Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,465)

Search Parameters:
Keywords = metal chelation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1624 KiB  
Article
Preparation of EDTA-2Na-Fe3O4-Activated Carbon Composite and Its Adsorption Performance for Typical Heavy Metals
by Yannan Lv, Shenrui Han, Wenqing Wen, Xinzhu Bai, Qiao Sun, Li Chen, Haonan Zhang, Fansong Mu and Meng Luo
Separations 2025, 12(8), 205; https://doi.org/10.3390/separations12080205 - 6 Aug 2025
Abstract
This study developed a new magnetic adsorbent from waste coconut shells using high-temperature carbonization, EDTA-2Na chelation, and Fe3O4 magnetic loading. Response surface methodology optimized the preparation conditions to a mass ratio of activated carbon: EDTA-2Na:Fe3O4 = 2:0.6:0.2. [...] Read more.
This study developed a new magnetic adsorbent from waste coconut shells using high-temperature carbonization, EDTA-2Na chelation, and Fe3O4 magnetic loading. Response surface methodology optimized the preparation conditions to a mass ratio of activated carbon: EDTA-2Na:Fe3O4 = 2:0.6:0.2. Characterization (SEM, XRD, FT-IR, and EDS) showed that EDTA-2Na increased the surface carboxyl and amino group density, while Fe3O4 loading (Fe concentration 6.83%) provided superior magnetic separation performance. The optimal adsorption conditions of Cu2+ by EDTA-2Na-Fe3O4-activated carbon composite material are as follows: when pH = 5.0 and the initial concentration is 180 mg/L, the equilibrium adsorption capacity reaches 174.96 mg/g, and the removal rate reaches 97.2%. The optimal adsorption conditions for Pb2+ are as follows: when pH = 6.0 and the initial concentration is 160 mg/L, the equilibrium adsorption capacity reaches 157.60 mg/g, and the removal rate reaches 98.5%. The optimal adsorption conditions for Cd2+ are pH = 8.0 and an initial concentration of 20 mg/L. The equilibrium adsorption capacity reaches 18.76 mg/g, and the removal rate reaches 93.8%. The adsorption followed the pseudo-second-order kinetics (R2 > 0.95) and Langmuir/Freundlich isotherm models, indicating chemisorption dominance. Desorption experiments using 0.1 mol/L HCl and EDTA-2Na achieved efficient desorption (>85%), and the material retained over 80% of its adsorption capacity after five cycles. This cost-effective and sustainable adsorbent offers a promising solution for heavy metal wastewater treatment. Full article
32 pages, 8366 KiB  
Article
A Comprehensive Study of the Cobalt(II) Chelation Mechanism by an Iminodiacetate-Decorated Disaccharide Ligand
by Cécile Barbot, Laura Gouriou, Mélanie Mignot, Muriel Sebban, Ping Zhang, David Landy, Chang-Chun Ling and Géraldine Gouhier
Molecules 2025, 30(15), 3263; https://doi.org/10.3390/molecules30153263 - 4 Aug 2025
Abstract
We report an investigation on the cobalt(II) chelation mechanism by a modified α-maltoside ligand 9 decorated with two iminodiacetate (IDA) residues on C6,C6′ positions. Herein we uncovered the capacity of this biodegradable ligand to chelate cobalt(II), an ionic metal contaminant in the environment [...] Read more.
We report an investigation on the cobalt(II) chelation mechanism by a modified α-maltoside ligand 9 decorated with two iminodiacetate (IDA) residues on C6,C6′ positions. Herein we uncovered the capacity of this biodegradable ligand to chelate cobalt(II), an ionic metal contaminant in the environment that is used, in particular, in lithium-ion batteries. The interactions between cobalt(II) and synthesized ligand 9 were systematically studied using different analytical methods such as 1H and 13C NMR, potentiometry, spectrophotometry, ITC, and ICP-AES. We observed a high affinity for the 1:1 complex, one cobalt(II) associated with two iminodiacetate groups, which is 10-fold higher than the 2:1 complex, where each of the two IDA groups interacts alone with a cobalt(II). Taking into account the log βCoL value obtained (≈12.3) with the stoichiometry 1:1, the strength of this complexation with cobalt(II) can be ranked as follows for the most common ligands: IDA < MIDA < NTA < 9 < EDTA < TTHA < DTPA. We further completed a preliminary remediation test with water contaminated with cobalt(II) and recovered cobalt(II) metal using Chelex® resin, which allowed a recycling of the synthetic ligand for future recovering experiments. The results shed light on the great potential of using this synthetic ligand as an effective and green remediation tool. Full article
Show Figures

