Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,217)

Search Parameters:
Keywords = metal excess

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2315 KiB  
Article
A Portable and Thermally Degradable Hydrogel Sensor Based on Eu-Doped Carbon Dots for Visual and Ultrasensitive Detection of Ferric Ion
by Hongyuan Zhang, Qian Zhang, Juan Tang, Huanxin Yang, Xiaona Ji, Jieqiong Wang and Ce Han
Molecules 2025, 30(15), 3280; https://doi.org/10.3390/molecules30153280 - 5 Aug 2025
Abstract
Degradable fluorescent sensors present a promising portable approach for heavy metal ion detection, aiming to prevent secondary environmental pollution. Additionally, the excessive intake of ferric ions (Fe3+), an essential trace element for human health, poses critical health risks that urgently require [...] Read more.
Degradable fluorescent sensors present a promising portable approach for heavy metal ion detection, aiming to prevent secondary environmental pollution. Additionally, the excessive intake of ferric ions (Fe3+), an essential trace element for human health, poses critical health risks that urgently require effective monitoring. In this study, we developed a thermally degradable fluorescent hydrogel sensor (Eu-CDs@DPPG) based on europium-doped carbon dots (Eu-CDs). The Eu-CDs, synthesized via a hydrothermal method, exhibited selective fluorescence quenching by Fe3+ through the inner filter effect (IFE). Embedding Eu-CDs into the hydrogel significantly enhanced their stability and dispersibility in aqueous environments, effectively resolving issues related to aggregation and matrix interference in traditional sensing methods. The developed sensor demonstrated a broad linear detection range (0–2.5 µM), an extremely low detection limit (1.25 nM), and rapid response (<40 s). Furthermore, a smartphone-assisted LAB color analysis allowed portable, visual quantification of Fe3+ with a practical LOD of 6.588 nM. Importantly, the hydrogel was thermally degradable at 80 °C, thus minimizing environmental impact. The sensor’s practical applicability was validated by accurately detecting Fe3+ in spinach and human urine samples, achieving recoveries of 98.7–108.0% with low relative standard deviations. This work provides an efficient, portable, and sustainable sensing platform that overcomes the limitations inherent in conventional analytical methods. Full article
(This article belongs to the Section Photochemistry)
Show Figures

Figure 1

25 pages, 816 KiB  
Article
Bioactive Compounds and Antioxidant Activity of Boletus edulis, Imleria badia, Leccinum scabrum in the Context of Environmental Conditions and Heavy Metals Bioaccumulation
by Zofia Sotek, Katarzyna Malinowska, Małgorzata Stasińska and Ireneusz Ochmian
Molecules 2025, 30(15), 3277; https://doi.org/10.3390/molecules30153277 - 5 Aug 2025
Abstract
Wild edible mushrooms are increasingly recognised for their nutritional and therapeutic potential, owing to their richness in bioactive compounds and antioxidant properties. This study assessed the chemical composition, antioxidant capacity, and bioaccumulation of heavy metals (Cd, Pb, Ni) in Boletus edulis, Imleria [...] Read more.
Wild edible mushrooms are increasingly recognised for their nutritional and therapeutic potential, owing to their richness in bioactive compounds and antioxidant properties. This study assessed the chemical composition, antioxidant capacity, and bioaccumulation of heavy metals (Cd, Pb, Ni) in Boletus edulis, Imleria badia, and Leccinum scabrum collected from two forested regions of north-western Poland differing in anthropogenic influence and soil characteristics. The analysis encompassed structural polysaccharides (β- and α-glucans, chitin), carotenoids, L-ascorbic acid, phenolic and organic acids. B. edulis exhibited the highest β-glucan and lycopene contents, but also the greatest cadmium accumulation. I. badia was distinguished by elevated ascorbic and citric acid levels and the strongest DPPH radical scavenging activity, while L. scabrum showed the highest ABTS and FRAP antioxidant capacities and accumulated quinic acid and catechin. Principal component analysis indicated strong correlations between antioxidant activity and phenolic acids, while cadmium levels were inversely associated with antioxidant potential and positively correlated with chitin. Although all metal concentrations remained within EU food safety limits, B. edulis showed consistent cadmium bioaccumulation. From a practical perspective, the results highlight the importance of species selection and sourcing location when considering wild mushrooms for consumption or processing, particularly in the context of nutritional value and contaminant load. Importantly, regular or excessive consumption of B. edulis may result in exceeding the tolerable weekly intake (TWI) levels for cadmium and nickel, which warrants particular attention from a food safety perspective. These findings underscore the influence of species-specific traits and environmental conditions on mushroom biochemical profiles and support their potential as functional foods, provided that metal contents are adequately monitored. Full article
Show Figures

