Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (324)

Search Parameters:
Keywords = metal–ceramic alloys

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 5261 KiB  
Review
Wear- and Corrosion-Resistant Coatings for Extreme Environments: Advances, Challenges, and Future Perspectives
by Subin Antony Jose, Zachary Lapierre, Tyler Williams, Colton Hope, Tryon Jardin, Roberto Rodriguez and Pradeep L. Menezes
Coatings 2025, 15(8), 878; https://doi.org/10.3390/coatings15080878 - 26 Jul 2025
Viewed by 762
Abstract
Tribological processes in extreme environments pose serious material challenges, requiring coatings that resist both wear and corrosion. This review summarizes recent advances in protective coatings engineered for extreme environments such as high temperatures, chemically aggressive media, and high-pressure and abrasive domains, as well [...] Read more.
Tribological processes in extreme environments pose serious material challenges, requiring coatings that resist both wear and corrosion. This review summarizes recent advances in protective coatings engineered for extreme environments such as high temperatures, chemically aggressive media, and high-pressure and abrasive domains, as well as cryogenic and space applications. A comprehensive overview of promising coating materials is provided, including ceramic-based coatings, metallic and alloy coatings, and polymer and composite systems, as well as nanostructured and multilayered architectures. These materials are deployed using advanced coating technologies such as thermal spraying (plasma spray, high-velocity oxygen fuel (HVOF), and cold spray), chemical and physical vapor deposition (CVD and PVD), electrochemical methods (electrodeposition), additive manufacturing, and in situ coating approaches. Key degradation mechanisms such as adhesive and abrasive wear, oxidation, hot corrosion, stress corrosion cracking, and tribocorrosion are examined with coating performance. The review also explores application-specific needs in aerospace, marine, energy, biomedical, and mining sectors operating in aggressive physiological environments. Emerging trends in the field are highlighted, including self-healing and smart coatings, environmentally friendly coating technologies, functionally graded and nanostructured coatings, and the integration of machine learning in coating design and optimization. Finally, the review addresses broader considerations such as scalability, cost-effectiveness, long-term durability, maintenance requirements, and environmental regulations. This comprehensive analysis aims to synthesize current knowledge while identifying future directions for innovation in protective coatings for extreme environments. Full article
(This article belongs to the Special Issue Advanced Tribological Coatings: Fabrication and Application)
Show Figures

Figure 1

18 pages, 4119 KiB  
Article
Structural Mechanics Calculations of SiC/Mo-Re Composites with Improved High Temperature Creep Properties
by Ke Li, Egor Kashkarov, Hailiang Ma, Ping Fan, Qiaoli Zhang, Andrey Lider and Daqing Yuan
Materials 2025, 18(15), 3459; https://doi.org/10.3390/ma18153459 - 23 Jul 2025
Viewed by 218
Abstract
In the present work, we design a laminated composite composed of molybdenum–rhenium alloy and silicon carbide ceramics for use in space reactors as a candidate structural material with neutron spectral shift properties. The influence of the internal microstructure on the mechanical properties is [...] Read more.
In the present work, we design a laminated composite composed of molybdenum–rhenium alloy and silicon carbide ceramics for use in space reactors as a candidate structural material with neutron spectral shift properties. The influence of the internal microstructure on the mechanical properties is investigated by finite element simulation based on scale separation. The results of the study showed that the incorporation of gradient transition layers between the metallic and ceramic phases effectively mitigates thermally induced local stresses arising from mismatches in coefficients of thermal expansion. By optimizing the composition of the gradient transition layers, the stress distribution within the composite under operating conditions has been adjusted. As a result, the stress experienced by the alloy phase is significantly reduced, potentially extending the high-temperature creep rupture life. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