Graphical abstract

15 pages, 2384 KiB  
Article
Optimization of TEMPO-Mediated Oxidation of Chitosan to Enhance Its Antibacterial and Antioxidant Activities
by Abdellah Mourak, Aziz Ait-Karra, Mourad Ouhammou, Abdoussadeq Ouamnina, Abderrahim Boutasknit, Mohamed El Hassan Bouchari, Najat Elhadiri and Abdelhakim Alagui
Polysaccharides 2025, 6(3), 65; https://doi.org/10.3390/polysaccharides6030065 - 28 Jul 2025
Viewed by 155
Abstract
This study systematically investigated the oxidation of chitosan using the TEMPO/NaClO/NaBr catalytic system under varying experimental conditions, namely temperature, reaction time, and pH, in order to optimize the oxidation process. Response surface methodology (RSM) was employed to determine the optimal parameters for maximizing [...] Read more.
This study systematically investigated the oxidation of chitosan using the TEMPO/NaClO/NaBr catalytic system under varying experimental conditions, namely temperature, reaction time, and pH, in order to optimize the oxidation process. Response surface methodology (RSM) was employed to determine the optimal parameters for maximizing the efficiency of the reaction. The structural modifications to the chitosan following oxidation were confirmed using Fourier-transform infrared spectroscopy (FTIR), alongside additional analytical techniques, which validated the successful introduction of carbonyl and carboxyl functional groups. Solvent-cast films were prepared from both native and oxidized chitosan in order to evaluate their functional performance. The antibacterial activity of these films was assessed against Gram-negative (Salmonella) and Gram-positive (Streptococcus faecalis) bacterial strains. The oxidized chitosan films exhibited significantly enhanced antibacterial effects, particularly at shorter incubation periods. In addition, antioxidant activity was evaluated using DPPH radical scavenging and ferrous ion chelation assays, which both revealed a marked improvement in radical scavenging ability and metal ion binding capacity in oxidized chitosan. These findings confirm that TEMPO-mediated oxidation effectively enhances the physicochemical and bioactive properties of chitosan, highlighting its potential for biomedical and environmental applications. Full article
Show Figures