Figure 1

19 pages, 5404 KiB  
Article
Combined Effects of Flood Disturbances and Nutrient Enrichment Prompt Aquatic Vegetation Expansion: Sediment Evidence from a Floodplain Lake
by Zhuoxuan Gu, Yan Li, Jingxiang Li, Zixin Liu, Yingying Chen, Yajing Wang, Erik Jeppesen and Xuhui Dong
Plants 2025, 14(15), 2381; https://doi.org/10.3390/plants14152381 - 2 Aug 2025
Viewed by 271
Abstract
Aquatic macrophytes are a vital component of lake ecosystems, profoundly influencing ecosystem structure and function. Under future scenarios of more frequent extreme floods and intensified lake eutrophication, aquatic macrophytes will face increasing challenges. Therefore, understanding aquatic macrophyte responses to flood disturbances and nutrient [...] Read more.
Aquatic macrophytes are a vital component of lake ecosystems, profoundly influencing ecosystem structure and function. Under future scenarios of more frequent extreme floods and intensified lake eutrophication, aquatic macrophytes will face increasing challenges. Therefore, understanding aquatic macrophyte responses to flood disturbances and nutrient enrichment is crucial for predicting future vegetation dynamics in lake ecosystems. This study focuses on Huangmaotan Lake, a Yangtze River floodplain lake, where we reconstructed 200-year successional trajectories of macrophyte communities and their driving mechanisms. With a multiproxy approach we analyzed a well-dated sediment core incorporating plant macrofossils, grain size, nutrient elements, heavy metals, and historical flood records from the watershed. The results demonstrate a significant shift in the macrophyte community, from species that existed before 1914 to species that existed by 2020. Unlike the widespread macrophyte degradation seen in most regional lakes, this lake has maintained clear-water plant dominance and experienced continuous vegetation expansion over the past 50 years. We attribute this to the interrelated effects of floods and the enrichment of ecosystems with nutrients. Specifically, our findings suggest that nutrient enrichment can mitigate the stress effects of floods on aquatic macrophytes, while flood disturbances help reduce excess nutrient concentrations in the water column. These findings offer applicable insights for aquatic vegetation restoration in the Yangtze River floodplain and other comparable lake systems worldwide. Full article
(This article belongs to the Special Issue Aquatic Plants and Wetland)
Show Figures

