peng, H. Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chin. Chem. Lett. 2024, 35, 109761. [Google Scholar] [CrossRef]
- Wei, S.; Zhang, J.; Zhang, L.; Wang, Y.; Sun, H.; Hua, X.; Guo, Z.; Dong, D. Efficient generation of singlet oxygen for photocatalytic degradation of antibiotics: Synergistic effects of Fe spin state reduction and energy transfer. Appl. Catal. B 2024, 358, 124406. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, Y.; Wang, C.; He, Y.; Lebedev, A.T.; Zhang, Y. Singlet oxygen presenting a higher detoxification potential on enrofloxacin than sulfate and hydroxyl radicals. J. Hazard. Mater. 2025, 487, 137146. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, X.; Xue, W.; Gu, B.; Han, P.; Yao, C.; Wei, H.; Sun, C. Surface hydroxyl groups mediated g-C3N4-Modified perovskite catalytic ozone oxidation interface activation and silicon salt resistance mechanism. Chem. Eng. J. 2024, 490, 151302. [Google Scholar] [CrossRef]
- Wang, R.-Z.; Lin, Z.; Wang, Y.-Q.; Zhang, K.-N.; Zhang, G.-H.; Zhang, J.; Mao, S.S.; Shen, S.-H. A direct polymeric carbon nitride/tungsten oxide Z-scheme heterostructure for efficient photocatalytic hydrogen generation via reforming of plastics into value-added chemicals. Rare Met. 2024, 43, 3771–3783. [Google Scholar] [CrossRef]
- Chen, L.; He, X.-X.; Gong, Z.-H.; Li, J.-L.; Liao, Y.; Li, X.-T.; Ma, J. Significantly improved photocatalysis-self-Fenton degradation performance over g-C3N4 via promoting Fe(III)/Fe(II) cycle. Rare Met. 2022, 41, 2429–2438. [Google Scholar] [CrossRef]
- Li, Z.; Meng, X.; Zhang, Z. Fabrication of surface hydroxyl modified g-C3N4 with enhanced photocatalytic oxidation activity. Catal. Sci. Technol. 2019, 9, 3979–3993. [Google Scholar] [CrossRef]
- Li, J.; Yan, P.; Li, K.; Cen, W.; Yu, X.; Yuan, S.; Chu, Y.; Wang, Z. Generation and transformation of ROS on g-C3N4 for efficient photocatalytic NO removal: A combined in situ DRIFTS and DFT investigation. Chin. J. Catal. 2018, 39, 1695–1703. [Google Scholar] [CrossRef]
- Camussi, I.; Mannucci, B.; Speltini, A.; Profumo, A.; Milanese, C.; Malavasi, L.; Quadrelli, P. g-C3N4—Singlet Oxygen Made Easy for Organic Synthesis: Scope and Limitations. ACS Sustain. Chem. Eng. 2019, 7, 8176–8182. [Google Scholar] [CrossRef]
- Quintana, M.A.; Rodriguez-Padrón, D.; Jiménez-Calvo, P.; Calero, M.; Solís, R.R.; Muñoz-Batista, M.J. Selective production of aldehydes: From traditional alternatives to alcohol photo-oxidation using g-C3N4-based materials. Mater. Adv. 2025, 6, 3760–3784. [Google Scholar] [CrossRef]
- Mani, P.; Shenoy, S.; Sagayaraj, P.J.J.; Agamendran, N.; Son, S.; Bernaurdshaw, N.; Kim, H.-i.; Sekar, K. Scaling up of photocatalytic systems for large-scale hydrogen generation. Appl. Phys. Rev. 2025, 12, 011303. [Google Scholar] [CrossRef]
- Patra, D.; Mitra, A.; Paliwal, K.S.; Roy, A.; Chatterjee, A.; Basu, A.; Sadhukhan, A.; Mahalingam, V. Bismuth-Incorporated g-C3N4 as an Efficient Catalyst for Light-Assisted CO2 Fixation at Room Temperature under Atmospheric Pressure. ACS Appl. Energy Mater. 2025, 8, 10110–10125. [Google Scholar] [CrossRef]
- Li, M.; Liu, D.; Chen, X.; Yin, Z.; Shen, H.; Aiello, A.; McKenzie, K.R., Jr.; Jiang, N.; Li, X.; Wagner, M.J.; et al. Radical-Driven Decomposition of Graphitic Carbon Nitride Nanosheets: Light Exposure Matters. Environ. Sci. Technol. 2021, 55, 12414–12423. [Google Scholar] [CrossRef]
Pathway | Overall Reaction | Pathway Type | Feasibility on PCN | Selectivity |
---|---|---|---|---|
I. Stepwise reduction via •O2−/HO2· | O2 + e− → •O2− •O2− + H+ → HO2· HO2· + e− + H+ → H2O2 | Radical-mediated, stepwise | High (common under aerobic conditions) | Moderate (possible ROS side reactions) |
II. Direct 2e− O2 reduction | O2 + 2H+ + 2e− → H2O2 | Non-radical, concerted 2e− transfer | Moderate to High (requires PCET facilitation) | High (less radical leakage) |
III. Water oxidation | 2 H2O + 2 h+ → H2O2 + 2 H+ | Oxidative, uphill reaction | Low (requires oxidation co-catalysts) | Low (competing O2 evolution) |
IV. •OH coupling | H2O + h+ → •OH + H+ •OH + •OH → H2O2 | Radical coupling, oxidative | Low (requires high •OH concentration) | Low (non-selective, degradation-prone) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Li, X.; Chen, Y.; Zhang, X.; Gao, B.; Ma, M.; Yang, H.; Yuan, S.; Zhang, Q. Strategies for Regulating Reactive Oxygen Species in Carbon Nitride-Based Photocatalysis. Molecules 2025, 30, 3586. https://doi.org/10.3390/molecules30173586
Liu Q, Li X, Chen Y, Zhang X, Gao B, Ma M, Yang H, Yuan S, Zhang Q. Strategies for Regulating Reactive Oxygen Species in Carbon Nitride-Based Photocatalysis. Molecules. 2025; 30(17):3586. https://doi.org/10.3390/molecules30173586
Chicago/Turabian StyleLiu, Qingyun, Xiaoqiang Li, Yuxiao Chen, Xinhuan Zhang, Bailin Gao, Manqiu Ma, Hui Yang, Saisai Yuan, and Qitao Zhang. 2025. "Strategies for Regulating Reactive Oxygen Species in Carbon Nitride-Based Photocatalysis" Molecules 30, no. 17: 3586. https://doi.org/10.3390/molecules30173586
APA StyleLiu, Q., Li, X., Chen, Y., Zhang, X., Gao, B., Ma, M., Yang, H., Yuan, S., & Zhang, Q. (2025). Strategies for Regulating Reactive Oxygen Species in Carbon Nitride-Based Photocatalysis. Molecules, 30(17), 3586. https://doi.org/10.3390/molecules30173586