Figure 1

16 pages, 1382 KiB  
Article
The Catalytic Consequence of Isolated Ni Single-Atoms in BEA Zeolite for Hydrogen Production and Olefin Conversion
by Yitong Zhao, Meng Liu, Yao Ning, Ying Zhang and Zhijie Wu
Catalysts 2025, 15(8), 703; https://doi.org/10.3390/catal15080703 - 24 Jul 2025
Viewed by 376
Abstract
In our previous work, we fabricated Ni single-atoms within Beta zeolite (Ni1@Beta-NO3) using NiNO3·6H2O as a metal precursor without any chelating agents, which exhibited exceptional performance in the selective hydrogenation of furfural. Owing to [...] Read more.
In our previous work, we fabricated Ni single-atoms within Beta zeolite (Ni1@Beta-NO3) using NiNO3·6H2O as a metal precursor without any chelating agents, which exhibited exceptional performance in the selective hydrogenation of furfural. Owing to the confinement effect, the as-encapsulated nickel species appears in the form of Ni0 and Niδ+, which implies its feasibility in metal catalysis and coordination catalysis. In the study reported herein, we further explored the hydrogen production and olefin oligomerization performance of Ni1@Beta-NO3. It was found that Ni1@Beta-NO3 demonstrated a high H2 generation turnover frequency (TOF) and low activation energy (Ea) in a sodium borohydride (NaBH4) hydrolysis reaction, with values of 331 min−1 and 30.1 kJ/mol, respectively. In ethylene dimerization, it exhibited a high butylene selectivity of 99.4% and a TOF as high as 5804 h−1. In propylene oligomerization, Ni1@Beta-NO3 demonstrated high selectivity (75.21%) of long-chain olefins (≥C6+), overcoming the problem of cracking reactions that occur during oligomerization using H-Beta. Additionally, as a comparison, the influence of the metal precursor (NiCl2) on the performance of the encapsulated Ni catalyst was also examined. This research expands the application scenarios of non-noble metal single-atom catalysts and provides significant assistance and potential for the production of H2 from hydrogen storage materials and the production of valuable chemicals. Full article
(This article belongs to the Special Issue State of the Art and Future Challenges in Zeolite Catalysts)
Show Figures

Graphical abstract

20 pages, 1612 KiB  
Review
Phytoremediation Potential of Silicon-Treated Brassica juncea L. in Mining-Affected Water and Soil Composites in South Africa: A Review
by Kamogelo Katlego Motshumi, Awonke Mbangi, Elmarie Van Der Watt and Zenzile Peter Khetsha
Agriculture 2025, 15(15), 1582; https://doi.org/10.3390/agriculture15151582 - 23 Jul 2025
Viewed by 274
Abstract
Heavy metal pollution due to mining activities poses a significant threat to agricultural production, ecosystem health, and food security in South Africa. This review integrates current knowledge on the use of mustard spinach (Brassica juncea (L.) Czern.) for the bioremediation of polluted [...] Read more.
Heavy metal pollution due to mining activities poses a significant threat to agricultural production, ecosystem health, and food security in South Africa. This review integrates current knowledge on the use of mustard spinach (Brassica juncea (L.) Czern.) for the bioremediation of polluted water and soil, focusing on enhancing phytoremediation efficiency through the use of silicon-based biostimulant treatments. Mustard spinach is known for its capacity to accumulate and tolerate high levels of toxic metals, such as Pb, Cd, and Hg, owing to its strong physiological and biochemical defense mechanisms, including metal chelation, antioxidant activity, and osmotic adjustment. However, phytoremediation potential is often constrained by the negative impact of heavy metal stress on plant growth. Recent studies have shown that silicon-based biostimulants can alleviate metal toxicity by reducing metal bioavailability, increasing metal immobilization, and improving the antioxidative capacity and growth of plants. Combining silicon amendments with mustard spinach cultivation is a promising, eco-friendly approach to the remediation of mining-impacted soils and waters, potentially restoring agricultural productivity and reducing health risks to the resident populations. This review elucidates the multifaceted mechanisms by which silicon-enhanced phytoremediation operates, including soil chemistry modification, metal sequestration, antioxidant defense, and physiological resilience, while highlighting the practical, field-applicable benefits of this combined approach. Furthermore, it identifies urgent research priorities, such as field validation and the optimization of silicon application methods. Full article
(This article belongs to the Special Issue The Role of Silicon in Improving Crop Growth Under Abiotic Stress)
Show Figures