Figure 1

15 pages, 860 KiB  
Article
Classification of Agricultural Soils in Manica and Sussundenga (Mozambique)
by Mário J. S. L. Pereira, João M. M. Leitão and Joaquim Esteves da Silva
Environments 2025, 12(8), 265; https://doi.org/10.3390/environments12080265 - 31 Jul 2025
Viewed by 224
Abstract
Mozambique soils are known for having an unbalanced agronomic and environmental composition that results in poor agricultural production yields. However, agriculture is the main economic activity of Mozambique, and soils must be characterised for their elemental deficiencies and/or excesses. This paper sampled nine [...] Read more.
Mozambique soils are known for having an unbalanced agronomic and environmental composition that results in poor agricultural production yields. However, agriculture is the main economic activity of Mozambique, and soils must be characterised for their elemental deficiencies and/or excesses. This paper sampled nine farms from the Manica and Sussundenga districts (Manica province) in three campaigns in 2021/2022, 2022/2023, and 2023/2024 (before and after the rainy seasons). They were subjected to a physical–chemical analysis to assess their quality from the fertility and environmental contamination point of view. Attending to the physical–chemical properties analysed, and for all the soils and sampling campaigns, a low concentration below the limit of detection for B of <0.2 mg/Kg for the majority of soils and a low concentration of Al < 0.025 mg/Kg for all the soils were obtained. Also, higher concentrations for the majority of soils for the Ca between 270 and 1634 mg/Kg, for the Mg between 41 and 601 mg/Kg, for the K between 17 and 406 mg/Kg, for the Mn between 13.6 and 522 mg/Kg, for the Fe between 66.3 and 243 mg/Kg, and for the P between <20 and 132 mg/Kg were estimated. In terms of texture and for the sand, a high percentage between 6.1 and 79% was found. In terms of metal concentrations and for all the soils of the Sussundenga district and sampling campaigns, a concentration above the reference value concentration for the Cr (76–1400 mg/Kg) and a concentration below the reference value concentration for the Pb (5–19 mg/Kg), Ba (13–120 mg/Kg) and for the Zn (10–61 mg/Kg) were evaluated. A multivariate data analysis methodology was used based on cluster and discriminant analysis. The analysis of twenty-three physical–chemical variables of the soils suggested four clusters of soils characterised by deficiencies and excess elements that must be corrected to improve the yield and quality of agricultural production. Moreover, the multivariate analysis of the metal composition of soil samples from the second and third campaigns, before and after the rainy season, suggested five clusters with a pristine composition and different metal pollutant compositions and concentrations. The information obtained in this study allows for the scientific comprehension of agricultural soil quality, which is crucial for designing agronomic and environmental corrective measures to improve food quality and quantity in the Manica and Sussundenga districts and ensure environmental, social, and economic sustainability. Full article
Show Figures

Figure 1

22 pages, 5743 KiB  
Article
Effect of Grain Boundary Characteristics on Mechanical Properties and Irradiation Response in 3C-SiC: A Molecular Dynamics Simulation Study
by Wenying Liu, Fugen Deng, Jiajie Yu, Lin Chen, Yuyang Zhou, Yulu Zhou and Yifang Ouyang
Materials 2025, 18(15), 3545; https://doi.org/10.3390/ma18153545 - 29 Jul 2025
Viewed by 226
Abstract
Molecular dynamics (MD) simulations have been performed on the energetics, mechanical properties, and irradiation response of seventy-three 3C-SiC symmetric tilt grain boundaries (STGBs) with three tilt axes (<100>, <110> and <111>). The effect of GB characteristics on the STGB properties has been investigated. [...] Read more.
Molecular dynamics (MD) simulations have been performed on the energetics, mechanical properties, and irradiation response of seventy-three 3C-SiC symmetric tilt grain boundaries (STGBs) with three tilt axes (<100>, <110> and <111>). The effect of GB characteristics on the STGB properties has been investigated. The GB energy is positively and linearly correlated with the excess volume, but the linearity in SiC is not as good as in metals, which stems from the inhomogeneous structural relaxation near GBs induced by orientation-sensitive covalent bonding. For <110>STGBs, the shear strength exhibits symmetry with respect to the misorientation angle of 90°, which is consistent with ab initio calculations for Al in similar shear orientations. Cascades are performed with 8 keV silicon as the primary knock-on atom (PKA). No direct correlation is found between the sink efficiency of GBs for defects and GB characteristics, which comes from the complexity of the diatomic system during the recovery phase. For GBs with smaller values of Σ, the GBs exhibit a weaker blocking effect on the penetration of irradiated defects, resulting in a lower number of defects in GBs and a higher number of total surviving defects. In particular, it is seen that the percentage decrease in tensile strength after irradiation is positively correlated with the Σ value. Taken together, these results help to elucidate the impact of GB behavior on the mechanical properties of as well as the primary irradiation damage in SiC and provide a reference for creating improved materials through GB engineering. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