20 pages, 24228 KiB  
Article
Surface Treatments on Cobalt–Chromium Alloys for Layering Ceramic Paint Coatings in Dental Prosthetics
by Willi-Andrei Uriciuc, Maria Suciu, Lucian Barbu-Tudoran, Adrian-Ioan Botean, Horea Florin Chicinaș, Miruna-Andreea Anghel, Cătălin Ovidiu Popa and Aranka Ilea
Coatings 2025, 15(7), 833; https://doi.org/10.3390/coatings15070833 - 17 Jul 2025
Viewed by 652
Abstract
Ceramic dental prosthetics with internal metal structures are made from a cobalt–chromium alloy that is coated with ceramic. This study aims to validate surface treatments for the metal that enhance the adhesion of the ceramic coating under masticatory forces. Surface conditioning is performed [...] Read more.
Ceramic dental prosthetics with internal metal structures are made from a cobalt–chromium alloy that is coated with ceramic. This study aims to validate surface treatments for the metal that enhance the adhesion of the ceramic coating under masticatory forces. Surface conditioning is performed using mechanical methods, like sandblasting (SB), and thermal methods, such as oxidation (O). The ceramic coating is applied to the metal component following the conditioning process, which can be conducted using either a single method or a combination of methods. Each conditioned sample undergoes characterization through various techniques, including drop shape analysis (DSA), scanning electron microscopy (SEM), X-ray diffraction (EDX), and atomic force microscopy (AFM). After the ceramic coating is applied and subjected to thermal sintering, the metal–ceramic samples are mechanically tested to assess the adhesion of the ceramic layer. The research findings, illustrated by scanning electron microscopy (SEM) images of the metal structures’ surfaces, indicate that alloy powder particles ranging from 10 to 50 µm were either adhered to the surfaces or present as discrete dots. Particles that exceed the initial design specifications of the structure can be smoothed out using sandblasting or mechanical finishing techniques. The energy-dispersive spectroscopy (EDS) results show that, after sandblasting, fragments of aluminum oxide remain trapped on the surface of the metal structures. These remnants are considered impurities, which can negatively impact the adhesion of the ceramic to the metal substrate. The analysis focuses on the exfoliation of the ceramic material from the deformed metal surfaces. The results emphasize the significant role of the sandblasting method and the micro-topography it creates, as well as the importance of the oxidation temperature in the treatment process. Drawing on 25 years of experience in dental prosthetics and the findings from this study, this publication aims to serve as a guide for applying the ceramic bonding layer to metal surfaces and for conditioning methods. These practices are essential for enhancing the adhesion of ceramic materials to metal substrates. Full article
(This article belongs to the Special Issue Corrosion and Corrosion Prevention in Extreme Environments)
Show Figures

Figure 1

13 pages, 2184 KiB  
Article
A Comparative Study on the High-Temperature Oxidation Behavior and Mechanisms of Micro/Nanoparticle Composite-Modified Chromium Carbide Metal Ceramic Coatings
by Linwen Wang, Jiawei Wang, Haiyang Lu, Jiyu Du, Xiaoxia Qi, Laixiao Lu and Ziwu Liu
Coatings 2025, 15(7), 826; https://doi.org/10.3390/coatings15070826 - 15 Jul 2025
Viewed by 224
Abstract
To enhance the high-temperature oxidation resistance of chromium carbide metal ceramic coatings, micro/nanoparticle modification was applied to the alloy binder phase of the typical Cr3C2-NiCr coating. This led to the development of Cr3C2-NiCrCoMo and Cr [...] Read more.
To enhance the high-temperature oxidation resistance of chromium carbide metal ceramic coatings, micro/nanoparticle modification was applied to the alloy binder phase of the typical Cr3C2-NiCr coating. This led to the development of Cr3C2-NiCrCoMo and Cr3C2-NiCrCoMo/nano-CeO2 coatings with superior high-temperature oxidation performance. This study compares the high-temperature oxidation behavior of these coating samples and explores their respective oxidation mechanisms. The results indicate that the addition of CoCrMo improves the compatibility between the oxide film and the coating, enhancing the microstructure and integrity of the oxide film. Compared to Cr3C2-NiCrCoMo coatings, the incorporation of nano-CeO2 promotes the reaction between oxides in the Cr3C2-NiCrCoMo/nano-CeO2 coating, increasing the content of binary spinel phases, reducing thermal stress at the oxide–coating interface, and improving the adhesion strength of the oxide film. As a result, the oxidation rate of the coating is reduced, and its oxidation resistance is improved. Full article
(This article belongs to the Special Issue Ceramic-Based Coatings for High-Performance Applications)
Show Figures