Figure 1

16 pages, 1658 KiB  
Article
Environmentally Friendly Chelation for Enhanced Algal Biomass Deashing
by Agyare Asante, George Daramola, Ryan W. Davis and Sandeep Kumar
Phycology 2025, 5(3), 32; https://doi.org/10.3390/phycology5030032 - 23 Jul 2025
Viewed by 302
Abstract
High ash content in algal biomass limits its suitability for biofuel production by reducing combustion efficiency and increasing fouling. This study presents a green deashing strategy using nitrilotriacetic acid (NTA) and deionized (DI) water to purify Scenedesmus algae, which was selected for its [...] Read more.
High ash content in algal biomass limits its suitability for biofuel production by reducing combustion efficiency and increasing fouling. This study presents a green deashing strategy using nitrilotriacetic acid (NTA) and deionized (DI) water to purify Scenedesmus algae, which was selected for its high ash removal potential. The optimized sequential treatment (DI, NTA chelation, and DI+NTA treatment at 90–130 °C) achieved up to 83.07% ash removal, reducing ash content from 15.2% to 3.8%. Elevated temperatures enhanced the removal of calcium, magnesium, and potassium, while heavy metals like lead and copper were reduced below detection limits. CHN analysis confirmed minimal loss of organic content, preserving biochemical integrity. Unlike traditional acid leaching, this method is eco-friendly after three cycles. The approach offers a scalable, sustainable solution to improve algal biomass quality for thermochemical conversion and supports circular bioeconomy goals. Full article
Show Figures

Graphical abstract

40 pages, 2830 KiB  
Review
Metal Complexes with Hydroxyflavones: A Study of Anticancer and Antimicrobial Activities
by Ljiljana E. Mihajlović, Monica Trif and Marijana B. Živković
Inorganics 2025, 13(8), 250; https://doi.org/10.3390/inorganics13080250 - 22 Jul 2025
Viewed by 412
Abstract
Metal chelation to bioactive small molecules is a well-established strategy to enhance the biological activity of the resulting complexes. Among the widely explored structural motifs, the combination of prominent metal centers with naturally inspired derivatives has attracted considerable attention. One such promising platform [...] Read more.
Metal chelation to bioactive small molecules is a well-established strategy to enhance the biological activity of the resulting complexes. Among the widely explored structural motifs, the combination of prominent metal centers with naturally inspired derivatives has attracted considerable attention. One such promising platform is the flavone scaffold, derived from flavonoids and studied since ancient times. Flavones are plant-derived compounds known for their diverse biological activities and health benefits. They exhibit significant structural variability, primarily through backbone modifications such as hydroxylation. Importantly, coordination of metal ions to hydroxylated flavone cores often improves their natural bioactivities, including anticancer and antimicrobial effects. In this review, we summarize transition metal complexes incorporating hydroxyflavone (OH–F) ligands reported over the past 15 years. We provide a concise overview of synthetic approaches and structural characterization, with a particular emphasis on coordination modes (e.g., maltol-type, acetylacetonate-type, catechol-type, and others). Furthermore, we discuss biological evaluation results, especially anticancer and antimicrobial studies, to highlight the therapeutic potential of these complexes. Finally, we suggest directions for the future development of metal-based agents bearing hydroxyflavone moieties through several critical points in terms of the accuracy, reproducibility, and relevance of biological studies involving metal-based compounds. Full article
Show Figures

Graphical abstract

18 pages, 1657 KiB  
Review
Alkaline Amino Acids for Salt Reduction in Surimi: A Review
by Tong Shi, Guxia Wang, Yu Xie, Wengang Jin, Xin Wang, Mengzhe Li, Yuanxiu Liu and Li Yuan
Foods 2025, 14(14), 2545; https://doi.org/10.3390/foods14142545 - 21 Jul 2025
Viewed by 361
Abstract
Surimi products are popular due to their high protein and low fat content. However, traditional processing methods rely on high concentrations of salt (2–3%) to maintain texture and stability, contributing to excessive sodium intake. As global health trends advance, developing green and low-salt [...] Read more.
Surimi products are popular due to their high protein and low fat content. However, traditional processing methods rely on high concentrations of salt (2–3%) to maintain texture and stability, contributing to excessive sodium intake. As global health trends advance, developing green and low-salt technologies while maintaining product quality has become a research focus. Alkaline amino acids regulate protein conformation and intermolecular interactions through charge shielding, hydrogen bond topology, metal chelation, and hydration to compensate for the defects of solubility, gelation, and emulsification stability in the low-salt system. This article systematically reviews the mechanisms and applications of alkaline amino acids in reducing salt and maintaining quality in surimi. Research indicates that alkaline amino acids regulate the conformational changes of myofibrillar proteins through electrostatic shielding, hydrogen bond topology construction, and metal chelation, significantly improving gel strength, water retention, and emulsion stability in low-salt systems, with the results comparable to those in high-salt systems. Future research should optimize addition strategies using computational simulations technologies and establish a quality and safety evaluation system to promote industrial application. This review provides a theoretical basis for the green processing and functional enhancement of surimi products, which could have significant academic and industrial value. Full article
(This article belongs to the Special Issue Innovative Technology of Aquatic Product Processing)
Show Figures