18 pages, 2761 KiB  
Article
Dual-Functioned Magnesium-Enriched Biochar Hydrogels for Phosphate Recovery and Slow-Release Nutrient Delivery
by Nur Maisarah Mohamad Sarbani, Hiroyuki Harada, Mitsuru Aoyagi and Endar Hidayat
Water 2025, 17(15), 2235; https://doi.org/10.3390/w17152235 - 27 Jul 2025
Viewed by 259
Abstract
Excessive phosphate from agriculture and industry has led to widespread eutrophication, posing a serious environmental threat. To address this issue, metal-modified biochars have emerged as promising adsorbents due to their high affinity for phosphate ions. This study investigates the application of two magnesium-modified [...] Read more.
Excessive phosphate from agriculture and industry has led to widespread eutrophication, posing a serious environmental threat. To address this issue, metal-modified biochars have emerged as promising adsorbents due to their high affinity for phosphate ions. This study investigates the application of two magnesium-modified biochar hydrogels denoted as magnesium–bamboo biochar hydrogel (Mg-BBH) and magnesium–pulp biochar hydrogel (Mg-PBH) for phosphate recovery from aqueous solutions, with an additional aim as slow-release fertilizers. The adsorbents were synthesized by impregnating Mg-modified biochars into sodium-alginate-based hydrogel. The influence of initial phosphate concentration, contact time, and temperature were investigated to determine optimal adsorption conditions. Both adsorbents exhibited excellent adsorption performance, with maximum capacities of 309.96 mg PO4/g (Mg-BBH) and 234.69 mg PO4/g (Mg-PBH). Moreover, the adsorption performance of the adsorbents was greatly influenced by the magnesium content. The adsorption process followed the Temkin isotherm and pseudo-second-order kinetics, suggesting that the adsorption energy decreases proportionally with surface coverage and the phosphate uptake was governed by chemisorption. Thermodynamic study confirmed the process was spontaneous and endothermic at 40 °C. A slow-release study further demonstrated a great release of phosphate in soil over time. These findings highlight the dual functionality of Mg-BBH and Mg-PBH as effective materials for both phosphate recovery and controlled nutrient delivery, contributing to sustainable phosphate management. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

18 pages, 1330 KiB  
Review
Metallothionein and Other Factors Influencing Cadmium-Induced Kidney Dysfunction: Review and Commentary
by Gunnar F. Nordberg and Monica Nordberg
Biomolecules 2025, 15(8), 1083; https://doi.org/10.3390/biom15081083 - 26 Jul 2025
Viewed by 297
Abstract
Cadmium is widely recognized as an important environmental toxicant that may give rise to kidney dysfunction, bone disease, and cancer in humans and animals. Kidney dysfunction occurs at very low exposures and is often considered as the most sensitive or critical effect. Cadmium [...] Read more.
Cadmium is widely recognized as an important environmental toxicant that may give rise to kidney dysfunction, bone disease, and cancer in humans and animals. Kidney dysfunction occurs at very low exposures and is often considered as the most sensitive or critical effect. Cadmium exposures of concern occur in many countries. In low- and middle-income countries with small-scale mining, excessive exposure to cadmium and other metals occurs in occupational and environmental settings. This is of particular importance in view of the growing demand for metals in global climate change mitigation. Since the 1970s, the present authors have contributed evidence concerning the role of metallothionein and other factors in influencing the toxicokinetics and toxicity of cadmium, particularly as it relates to the development of adverse effects on kidneys in humans and animals. The findings gave a background to the development of biomarkers employed in epidemiological studies, demonstrating the important role of metallothionein in protection against cadmium-induced kidney dysfunction in humans. Studies in cadmium-exposed population groups demonstrated how biomarkers of kidney dysfunction changed during 8 years after drastic lowering of environmental cadmium exposure. Other epidemiological studies showed the impact of a good zinc status in lowering the prevalence of cadmium-related kidney dysfunction. Increased susceptibility to Cd-induced kidney dysfunction was shown in a population with high exposure to inorganic arsenic when compared with a group with low such exposure. Several national and international organizations have used part of the reviewed information, but the metallothionein-related biomarkers and the interaction effects have not been fully considered. We hope that these data sets will also be included and improve risk assessments and preventive measures. Full article
(This article belongs to the Special Issue Current Advances of Metal Complexes for Biomedical Applications)
Show Figures

