Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (282)

Search Parameters:
Keywords = metal–air batteries

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2044 KB  
Article
Evaluation of the Effectiveness of Selected Extinguishing Agents for Extinguishing Li-Ion Batteries and for Capturing Selected Contaminants
by Anna Rabajczyk, Justyna Gniazdowska, Piotr Stojek, Piotr Mortka and Tomasz Lutoborski
Materials 2026, 19(1), 180; https://doi.org/10.3390/ma19010180 - 3 Jan 2026
Viewed by 254
Abstract
The production and use of Li-ion batteries (LIBs) is steadily increasing each year, leading to a growing number of battery-powered products. Consequently, the number of chemical hazards associated with the operation and other stages of the life cycle of this type of cell [...] Read more.
The production and use of Li-ion batteries (LIBs) is steadily increasing each year, leading to a growing number of battery-powered products. Consequently, the number of chemical hazards associated with the operation and other stages of the life cycle of this type of cell is increasing as well. Therefore, this study examined the impact of selected extinguishing agents for extinguishing Li-ion battery fires—namely, a dedicated extinguishing granulate, a natural sorbent (exfoliated vermiculite), and quartz sand—on the level of heat and released substances. The study determined the emission of heavy metals and polycyclic aromatic hydrocarbons (PAH) into the air during a cell fire, the concentration of the inhalable aerosol fraction, and the concentration of hazardous substances in the extinguishing agent residue. The analysis concluded that quartz sand provides the most effective heat removal and insulation of the battery from the external environment, which also reduces the amount of pollutants released into the environment. Full article
(This article belongs to the Special Issue Technology in Lithium-Ion Batteries: Prospects and Challenges)
Show Figures

Graphical abstract

12 pages, 2912 KB  
Article
KI-Assisted MnO2 Electrocatalysis Enables Low-Charging Voltage, Long-Life Rechargeable Zinc–Air Batteries
by Francesco Biscaglia, Sabrina Di Masi, Marco Milanese, Claudio Mele, Giuseppe Gigli, Arturo De Risi and Luisa De Marco
Batteries 2025, 11(12), 463; https://doi.org/10.3390/batteries11120463 - 16 Dec 2025
Viewed by 783
Abstract
Rechargeable zinc–air batteries (ZABs) are promising candidates for sustainable energy storage owing to their high theoretical energy density, safety, and environmental compatibility. However, their practical application is hindered by sluggish oxygen evolution reaction (OER) kinetics and the high charging voltage required, which reduce [...] Read more.
Rechargeable zinc–air batteries (ZABs) are promising candidates for sustainable energy storage owing to their high theoretical energy density, safety, and environmental compatibility. However, their practical application is hindered by sluggish oxygen evolution reaction (OER) kinetics and the high charging voltage required, which reduce energy efficiency and accelerate electrode degradation. Here, we report for the first time the beneficial role of potassium iodide (KI) as a reaction modifier in ZABs employing manganese dioxide (MnO2) as a bifunctional catalyst. MnO2 not only exhibits remarkable electrocatalytic activity toward the oxygen reduction reaction (ORR) but also catalyzes the iodide oxidation reaction (IOR), which proceeds at significantly lower potentials than the OER. As a result, KI-modified MnO2 ZABs achieve a remarkably low charging voltage of ≈1.8 V and an energy efficiency of 69.9% at 5 mA/cm2. Although the IOR is not fully reversible in alkaline media and its effectiveness depends on the iodide concentration in the electrolyte—which may decrease upon repeated discharge–charge cycling—the suppression of electrode degradation enables stable operation for more than 200 charge–discharge cycles. These findings demonstrate the synergistic effect of KI and MnO2 in enabling an efficient ORR/IOR pathway, providing a sustainable and cost-effective alternative to noble metal catalysts and opening new perspectives for the practical development of high-performance ZABs. Full article
Show Figures