Figure 1

31 pages, 7570 KiB  
Review
Polymer-Based Mass Cytometry Reagents: Synthesis and Biomedical Applications
by Yin-Feng Wang, Wenying Wu and Ya-Hui Ge
Molecules 2025, 30(14), 3034; https://doi.org/10.3390/molecules30143034 - 19 Jul 2025
Viewed by 309
Abstract
Mass cytometry has promoted the development of single-cell analysis by enabling the highly multiplexed detection of cellular markers using metal-tagged antibodies or cells. Polymer-based mass cytometry reagents have played a critical role in this technique due to their structural versatility, high metal-loading capacity, [...] Read more.
Mass cytometry has promoted the development of single-cell analysis by enabling the highly multiplexed detection of cellular markers using metal-tagged antibodies or cells. Polymer-based mass cytometry reagents have played a critical role in this technique due to their structural versatility, high metal-loading capacity, and sensitivity. This review comprehensively examines the advances in polymer-based reagents for mass cytometry, focusing on their design principles, synthetic strategies, and biomedical applications. We systematically analyze three key categories: metal-chelating polymers with macrocyclic/acyclic chelators developed through controlled polymerization techniques, polymeric particles including encoded microspheres and semiconducting polymer dots, and emerging metal–organic frameworks with high metal-loading capacities. The discussion highlights how these engineered materials overcome spectral limitations of conventional flow cytometry while addressing current challenges in sensitivity, and multiplexing capacity. Finally, we outline current challenges and future research directions for developing polymer probes in single-cell mass cytometry. Full article
Show Figures

Graphical abstract

19 pages, 3216 KiB  
Article
The Mechanism of an Fe-Based MOF Material as a Foliar Inhibitor and Its Co-Mitigation Effects on Arsenic and Cadmium Accumulation in Rice Grains
by Tianyu Wang, Hao Cui, Weijie Li, Zhenmao Jiang, Lei Li, Lidan Lei and Shiqiang Wei
Agronomy 2025, 15(7), 1710; https://doi.org/10.3390/agronomy15071710 - 16 Jul 2025
Viewed by 332
Abstract
Arsenic (As) and cadmium (Cd) in rice grains are major global food safety concerns. Iron (Fe) can help reduce both, but current Fe treatments suffer from poor stability, low leaf absorption, and fast soil immobilization, with unclear underlying mechanisms. To address these issues, [...] Read more.
Arsenic (As) and cadmium (Cd) in rice grains are major global food safety concerns. Iron (Fe) can help reduce both, but current Fe treatments suffer from poor stability, low leaf absorption, and fast soil immobilization, with unclear underlying mechanisms. To address these issues, an Fe-based metal–organic framework (MIL-88) was modified with sodium alginate (SA) to form MIL-88@SA. Its stability as a foliar inhibitor and its leaf absorption were tested, and its effects on As and Cd accumulation in rice were compared with those of soluble Fe (FeCl3) and chelating Fe (HA + FeCl3) in a field study on As–Cd co-contaminated rice paddies. Compared with the control, MIL-88@SA outperformed or matched the other Fe treatments. A single foliar spray during the tillering stage increased the rice yield by 19% and reduced the inorganic As and Cd content in the grains by 22.8% and 67.8%, respectively, while the other Fe treatments required two sprays. Its superior performance was attributed to better leaf affinity and thermal stability. Laser ablation inductively coupled plasma–mass spectrometry (LA–ICP–MS) and confocal laser scanning microscopy (CLSM) analyses revealed that Fe improved photosynthesis and alleviated As–Cd stress in leaves, MIL-88@SA promoted As and Cd redistribution, and Fe–Cd co-accumulation in leaf veins enhanced Cd retention in leaves. Full article
(This article belongs to the Topic Effect of Heavy Metals on Plants, 2nd Volume)
Show Figures