Figure 1

37 pages, 3768 KiB  
Review
Mechanochemical Preparation of Biomass-Derived Porous Carbons
by Jerzy Choma, Barbara Szczęśniak and Mietek Jaroniec
Molecules 2025, 30(15), 3125; https://doi.org/10.3390/molecules30153125 - 25 Jul 2025
Viewed by 400
Abstract
Conventional methods for the synthesis of porous carbons are typically time- and energy-consuming and often contribute to the excessive accumulation of waste solvents. An alternative approach is to employ environmentally friendly procedures, such as mechanochemical synthesis, which holds great potential for large-scale production [...] Read more.
Conventional methods for the synthesis of porous carbons are typically time- and energy-consuming and often contribute to the excessive accumulation of waste solvents. An alternative approach is to employ environmentally friendly procedures, such as mechanochemical synthesis, which holds great potential for large-scale production of advanced carbon-based materials in coming years. This review covers mechanochemical syntheses of highly porous carbons, with a particular focus on new adsorbents and catalysts that can be obtained from biomass. Mechanochemically assisted methods are well suited for producing highly porous carbons (e.g., ordered mesoporous carbons, hierarchical porous carbons, porous carbon fibers, and carbon–metal composites) from tannins, lignin, cellulose, coconut shells, nutshells, bamboo waste, dried flowers, and many other low-cost biomass wastes. Most mechanochemically prepared porous carbons are proposed for applications related to adsorption, catalysis, and energy storage. This review aims to offer researchers insights into the potential utilization of biowastes, facilitating the development of cost-effective strategies for the production of porous carbons that meet industrial demands. Full article
(This article belongs to the Special Issue New Insights into Porous Materials in Adsorption and Catalysis)
Show Figures

Graphical abstract

19 pages, 2173 KiB  
Article
The Effect of Slow-Release Fertilizer on the Growth of Garlic Sprouts and the Soil Environment
by Chunxiao Han, Zhizhi Zhang, Renlong Liu, Changyuan Tao and Xing Fan
Appl. Sci. 2025, 15(15), 8216; https://doi.org/10.3390/app15158216 - 24 Jul 2025
Viewed by 354
Abstract
To address the issue of excessive chemical fertilizer use in agricultural production, this study conducted a pot experiment with four treatments: CK (no fertilization), T1 (the application of potassium magnesium sulfate fertilizer), T2 (the application of slow-release fertilizer equal to T1), and T3 [...] Read more.
To address the issue of excessive chemical fertilizer use in agricultural production, this study conducted a pot experiment with four treatments: CK (no fertilization), T1 (the application of potassium magnesium sulfate fertilizer), T2 (the application of slow-release fertilizer equal to T1), and T3 (the application of slow-release fertilizer with the same fertility as T1). The effects of these treatments on garlic seedling yield, growth quality, chlorophyll content, photosynthetic characteristics, and the soil environment were investigated to evaluate the feasibility of replacing conventional fertilizers with slow-release formulations. The results showed that compared with CK, all three fertilized treatments (T1, T2, and T3) significantly increased the plant heights and stem diameters of the garlic sprouts (p < 0.05). Plant height increased by 14.85%, 17.81%, and 27.75%, while stem diameter increased by 9.36%, 8.83%, and 13.96%, respectively. Additionally, the chlorophyll content increased by 4.34%, 7.22%, and 8.05% across T1, T2, and T3, respectively. Among the treatments, T3 exhibited the best overall growth performance. Compared with those in the CK group, the contents of soluble sugars, soluble proteins, free amino acids, vitamin C, and allicin increased by 64.74%, 112.17%, 126.82%, 36.15%, and 45.43%, respectively. Furthermore, soil organic matter, available potassium, magnesium, and phosphorus increased by 109.02%, 886.25%, 91.65%, and 103.14%, respectively. The principal component analysis indicated that soil pH and exchangeable magnesium were representative indicators reflecting the differences in the soil’s chemical properties under different fertilization treatments. Compared with the CK group, the metal contents in the T1 group slightly increased, while those in T2 and T3 generally decreased, suggesting that the application of slow-release fertilizer exerts a certain remediation effect on soils contaminated with heavy metals. This may be attributed to the chemical precipitation and ion exchange capacities of phosphogypsum, as well as the high adsorption and cation exchange capacity of bentonite, which help reduce the leaching of soil metal ions. In summary, slow-release fertilizers not only promote garlic sprout growth but also enhance soil quality by regulating its chemical properties. Full article
(This article belongs to the Section Ecology Science and Engineering)
Show Figures