Figure 1

17 pages, 4763 KB  
Article
Corrosion and Discharge Behavior of Mg-Y-Al-Zn Alloys as Anode Materials for Primary Mg-Air Batteries
by Junhao Dai, Hongjun Zhu, Yu Zhang, Chengwu Wang and Shirui Guo
Crystals 2025, 15(12), 1033; https://doi.org/10.3390/cryst15121033 - 3 Dec 2025
Viewed by 299
Abstract
In this study, the Mg-8Y-0.8Al-xZn (x = 0.25, 0.45, 0.65 in wt.%) anode was selected as the research subject, and the relationship between its microstructural evolution and electrochemical performance was thoroughly investigated. The results indicate that an increasing zinc content leads to a [...] Read more.
In this study, the Mg-8Y-0.8Al-xZn (x = 0.25, 0.45, 0.65 in wt.%) anode was selected as the research subject, and the relationship between its microstructural evolution and electrochemical performance was thoroughly investigated. The results indicate that an increasing zinc content leads to a distinct gradient change in the alloy phase composition. At a low zinc content (x = 0.25), the Al2Y phase is uniformly distributed within the matrix. However, when the Zn content reaches 0.45 wt.% or higher, the Mg-Y phase and Mg-Y-Zn phase become the predominant phases. When applying 20 mA·cm−2 current density, the investigated Mg-8Y-0.8Al-0.25Zn anode achieves a high specific capacity of 1030 mAh·g−1 and an anode efficiency of 51%, providing a valuable experimental foundation for the advancement of new energy storage materials and offering significant theoretical guidance for advancing metal–air battery technology. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

14 pages, 2223 KB  
Article
Evaluating Sampling Materials for Atmospheric Volatile Organosulfur Compounds Measurement and Application in the Power Battery Recycling Industry
by Tianyu Fang, Zhou Zhang, Zhongxiangyu Ou, Sheng Li, Yanli Zhang and Xinming Wang
Atmosphere 2025, 16(12), 1341; https://doi.org/10.3390/atmos16121341 - 27 Nov 2025
Viewed by 396
Abstract
Volatile organosulfur compounds (VSCs) play significant roles in atmospheric chemistry and malodorous pollution. Accurate measurement of VSCs is challenging due to their high reactivity and adsorption tendencies, which are strongly influenced by sampling materials. This study comprehensively evaluates the performance of six types [...] Read more.
Volatile organosulfur compounds (VSCs) play significant roles in atmospheric chemistry and malodorous pollution. Accurate measurement of VSCs is challenging due to their high reactivity and adsorption tendencies, which are strongly influenced by sampling materials. This study comprehensively evaluates the performance of six types of sampling bags and passivated canisters for measuring nine VSCs. The results indicate that passivated canisters provide stable storage for all target VSCs for up to 7 days under dry conditions. Among the bags, polyvinyl fluoride (PVF) bags exhibited the lowest blank levels and preserved most VSCs (except disulfides) stably for 8 h. Field comparisons in a power battery recycling plant showed good agreement between PVF bag and canister measurements under dry conditions. However, in high-humidity stack gases, canisters showed severe losses of methanethiol and ethanethiol, likely due to humidity-driven conversion on metal surfaces, underscoring the necessity of drying humid-air samples. The application of these methods revealed significant VSCs emissions and distinct compositional profiles from power battery recycling processes, particularly pyrolysis drying, lithium leaching, and nickel–cobalt leaching processes, with concentrations of total VSCs reaching up to 1046.86 ppb. This work provides crucial guidance for selecting appropriate sampling methods for reliable VSCs measurement and offers the first emissions characteristics of VSCs from the power battery recycling industry, supporting future environmental monitoring and pollution control. Full article
(This article belongs to the Section Air Quality)
Show Figures