Figure 1

22 pages, 795 KiB  
Review
Microbial Extracellular Polymeric Substances as Corrosion Inhibitors: A Review
by Naima Sayahi, Bouthaina Othmani, Wissem Mnif, Zaina Algarni, Moncef Khadhraoui and Faouzi Ben Rebah
Surfaces 2025, 8(3), 49; https://doi.org/10.3390/surfaces8030049 - 13 Jul 2025
Viewed by 388
Abstract
Microbial extracellular polymeric substances (EPSs) are emerging as sustainable alternatives to conventional corrosion inhibitors due to their eco-friendly nature, biodegradability, and functional versatility. Secreted by diverse microorganisms including bacteria, fungi, archaea, and algae, EPSs are composed mainly of polysaccharides, proteins, lipids, and nucleic [...] Read more.
Microbial extracellular polymeric substances (EPSs) are emerging as sustainable alternatives to conventional corrosion inhibitors due to their eco-friendly nature, biodegradability, and functional versatility. Secreted by diverse microorganisms including bacteria, fungi, archaea, and algae, EPSs are composed mainly of polysaccharides, proteins, lipids, and nucleic acids. These biopolymers, chiefly polysaccharides and proteins, are accountable for surface corrosion prevention through biofilm formation, allowing microbial survival and promoting their environmental adaptation. Usually, EPS-mediated corrosion inhibitions can take place via different mechanisms: protective film formation, metal ions chelation, electrochemical property alteration, and synergy with inorganic inhibitors. Even though efficacious EPS corrosion prevention has been demonstrated in several former studies, the application of such microbial inhibitors remains, so far, a controversial topic due to the variability in their composition and compatibility toward diverse metal surfaces. Thus, this review outlines the microbial origins, biochemical properties, and inhibition mechanisms of EPSs, emphasizing their advantages and challenges in industrial applications. Advances in synthetic biology, nanotechnology, and machine learning are also highlighted and could provide new opportunities to enhance EPS production and functionality. Therefore, the adoption of EPS-based corrosion inhibitors represents a promising strategy for environmentally sustainable corrosion control. Full article
(This article belongs to the Collection Featured Articles for Surfaces)
Show Figures