Figure 1

17 pages, 3437 KiB  
Article
Effects of Heavy-Metal-Sludge Sintered Aggregates on the Mechanical Properties of Ultra-High-Strength Concrete
by Weijun Zhong, Sheng Wang, Yue Chen, Nan Ye, Kai Shu, Rongnan Dai and Mingfang Ba
Materials 2025, 18(14), 3422; https://doi.org/10.3390/ma18143422 - 21 Jul 2025
Viewed by 214
Abstract
To investigate the effects of heavy-metal-sludge sintered aggregates on the workability, mechanical properties, and fracture toughness of ultra-high-strength concrete (UHSC), this study systematically evaluated the influence of different aggregate replacement ratios and particle gradations on the fluidity, flexural strength, compressive strength, and fracture [...] Read more.
To investigate the effects of heavy-metal-sludge sintered aggregates on the workability, mechanical properties, and fracture toughness of ultra-high-strength concrete (UHSC), this study systematically evaluated the influence of different aggregate replacement ratios and particle gradations on the fluidity, flexural strength, compressive strength, and fracture energy of UHSC. Microstructural characterization techniques including SEM, XRD, TG, and FTIR were employed to analyze the hydration mechanism and interfacial transition zone evolution. The results demonstrated the following: Fluidity continuously improved with the increase in the sintered aggregate replacement ratio, with coarse aggregates exhibiting the most significant enhancement due to the “ball-bearing effect” and paste enrichment. The mechanical properties followed a trend of an initial increase followed by a decrease, peaking at 15–20% replacement ratio, at which flexural strength, compressive strength, and fracture energy were optimally enhanced; excessive replacement led to strength reduction owing to skeletal structure weakening, with coarse aggregates providing superior improvement. Microstructural analysis revealed that the sintered aggregates accelerated hydration reactions, promoting the formation of C-S-H gel and Ca(OH)2, thereby densifying the ITZ. This study identified 15–20% of coarse sintered aggregates as the optimal replacement ratio, which synergistically improved the workability, mechanical properties, and fracture toughness of UHSC. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

18 pages, 1657 KiB  
Review
Alkaline Amino Acids for Salt Reduction in Surimi: A Review
by Tong Shi, Guxia Wang, Yu Xie, Wengang Jin, Xin Wang, Mengzhe Li, Yuanxiu Liu and Li Yuan
Foods 2025, 14(14), 2545; https://doi.org/10.3390/foods14142545 - 21 Jul 2025
Viewed by 361
Abstract
Surimi products are popular due to their high protein and low fat content. However, traditional processing methods rely on high concentrations of salt (2–3%) to maintain texture and stability, contributing to excessive sodium intake. As global health trends advance, developing green and low-salt [...] Read more.
Surimi products are popular due to their high protein and low fat content. However, traditional processing methods rely on high concentrations of salt (2–3%) to maintain texture and stability, contributing to excessive sodium intake. As global health trends advance, developing green and low-salt technologies while maintaining product quality has become a research focus. Alkaline amino acids regulate protein conformation and intermolecular interactions through charge shielding, hydrogen bond topology, metal chelation, and hydration to compensate for the defects of solubility, gelation, and emulsification stability in the low-salt system. This article systematically reviews the mechanisms and applications of alkaline amino acids in reducing salt and maintaining quality in surimi. Research indicates that alkaline amino acids regulate the conformational changes of myofibrillar proteins through electrostatic shielding, hydrogen bond topology construction, and metal chelation, significantly improving gel strength, water retention, and emulsion stability in low-salt systems, with the results comparable to those in high-salt systems. Future research should optimize addition strategies using computational simulations technologies and establish a quality and safety evaluation system to promote industrial application. This review provides a theoretical basis for the green processing and functional enhancement of surimi products, which could have significant academic and industrial value. Full article
(This article belongs to the Special Issue Innovative Technology of Aquatic Product Processing)
Show Figures