Graphical abstract

11 pages, 3431 KB  
Article
Temperature-Correlated Characterization of EoL Lithium Cobalt Oxide Batteries with Microwave-Based Pyrometallurgical Recovery
by Emma Pitacco, Marco Ragazzini, Caterina Bernardini, Mehran Ghadimi, Mirko Pigato, Michele Forzan and Katya Brunelli
Metals 2025, 15(12), 1302; https://doi.org/10.3390/met15121302 - 26 Nov 2025
Viewed by 385
Abstract
With the increasing volumes of spent lithium-ion batteries from electric vehicles and the concurrent increase in raw materials cost for cathode production, finding effective methods for recycling battery materials has become critically important. This study investigated a pyrometallurgical approach using microwave irradiation to [...] Read more.
With the increasing volumes of spent lithium-ion batteries from electric vehicles and the concurrent increase in raw materials cost for cathode production, finding effective methods for recycling battery materials has become critically important. This study investigated a pyrometallurgical approach using microwave irradiation to achieve carbothermal reduction of LiCoO2. FactSage thermodynamic calculations were performed for process simulation and an infrared thermal camera was employed for temperature measurements, allowing the authors to optimize the process parameters to obtain metallic cobalt. Specifically, the research included microwave experiments on mixed black mass samples of anode and cathode materials in different proportions, treated at varying power levels and exposure times under air atmosphere. The effect of the process parameters and therefore of the temperature on microstructure was studied with SEM-EDS and XRD analysis. The feasibility of a wet magnetic separation method between cobalt and lithium compounds formed during the reaction was also evaluated. The results obtained from the final separation process indicated that individual compounds can be obtained at the end of the cycle; moreover, the optimization of time, temperature, and graphite additions during the tests allowed the authors to obtain promising results. Full article
Show Figures

Figure 1

38 pages, 5832 KB  
Review
3D-Printed Carbon-Based Electrochemical Energy Storage Devices: Material Design, Structural Engineering, and Application Frontiers
by Yu Dong, Li Sun, Jiemin Dong, Wenhao Zou, Wan Rong, Jianfei Liu, Hanqi Meng and Qigao Cao
Materials 2025, 18(22), 5070; https://doi.org/10.3390/ma18225070 - 7 Nov 2025
Viewed by 933
Abstract
With the global energy structure transitioning towards clean and low-carbon alternatives, electrochemical energy storage technologies have emerged as pivotal enablers for achieving efficient renewable energy utilization and carbon neutrality objectives. However, conventional electrode materials remain constrained by inherent limitations, including low specific surface [...] Read more.
With the global energy structure transitioning towards clean and low-carbon alternatives, electrochemical energy storage technologies have emerged as pivotal enablers for achieving efficient renewable energy utilization and carbon neutrality objectives. However, conventional electrode materials remain constrained by inherent limitations, including low specific surface area, sluggish ion diffusion kinetics, and insufficient mechanical stability, which fundamentally hinder the synergistic fulfillment of high energy density, superior power density, and prolonged cycling durability. Three-dimensional printing technology offers a revolutionary paradigm for designing and fabricating carbon-based electrochemical energy storage devices. By enabling precise control over both the microstructural architecture and macro-scale morphology of electrode materials, this additive manufacturing approach significantly enhances energy/power densities, as well as cycling stability. Specifically, 3D printing facilitates biomimetic topological designs (e.g., hierarchical porous networks, vertically aligned ion channels) and functional hybridization strategies (e.g., carbon/metal oxide hybrids, carbon/biomass-derived composites), thereby achieving synergistic optimization of charge transfer kinetics and mechanical endurance. This review systematically summarizes recent advancements in 3D-printed carbon-based electrodes across major energy storage systems, including supercapacitors, lithium-ion batteries, and metal–air batteries. Particular emphasis is placed on the design principles of carbon-based inks, multiscale structural engineering strategies, and process optimization methodologies. Furthermore, we prospect future research directions focusing on smart 4D printing-enabled dynamic regulation, multi-material integrated systems, and artificial intelligence-guided design frameworks to bridge the gap between laboratory prototypes and industrial-scale applications. Through multidisciplinary convergence spanning materials science, advanced manufacturing, and device engineering, 3D-printed carbon electrodes are poised to catalyze the development of next-generation high-performance, customizable energy storage systems. Full article
(This article belongs to the Special Issue Porous Carbon Nanomaterials and Their Composites for Energy Storage)
Show Figures