Figure 1

20 pages, 6738 KiB  
Article
Biocompatible Inorganic PVD MeSiON Thin Films (Me = Cr or Zr) Used to Enhance the Bond Strength Between NiCr-Based Metallic Frameworks and Ceramic in Dental Restorations
by Mihaela Dinu, Cosmin Mihai Cotrut, Alina Vladescu (Dragomir), Florin Baciu, Anca Constantina Parau, Iulian Pana, Lidia Ruxandra Constantin and Catalin Vitelaru
Dent. J. 2025, 13(7), 318; https://doi.org/10.3390/dj13070318 - 14 Jul 2025
Viewed by 234
Abstract
Background/Objectives: The increasing demand for aesthetics in dentistry has driven significant advancements in both materials and techniques. The primary cause of ceramic detachment in dental restorations is extensive mechanical stress, which often results in detachment and clinical complications. This study aims to improve [...] Read more.
Background/Objectives: The increasing demand for aesthetics in dentistry has driven significant advancements in both materials and techniques. The primary cause of ceramic detachment in dental restorations is extensive mechanical stress, which often results in detachment and clinical complications. This study aims to improve the bond strength between NiCr-based metal frameworks and ceramic coatings by introducing biocompatible inorganic MeSiON thin films (Me = Cr or Zr) as interlayers. Methods: MeSiON coatings with a thickness of ~2 μm were deposited on NiCr alloy using cathodic arc evaporation. To tailor the stoichiometry, morphology, and mechanical properties of the coatings, the substrate bias voltage was varied: −50 V, −100 V, −150 V, −200 V. Structural and surface characterization was performed using SEM/EDS, XRD, profilometry, and contact angle analysis. The coating adhesion was evaluated by using standardized scratch testing, while the bond strength was evaluated using a three-point bending test. Results: The NiCr alloy exhibited a dendritic microstructure, and the ceramic layer consisted mainly of quartz, feldspar, kaolin, and ZrO2. ZrSiON coatings showed superior roughness, elemental incorporation, and adhesion compared to Cr-based coatings, these properties being further improved by increasing the substrate bias. The highest bond strength was achieved with a ZrSiON coating deposited at −200 V, a result we attributed to increased surface roughness and mechanical interlocking at the ceramic-metal interface. Conclusions: CrSiON and ZrSiON interlayers enhanced ceramic-to-metal adhesion in NiCr-based dental restorations. The enhancement in bond strength is primarily ascribed to substrate bias-induced modifications in the coating’s stoichiometry, roughness, and adhesion. Full article
(This article belongs to the Special Issue Dental Materials Design and Innovative Treatment Approach)
Show Figures

Figure 1

48 pages, 7567 KiB  
Review
Research Progress on Microstructure, Mechanical Properties, and Strengthening Mechanisms of In Situ-Synthesized Ceramic-Reinforced Titanium Matrix Composite Coatings via Laser Cladding
by Min Wen, Boqiang Jiang, Xianyin Duan and Dingding Xiang
Coatings 2025, 15(7), 815; https://doi.org/10.3390/coatings15070815 - 11 Jul 2025
Viewed by 497
Abstract
The laser cladding (LC) of titanium matrix composite coatings (TMCCs) on titanium components not only effectively enhances the wear resistance, fatigue resistance, corrosion resistance, and biocompatibility of titanium and its alloys, but also circumvents the incompatibility and low bonding strength issues associated with [...] Read more.
The laser cladding (LC) of titanium matrix composite coatings (TMCCs) on titanium components not only effectively enhances the wear resistance, fatigue resistance, corrosion resistance, and biocompatibility of titanium and its alloys, but also circumvents the incompatibility and low bonding strength issues associated with other metallic composite coatings. While the incorporation of ceramic particles is a critical strategy for improving the coating performance, the limited interfacial bonding strength between ceramic particles and the matrix has historically constrained its advancement. To further elevate its performance and meet the demands of components operating in harsh environments, researchers worldwide have employed LC to synthesize in situ hard ceramic reinforcements such as TiC, TiB, TiN, and others within TMCCs on titanium substrates. This approach successfully addresses the aforementioned challenges, achieving coatings that combine a high interfacial bonding strength with superior mechanical properties. This paper provides a comprehensive review of the processing techniques, phase composition, microstructure, and mechanical properties of in situ-synthesized ceramic-reinforced TMCCs via LC on titanium components, with a focused summary of their strengthening mechanisms. Furthermore, it critically discusses the challenges and future prospects for advancing this technology. Full article
Show Figures