Figure 1

23 pages, 4894 KiB  
Article
Evaluating Copper-Induced Oxidative Stress in Germinating Wheat Seeds Using Laser Photoacoustic Spectroscopy and EPR Techniques
by Mioara Petrus, Cristina Popa, Ana-Maria Bratu, Alexandra Camelia Joita and Vasile Bercu
Toxics 2025, 13(7), 604; https://doi.org/10.3390/toxics13070604 - 18 Jul 2025
Viewed by 389
Abstract
Copper is an essential micronutrient for plants, but excessive levels can induce toxicity and impair physiological functions. This study evaluates the toxic effects of copper sulfate (CuSO4) on the germination of common wheat (Triticum aestivum), with emphasis on the [...] Read more.
Copper is an essential micronutrient for plants, but excessive levels can induce toxicity and impair physiological functions. This study evaluates the toxic effects of copper sulfate (CuSO4) on the germination of common wheat (Triticum aestivum), with emphasis on the gas emission dynamics and oxidative stress biomarkers. Seeds were germinated in agar and exposed to CuSO4 at concentrations of 1 µM, 100 µM, 1 mM, and 10 mM; distilled water served as the control. Ethylene and ammonia emissions were quantified using CO2 laser photoacoustic spectroscopy, while electron paramagnetic resonance (EPR) spectroscopy was employed to detect free radicals and Cu2+ complexes. Exposure to Cu concentrations ≥ 1 mM significantly inhibited germination and biomass accumulation. Enhanced ethylene and ammonia emissions, particularly at 10 mM, indicated stress-related metabolic responses. The EPR spectra confirmed the presence of semiquinone radicals and Cu2+ complexes under higher Cu levels. These results demonstrate that photoacoustic and EPR techniques are effective tools for the early detection of metal-induced phytotoxicity and offer a non-invasive approach to environmental toxicity screening and plant stress assessment. Full article
Show Figures

Graphical abstract

19 pages, 9704 KiB  
Article
Euphorbia marginata Alleviate Heavy Metal Ni-Cu Combined Stress by Regulating the Synthesis of Signaling Factors and Flavonoid Organisms
by Xudan Zhou, Tian Jin, Te Li, Yue An, Xintian Dai, Chunli Zhao and Tongbao Qu
Plants 2025, 14(14), 2159; https://doi.org/10.3390/plants14142159 - 13 Jul 2025
Viewed by 273
Abstract
It is of great importance to explore how plants respond to excess accumulation of Cu and Ni in soil, yet the mechanisms by which Euphorbia marginata, a common ornamental plant in China, responds to heavy metal stress remain unclear. In this study, [...] Read more.
It is of great importance to explore how plants respond to excess accumulation of Cu and Ni in soil, yet the mechanisms by which Euphorbia marginata, a common ornamental plant in China, responds to heavy metal stress remain unclear. In this study, E. marginata seedlings were subjected to CK, Ni 500 mg/kg, and Cu 900 mg/kg, with Ni-Cu combined stress, and their growth, physiological indexes, heavy metal accumulation, and their corresponding gene expression were evaluated after 45 d. The results showed that the two heavy metals mainly accumulated in plant roots and severely inhibited root growth, while the combined stress promoted the accumulation of heavy metals to a small extent. Either Cu or Ni stresses inhibit photosynthetic pigment synthesis as well as activate antioxidant and osmoregulatory systems, but there are differences in their effects. Combined stress has a synergistic stress effect, severely damaging the cell membrane structure and leading to dysregulation of antioxidant and osmoregulatory systems. The expression of CDPK, CaMCML, MEKK3/6 signaling factors, UFGT, and COMT was severely suppressed under the combined stresses of Cu and Ni compared to the single stress of both. These results provide evidence of a specific defense response to heavy metal stress in E. marginata, which could help guide new research efforts and support the development of strategies for phytoremediation using E. marginata. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