Figure 1

21 pages, 14585 KiB  
Article
Zingiber officinale Polysaccharide Silver Nanoparticles: A Study of Its Synthesis, Structure Elucidation, Antibacterial and Immunomodulatory Activities
by Xiaoyu Chang, Huina Xiao, Mingsong Li, Yongshuai Jing, Kaiyan Zheng, Beibei Hu, Yuguang Zheng and Lanfang Wu
Nanomaterials 2025, 15(14), 1064; https://doi.org/10.3390/nano15141064 - 9 Jul 2025
Viewed by 336
Abstract
Green-synthesized metal nanoparticles show promise in nanomedicine and material engineering. In this study, the polysaccharide of Zingiber officinale (ZOP) was used as a raw material. Through single-factor experiments and a response surface methodology, the optimum synthesis protocol of Zingiber officinale polysaccharide silver nanoparticles [...] Read more.
Green-synthesized metal nanoparticles show promise in nanomedicine and material engineering. In this study, the polysaccharide of Zingiber officinale (ZOP) was used as a raw material. Through single-factor experiments and a response surface methodology, the optimum synthesis protocol of Zingiber officinale polysaccharide silver nanoparticles (ZOP-NPs-AgNPs) was determined as follows: V(AgNO3):V(ZOP) = 2.98:1, 59.79 °C, 3 h, pH 9, and 20 mL NaCl, achieving a 92.51% silver chelation rate. Structure analysis revealed that ZOP-NPs-AgNPs were spherical or quasi-spherical, with a particle size < 20 nm and a face-centered cubic crystal structure, which has good thermal stability. Subsequent studies explored the antibacterial and immunomodulatory effects of ZOP-NPs-AgNPs. The minimum inhibitory concentration (MIC) of ZOP-NPs-AgNPs against Escherichia coli and Staphylococcus aureus was determined to be 0.5000 mg/mL and 0.0310 mg/mL, respectively, while the minimum bactericidal concentration (MBC) was 0.5000 mg/mL and 0.0310 mg/mL, respectively. Additionally, ZOP-NPs-AgNPs significantly enhance RAW264.7 cell proliferation and phagocytosis and boost IL−1β, IL−6, NO, and TNF-α production. This confirms that ZOP can act as a green reductant and stabilizer, offering a new method for green nano-silver synthesis. This provides a sustainable way to produce antibacterial products and functional foods, and offers useful references for eco-friendly nano-silver applications. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

10 pages, 1229 KiB  
Article
Copper-Induced Stimulation of Ectophosphatase Activity of Candida albicans
by Anita Leocadio Freitas-Mesquita, Fabiano Ferreira Esteves and José Roberto Meyer-Fernandes
Pathogens 2025, 14(7), 667; https://doi.org/10.3390/pathogens14070667 - 8 Jul 2025
Viewed by 247
Abstract
Candida albicans is an opportunistic fungal pathogen that can cause superficial and life-threatening infections, particularly in immunocompromised individuals. Its ability to adhere to host cells is critical for colonization and infection. In this context, investigating ectophosphatases is particularly relevant, as these enzymes have [...] Read more.
Candida albicans is an opportunistic fungal pathogen that can cause superficial and life-threatening infections, particularly in immunocompromised individuals. Its ability to adhere to host cells is critical for colonization and infection. In this context, investigating ectophosphatases is particularly relevant, as these enzymes have been associated with fungal adhesion to host cells. This study aimed to investigate the nature of copper-induced stimulation of ectophosphatase activity in C. albicans. Ectophosphatase activity was measured using p-nitrophenyl phosphate as substrate. Micromolar concentrations of CuCl2 markedly stimulated ectophosphatase activity, and its response to reducing agents and metal chelators suggested that this modulation does not involve redox reactions. The significant differences between the biochemical properties of basal (Cu2+-independent) and Cu2+-dependent ectophosphatase activities suggest the presence of at least two distinct ectophosphatases in C. albicans. Cu2+-independent ectophosphatase activity presented an acidic profile and was insensitive to Mg2+, whereas Cu2+-dependent ectophosphatase activity exhibited an alkaline profile and was also stimulated by Mg2+. Both activities were negatively modulated by classical phosphatase inhibitors, but Cu2+-dependent ectophosphatase had lower sensitivity compared to the basal activity. These findings highlight the role of copper as a modulator of C. albicans ectophosphatase activity and suggest potential implications for fungal adaptation during infection. Full article
Show Figures