Figure 1

4 pages, 160 KiB  
Editorial
Ceramic Dental Restorations—From Materials Sciences to Applications
by Han Chao Chang and Satoshi Yamaguchi
Materials 2025, 18(13), 3116; https://doi.org/10.3390/ma18133116 - 1 Jul 2025
Viewed by 284
Abstract
In response to the growing demand from patients for enhanced oral aesthetics, as well as improved chewing and occlusion, coupled with advancements in CAD/CAM technology, a variety of dental ceramic materials have been developed over the past two decades to serve as alternatives [...] Read more.
In response to the growing demand from patients for enhanced oral aesthetics, as well as improved chewing and occlusion, coupled with advancements in CAD/CAM technology, a variety of dental ceramic materials have been developed over the past two decades to serve as alternatives to traditional alloys and pure metals [...] Full article
(This article belongs to the Special Issue Ceramic Dental Restorations: From Materials Sciences to Applications)
19 pages, 1487 KiB  
Review
Progress in Materials and Metal Substrates for Solid Oxide Fuel Cells
by Young-Wan Ju
Energies 2025, 18(13), 3379; https://doi.org/10.3390/en18133379 - 27 Jun 2025
Viewed by 509
Abstract
Solid oxide fuel cells (SOFCs) have been considered as alternative energy conversion devices because of their high energy conversion efficiency, fuel flexibility, and cost efficiency without precious metal catalysts. In current SOFCs, the cermet anode consists of nickel and ion-conducting ceramic materials, and [...] Read more.
Solid oxide fuel cells (SOFCs) have been considered as alternative energy conversion devices because of their high energy conversion efficiency, fuel flexibility, and cost efficiency without precious metal catalysts. In current SOFCs, the cermet anode consists of nickel and ion-conducting ceramic materials, and solid oxide electrolytes and ceramic cathodes have been used. SOFCs normally operate at high temperatures because of the lower ion conductivity of ceramic components at low temperatures, and they have weaknesses in terms of mechanical strength and durability against thermal shock originating from the properties of ceramic materials. To solve these problems, metal-supported solid oxide fuel cells (MS-SOFCs) have been designed. SOFCs using metal substrates, such as Ni-based and Cr-based alloys, provide significant advantages, such as a low material cost, ruggedness, and tolerance to rapid thermal cycling. In this article, SOFCs are introduced briefly, and the types of metal substrate used in MS-SOFCs, as well as the advantages and disadvantages of each metal support, are reviewed. Full article
Show Figures

Figure 1

12 pages, 2404 KiB  
Systematic Review
Are Implant-Supported Monolithic Zirconia Single Crowns a Viable Alternative to Metal-Ceramics? A Systematic Review and Meta-Analysis
by Liandra Constantina da Mota Fonseca, Daniele Sorgatto Faé, Beatriz Neves Fernandes, Izabela da Costa, Jean Soares Miranda and Cleidiel Aparecido Araujo Lemos
Ceramics 2025, 8(2), 63; https://doi.org/10.3390/ceramics8020063 - 22 May 2025
Viewed by 775
Abstract
This study aimed to evaluate prosthetic complications, implant survival rates, and marginal bone loss in implant-supported monolithic restorations compared to metal-ceramic restorations. The study was registered in PROSPERO (CRD420251022336) and conducted following the Cochrane Handbook for Systematic Reviews of Interventions and PRISMA guidelines. [...] Read more.
This study aimed to evaluate prosthetic complications, implant survival rates, and marginal bone loss in implant-supported monolithic restorations compared to metal-ceramic restorations. The study was registered in PROSPERO (CRD420251022336) and conducted following the Cochrane Handbook for Systematic Reviews of Interventions and PRISMA guidelines. A systematic search was conducted in the electronic databases MEDLINE/PubMed, Web of Science, Scopus, Embase, and ProQuest for articles published up to December 2024. The inclusion criteria comprised studies evaluating only randomized clinical trials that evaluated implant-supported monolithic restorations directly compared to metal-ceramic restorations, considering any type of ceramic material and regardless of the fixation system (screw-retained or cemented), with a minimum follow-up of one year. A meta-analysis was performed using RevMan 5.4 software, and the risk of bias and certainty of evidence were assessed using the RoB 2.0 and GRADE tools, respectively. A total of six studies were included, all of which exclusively evaluated monolithic zirconia single crowns over follow-up periods ranging from 1 to 3 years. None of the included studies evaluated fixed partial dentures or restorative materials other than monolithic zirconia. In total, 267 patients (mean age range: 18–57 years) were analyzed, with a total of 174 implant-supported monolithic zirconia crowns and 165 metal-ceramic single crowns in the posterior region (premolars and molars). The meta-analysis revealed that implant-supported monolithic zirconia single crowns exhibited significantly fewer prosthetic complications compared to metal-ceramic single crowns (p < 0.0001; Risk Ratio [RR]: 0.26; Confidence Interval [CI]: 0.14–0.47). However, no statistically significant differences were observed between implant-supported monolithic zirconia and metal-ceramic single crowns regarding implant survival rates (p = 0.36; RR: 1.66; CI: 0.56–4.94) or marginal bone loss (p = 0.15; Mean Difference [MD]: −0.05; CI: −0.11–0.02). The risk of bias assessment indicated that four studies had a low risk of bias. However, the certainty of evidence was classified as low for prosthetic complications and implant survival rates and very low for marginal bone loss. Within the limitations of this review, it can be concluded that implant-supported monolithic zirconia single crowns can be considered a favorable treatment option as they show comparable implant survival and bone stability to metal-ceramic crowns, with a potential reduction in short-term prosthetic complications such as screw loosening and ceramic chipping. However, due to the limited number of studies included and low certainty of evidence, further long-term research is still needed to confirm their clinical performance over time. Full article
Show Figures