18 pages, 7559 KiB  
Article
An Electrochemical Sensor for the Simultaneous Detection of Pb2+ and Cd2+ in Contaminated Seawater Based on Intelligent Mobile Detection Devices
by Zizi Zhao, Wei Qu, Chengjun Qiu, Yuan Zhuang, Kaixuan Chen, Yi Qu, Huili Hao, Wenhao Wang, Haozheng Liu and Jiahua Su
Chemosensors 2025, 13(7), 251; https://doi.org/10.3390/chemosensors13070251 - 11 Jul 2025
Viewed by 432
Abstract
Excessive levels of Pb2+ and Cd2+ in seawater pose significant combined toxicity to marine organisms, resulting in harmful effects and further threatening human health through biomagnification in the food chain. Traditional methods for detecting marine Pb2+ and Cd2+ rely [...] Read more.
Excessive levels of Pb2+ and Cd2+ in seawater pose significant combined toxicity to marine organisms, resulting in harmful effects and further threatening human health through biomagnification in the food chain. Traditional methods for detecting marine Pb2+ and Cd2+ rely on laboratory analyses, which are hindered by limitations such as sample degradation during transport and complex operational procedures. In this study, we present an electrochemical sensor based on intelligent mobile detection devices. By combining G-COOH-MWCNTs/ZnO with differential pulse voltammetry, the sensor enables the efficient, simultaneous detection of Pb2+ and Cd2+ in seawater. The G-COOH-MWCNTs/ZnO composite film is prepared via drop-coating and is applied to a glassy carbon electrode. The film is characterized using cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy, while Pb2+ and Cd2+ are quantified using differential pulse voltammetry. Using a 0.1 mol/L sodium acetate buffer (pH 5.5), a deposition potential of −1.1 V, and an accumulation time of 300 s, a strong linear correlation was observed between the peak response currents of Pb2+ and Cd2+ and their concentrations in the range of 25–450 µg/L. The detection limits were 0.535 µg/L for Pb2+ and 0.354 µg/L for Cd2+. The sensor was applied for the analysis of seawater samples from Maowei Sea, achieving recovery rates for Pb2+ ranging from 97.7% to 103%, and for Cd2+ from 97% to 106.1%. These results demonstrate that the sensor exhibits high sensitivity and stability, offering a reliable solution for the on-site monitoring of heavy metal contamination in marine environments. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Figure 1

20 pages, 1816 KiB  
Review
Recent Achievements of Epicardial Patch Electronics Using Adhesive and Conductive Hydrogels
by Su Hyeon Lee, Jong Won Lee, Daehyeon Kim, Gi Doo Cha and Sung-Hyuk Sunwoo
Gels 2025, 11(7), 530; https://doi.org/10.3390/gels11070530 - 9 Jul 2025
Viewed by 421
Abstract
Implantable cardiac devices are critical in improving patients’ quality of life through precise and continuous interaction between the device and pathological cardiac tissue. Due to the inherently rigid nature of conventional devices, several complications arise when interacting with soft cardiac tissue, caused by [...] Read more.
Implantable cardiac devices are critical in improving patients’ quality of life through precise and continuous interaction between the device and pathological cardiac tissue. Due to the inherently rigid nature of conventional devices, several complications arise when interacting with soft cardiac tissue, caused by a mechanical mismatch between the device and myocardium. This leads to the excessive formation of fibrous tissue around the implanted device, ultimately compromising both device functionality and tissue health. To address these challenges, flexible electronics based on polymers and elastomers significantly softer than conventional rigid metals and silicon have been explored. The epicardial approach enables the device to conform to the curved myocardial surface and deform synchronously with cardiac motion, thereby improving mechanical compatibility. However, modulus mismatches between soft polymers and cardiac tissue can still lead to mechanical instability and non-uniform adhesion, potentially affecting long-term performance. This review comprehensively summarizes recent research advancements in epicardial patch electronics based on bioadhesive and conductive hydrogels. We emphasize current research directions, highlighting the potential of hydrogels in epicardial electronics applications. Critical discussion includes recent trends, ongoing challenges, and emerging strategies aimed at improving the properties of hydrogel-based epicardial patches. Future research directions to facilitate clinical translation are also outlined. Full article
(This article belongs to the Special Issue Novel Gels for Biomedical Applications)
Show Figures

Figure 1

Back to TopTop