Figure 1

23 pages, 3154 KiB  
Article
Structurally Characterized Cobalt and Nickel Complexes of Flavonoid Chrysin as Potential Radical Scavenging Compounds
by Eleftherios Halevas, Barbara Mavroidi, Despoina Varna, Georgia Zahariou, George Litsardakis, Maria Pelecanou and Antonios G. Hatzidimitriou
Inorganics 2025, 13(7), 230; https://doi.org/10.3390/inorganics13070230 - 7 Jul 2025
Viewed by 435
Abstract
Polyphenolic compounds, such as flavonoids, possess important structural and physico-chemical characteristics that in combination with their biological properties render them an important class of natural compounds with medicinal prospects. Chrysin is a well-known flavone with antioxidant activity and a multitude of other beneficial [...] Read more.
Polyphenolic compounds, such as flavonoids, possess important structural and physico-chemical characteristics that in combination with their biological properties render them an important class of natural compounds with medicinal prospects. Chrysin is a well-known flavone with antioxidant activity and a multitude of other beneficial properties. The potential of flavonoids to coordinate with metal ions leads to derivatives with enhanced biological profile. Within this framework, four novel heteroleptic complexes of cobalt and nickel with chrysin and the aromatic bidentate chelating agents 2,2′-bipyridine and 1,10-phenanthroline were synthesized, as well as physico-chemically and structurally characterized. The in vitro antioxidant efficiency of the synthesized complexes was examined via the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. All complexes showed notable radical scavenging capacity comparable to that of ascorbic acid, providing the incentive for further investigation of their therapeutic potential. Full article
Show Figures

Graphical abstract

23 pages, 4204 KiB  
Article
Investigation of Bioactive Compounds Extracted from Verbena officinalis and Their Biological Effects in the Extraction by Four Butanol/Ethanol Solvent Combinations
by Dejan Stojković, Nikoleta Đorđevski, Mladen Rajaković, Biljana Filipović, Jelena Božunović, Stefani Bolevich, Gokhan Zengin, Sergey Bolevich, Uroš Gašić and Marina Soković
Pharmaceuticals 2025, 18(7), 1012; https://doi.org/10.3390/ph18071012 - 7 Jul 2025
Viewed by 440
Abstract
Background/Objectives: Verbena officinalis L. (common vervain) is a medicinal plant traditionally used and investigated in phytotherapy for its neuroprotective, antioxidant, and anti-inflammatory properties. This study aims to investigate the phytochemical diversity and biological activity of V. officinalis extracts prepared with different ratios [...] Read more.
Background/Objectives: Verbena officinalis L. (common vervain) is a medicinal plant traditionally used and investigated in phytotherapy for its neuroprotective, antioxidant, and anti-inflammatory properties. This study aims to investigate the phytochemical diversity and biological activity of V. officinalis extracts prepared with different ratios of butanol and ethanol. Methods: Aerial parts of V. officinalis were extracted using four solvent systems: 100% butanol (B1), 75:25 (BE7.5), 50:50 (BE5), and 25:75 (BE2.5) butanol:ethanol mixtures. Metabolite profiling was conducted using liquid chromatography–high-resolution tandem mass spectrometry (LC-HRMS/MS). Antioxidant activities were evaluated through six assays: 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), cupric ion-reducing antioxidant capacity (CUPRAC), ferric-reducing antioxidant power (FRAP), metal-chelating ability (MCA), and the phosphomolybdenum assay (PMA). Enzyme inhibition assays targeted acetylcholinesterase (AChE), butyrylcholinesterase (BChE), tyrosinase, and α-amylase. Antibacterial activity against Pseudomonas aeruginosa was tested via microdilution, while dominant phytochemicals were evaluated for binding affinity through molecular docking. Results: Seventy-five compounds, including phenolic acids, flavonoids, iridoids, phenylethanoids, and xanthones, were identified. BE5 extract exhibited the highest total phenolic content and strongest antioxidant capacity, while BE2.5 demonstrated the greatest antibacterial and metal-chelating effects. All extracts showed comparable AChE inhibition, with BE5 achieving the strongest tyrosinase and α-amylase inhibition. Docking studies confirmed high binding affinities of luteolin glucuronides to human and bacterial target enzymes. Conclusions: Solvent composition markedly influenced the chemical and biological profiles of V. officinalis extracts. BE5 and BE2.5 emerged as promising systems for obtaining bioactive fractions with therapeutic potential. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

Back to TopTop