Figure 1

17 pages, 5507 KiB  
Article
Insight into Various Casting Material Selections in Rapid Investment Casting for Making EDM Electrodes
by Thanh Tan Nguyen, Van-Thuc Nguyen, Van Tron Tran, Anh Thi Le, Thanh Duy Nguyen, Quoc Dung Huynh, Minh Tri Ho, Minh Phung Dang, Hieu Giang Le and Van Thanh Tien Nguyen
Micromachines 2025, 16(5), 595; https://doi.org/10.3390/mi16050595 - 20 May 2025
Viewed by 537
Abstract
Investment casting is a precision casting technology that can produce complex shapes from various materials, particularly difficult-to-cast and difficult-to-machine metallic alloys. Meanwhile, electrical discharge machining (EDM) is a well-known technique for producing ultra-precise mechanical parts, and electrode quality is crucial. Few studies have [...] Read more.
Investment casting is a precision casting technology that can produce complex shapes from various materials, particularly difficult-to-cast and difficult-to-machine metallic alloys. Meanwhile, electrical discharge machining (EDM) is a well-known technique for producing ultra-precise mechanical parts, and electrode quality is crucial. Few studies have explored how rapid prototyping (RP) pattern generation and investment casting influence the final product’s shape, dimensions, and surface roughness. This study investigates EDM electrode fabrication using investment casting and RP-generated epoxy resin patterns. We examine the effects of electrode materials (CuZn5, CuZn30, and FeCr24) on surface roughness, alongside the impact of ceramic shell thickness and RP pattern shrinkage on electrode quality. The EDM electrodes have a shrinkage of 0.8–1.9% and a surface roughness of 3.20–6.35 μm, depending on the material selections. Additionally, the probability of shell cracking decreases with increasing shell thickness, achieving stability at 16.00 mm. This research also applies investment casting electrodes to process DC53 steel. The results indicate that the surface roughness of the workpiece after EDM machining with different electrode materials is in the range of 4.71 µm to 9.88 µm. The result expands the use of investment casting in electrode fabrication, enabling the production of high-precision electrodes with complex profiles and challenging materials, potentially reducing both time and cost. Full article
Show Figures

Figure 1

21 pages, 5020 KiB  
Article
Influence of Heat Transfer on Stress Components in Metallic Plates Weakened by Multi-Curved Holes
by Faizah M. Alharbi and Nafeesa G. Alhendi
Axioms 2025, 14(5), 369; https://doi.org/10.3390/axioms14050369 - 14 May 2025
Viewed by 389
Abstract
This manuscript addresses an application study by employing a mathematical model of a thermoelastic plate weakened by multi-curved holes under the effect of stress forces in the presence of heat conduction. When the initial heat flow is directed to the plate system, complex [...] Read more.
This manuscript addresses an application study by employing a mathematical model of a thermoelastic plate weakened by multi-curved holes under the effect of stress forces in the presence of heat conduction. When the initial heat flow is directed to the plate system, complex variable procedures are used to compute the basic Goursat functions, taking into account the time-dependent variables through conformal mapping, which transfers the domain to the exterior of a unit circle. The problem reduces to a general form of a contact problem in two dimensions, which is called an integrodifferential equation of the second type with the Cauchy kernel. Additionally, different hole shapes are generated using Maple 2023. Computational simulations are performed to determine the normal and shear stress components in the presence and absence of heat effects at various times. Furthermore, numerical calculations of Goursat functions are carried out and graphically displayed for some specific materials. This investigation provides valuable information about industries, such as those regarding ceramic tile, glass, rubber, paint, ceramic pigment, and metal alloys. Full article
(This article belongs to the Special Issue Mathematical Methods in the Applied Sciences, 2nd Edition)
Show Figures

Figure 1

38 pages, 7741 KiB  
Review
A Comprehensive Literature Review of Total Hip Arthroplasty (THA): Part 1—Biomaterials
by Chiara Morano, Salvatore Garofalo, Paolo Bertuccio, Agata Sposato, Irene Zappone and Leonardo Pagnotta
J. Funct. Biomater. 2025, 16(5), 179; https://doi.org/10.3390/jfb16050179 - 14 May 2025
Cited by 1 | Viewed by 1808
Abstract
The rapid advancement of materials science has revolutionized total hip arthroplasty (THA), a critical orthopedic procedure aimed at restoring mobility and improving patient quality of life. This review investigates the evolution of biomaterials used in THA, analyzing their mechanical, biological, and chemical properties. [...] Read more.
The rapid advancement of materials science has revolutionized total hip arthroplasty (THA), a critical orthopedic procedure aimed at restoring mobility and improving patient quality of life. This review investigates the evolution of biomaterials used in THA, analyzing their mechanical, biological, and chemical properties. The study outlines the transition from early natural materials to modern metals, polymers, and ceramics, highlighting their benefits and limitations in clinical applications. Particular emphasis is placed on the development of advanced materials such as highly cross-linked polyethylene (HXLPE), zirconia-toughened alumina (ZTA), and tantalum alloys (Ta), which demonstrate enhanced biocompatibility, wear resistance, and longevity. By examining emerging trends, including bioactive coatings and nanotechnology, this paper aims to provide a comprehensive understanding of current challenges and future directions in material selection for hip prostheses, ultimately aiming to minimize annual revision rates and improve long-term outcomes. Full article
(This article belongs to the Section Bone Biomaterials)
Show Figures

Graphical abstract

12 pages, 6390 KiB  
Article
Exploring How Dopants Strengthen Metal-Ni/Ceramic-Al2O3 Interface Structures at the Atomic and Electronic Levels
by Fengqiao Sun, Xiaofeng Zhang, Long Li, Qicheng Chen, Dehao Kong, Haifeng Yang and Renwei Li
Molecules 2025, 30(9), 1990; https://doi.org/10.3390/molecules30091990 - 29 Apr 2025
Viewed by 384
Abstract
The metal-based/ceramic interface structure is a key research focus in science, and addressing the stability of the interface has significant scientific importance as well as economic value. In this project, the work of adhesion, heat of segregation, electronic structure, charge density, and density [...] Read more.
The metal-based/ceramic interface structure is a key research focus in science, and addressing the stability of the interface has significant scientific importance as well as economic value. In this project, the work of adhesion, heat of segregation, electronic structure, charge density, and density of states for doped-M (M = Ti, Mg, Cu, Zn, Si, Mn, or Al) Ni (111)/Al2O3 (0001) interface structures are studied using first-principle calculation methods. The calculation results demonstrate that doping Ti and Mg can increase the bonding strength of the Ni–Al2O3 interface by factors of 3.4 and 1.5, respectively. However, other dopants, such as Si, Mn, and Al, have a negative effect on the bonding of the Ni–Al2O3 interface. As a result, the alloying elements may be beneficial to the bonding of the Ni–Al2O3 interface, but they may also play an opposite role. Moreover, the Ti and Mg dopants segregate from the matrix and move to the middle position of the Ni–Al2O3 interface during relaxation, while other dopants exhibit a slight segregation and solid solution in the matrix. Most remarkably, the segregation behavior of Ti and Mg induced electron transfer to the middle of the interface, thereby increasing the charge density of the Ni–Al2O3 interface. For the optimal doped-Ti Ni–Al2O3 interface, bonds of Ti–O and Ti–Ni are found, which indicates that the dopant Ti generates stable compounds in the interface region, acting as a stabilizer for the interface. Consequently, selecting Ti as an additive in the fabrication of metal-based ceramic Ni–Al2O3 composites will contribute to prolonging the service lifetime of the composite. Full article
Show Figures

Graphical abstract

14 pages, 11515 KiB  
Communication
A High-Temperature Stabilized Anti-Interference Beidou Array Antenna
by Feng Xu and Xiaofei Zhang
Electronics 2025, 14(8), 1555; https://doi.org/10.3390/electronics14081555 - 11 Apr 2025
Viewed by 577
Abstract
Traditional Beidou Navigation Satellite System anti-jamming array antennas mostly use PCB plates, but in extreme vibration environments, their rigidity may cause the antenna structure to be more susceptible to damage. Especially in an extremely high-temperature environment, it may cause thermal expansion, softening, and [...] Read more.
Traditional Beidou Navigation Satellite System anti-jamming array antennas mostly use PCB plates, but in extreme vibration environments, their rigidity may cause the antenna structure to be more susceptible to damage. Especially in an extremely high-temperature environment, it may cause thermal expansion, softening, and even melting of metal materials, which will affect the structure and performance of the antenna; In this paper, a Beidou array antenna integrating high seismic resistance, high-temperature stability, and anti-interference ability is designed and studied. The structural parts of the antenna are composed of 7075 aluminum alloy and high-temperature ceramic material technology, which has a compact structure and strong corrosion resistance, which is especially suitable for aviation and marine environments. The antenna works stably at 400 °C and has excellent heat resistance. Built-in shock-absorbing elements or shock-absorbing materials are used to effectively absorb and disperse vibration energy and reduce the direct impact on the internal components of the antenna. Considering the anti-interference performance caused by the size of the array spacing and the mutual coupling between the array elements, the array spacing is designed to be between λ/4 and λ/2. In simulations and experiments, the designed antenna array shows good performance and proves its applicability for high-temperature applications. The antenna frequency includes the B3 band (1250.618~1286.423 MHz) and B1 band (1559.052~1591.788 MHz) of the Beidou Navigation Satellite System. The following article includes the introduction, proposed array antenna structure and dimension, antenna simulation results, antenna protype and environment test, conclusions and future work. Full article
Show Figures

Figure 1

19 pages, 7528 KiB  
Article
A Finite Element Analysis Framework for Assessing the Structural Integrity of Aero-Engine Ceramic Matrix Composite Component Coatings
by Giacomo Canale, Vitantonio Esperto and Felice Rubino
Metals 2025, 15(3), 328; https://doi.org/10.3390/met15030328 - 18 Mar 2025
Viewed by 682
Abstract
Ceramic Matrix Composites (CMCs), and, in particular, SiC/BN/SiC, are currently being investigated to replace Nickel alloys in the manufacturing of aero-engine high-pressure turbine system components. Although superior to traditional metallic solutions in terms of resistance to high temperatures, CMCs are prone to oxidation [...] Read more.
Ceramic Matrix Composites (CMCs), and, in particular, SiC/BN/SiC, are currently being investigated to replace Nickel alloys in the manufacturing of aero-engine high-pressure turbine system components. Although superior to traditional metallic solutions in terms of resistance to high temperatures, CMCs are prone to oxidation and environmental degradation. For this reason, a multi-layer coating system is used to protect the CMC substrate. The aim of this paper is to define a Finite Element (FE) thermo-mechanical procedure to assess the integrity of the multi-layer coating. Among the four main failure mechanisms, vertical transverse cracking (denoted as “mud cracking”) and the thermally grown oxide (TGO) formation were numerically investigated. The FE (Finite Elements) procedure described in this paper, fully automated with the auxilium of MATLAB and Abaqus, is holistic and offers a simplified tool for the preliminary lifing of coating systems. TGO growth in the bond layer leads to the failure of the coating after 15,200 h, when its thickness reaches 0.02 mm, circa 20% of the bond layer (BND), and the stiffness and the strength of the BND drop to zero. The procedures and outcomes from the work are relevant for aero-engine designers and system engineers. Full article
(This article belongs to the Special Issue Surface Modification and Coatings of Metallic Materials)
Show Figures

Figure 1

Back to TopTop