Figure 1

18 pages, 1471 KB  
Article
The Leaching of Valuable Metals (Li, Co, Ni, Mn, Cu) from Black Mass from Spent Lithium-Ion Batteries
by Rorie Gilligan, Glen P. O’Malley and Aleksandar N. Nikoloski
Metals 2025, 15(10), 1155; https://doi.org/10.3390/met15101155 - 19 Oct 2025
Cited by 2 | Viewed by 2875
Abstract
Near-complete (>99%) dissolution of lithium and cobalt was achieved by the leaching of black mass from spent (end-of-life) lithium-ion batteries (LiBs) using 4 M H2SO4 or HCl at 60 °C. Raising the temperature to 90 °C did not increase the [...] Read more.
Near-complete (>99%) dissolution of lithium and cobalt was achieved by the leaching of black mass from spent (end-of-life) lithium-ion batteries (LiBs) using 4 M H2SO4 or HCl at 60 °C. Raising the temperature to 90 °C did not increase the overall extraction of lithium or cobalt, but it increased the rate of extraction. At 60 °C, 2 M H2SO4 or 2 M HCl performed similarly to the 4 M H2SO4/HCl solution, although extractions were lower using 1 M H2SO4 or HCl (~95% and 98%, respectively). High extractions were also observed by leaching in low pulp density (15 g/L) at 60 °C with 2 M CH2ClCOOH. Leaching was much slower with hydrogen peroxide reductant concentrations below 0.5 mol/L, with cobalt extractions of 90–95% after 3 h. Pulp densities of up to 250 g/L were tested when leaching with 4 M H2SO4 or HCl, with the stoichiometric limit estimated for each test based on the metal content of the black mass. Extractions were consistently high, above 95% for Li/Ni/Mn/Cu with a pulp density of 150 g/L, dropping sharply above this point because of insufficient remaining acid in the solution in the later stages of leaching. The final component of the test work used leaching parameters identified in the previous experiments as producing the largest extractions, and just sulphuric acid. A seven-stage semi-continuous sulphuric acid leach at 60 °C of black mass from LiBs that had undergone an oxidising roast (2h in a tube furnace at 500 °C under flowing air) to remove binder material resulted in high (93%) extraction of cobalt and near total (98–100%) extractions of lithium, nickel, manganese, and copper. Higher cobalt extraction (>98%) was expected, but a refractory spinel-type cobalt oxide, Co3O4, was generated during the oxidising roast as a result of inefficient aeration, which reduced the extraction efficiency. Full article
Show Figures

Figure 1

20 pages, 6015 KB  
Article
Selective Lithium Extraction via Chlorination Roasting and Subsequent Valuable Metal Leaching from Spent Lithium-Ion Batteries
by Minji Kim, Seungyun Han, Yong Hwan Kim, Young-Min Kim and Eunmi Park
Metals 2025, 15(10), 1085; https://doi.org/10.3390/met15101085 - 29 Sep 2025
Viewed by 910
Abstract
The rapid growth of the electric vehicle (EV) market has highlighted the critical importance of securing a stable supply chain for lithium-ion battery (LIB) resources, thereby increasing the need for efficient recycling technologies. Among these, lithium recovery remains a major challenge due to [...] Read more.
The rapid growth of the electric vehicle (EV) market has highlighted the critical importance of securing a stable supply chain for lithium-ion battery (LIB) resources, thereby increasing the need for efficient recycling technologies. Among these, lithium recovery remains a major challenge due to significant losses during conventional processes. In this study, a chlorination roasting process was introduced to convert Li2O in spent LIBs into LiCl, which was subsequently evaporated for selective lithium extraction and recovery. Roasting experiments were conducted under air, vacuum, and N2 conditions at 800–1000 °C for 1–5 h, with Cl/Li molar ratios ranging from 0.5 to 8. The optimal condition for lithium evaporation, achieving 100% recovery, was identified as 1000 °C for 5 h, with a Cl/Li molar ratio of 6 under vacuum. Following lithium removal, residual valuable metals were extracted through H2SO4 leaching, and the effects of acid concentration and H2O2 addition on leaching efficiency were examined. The air-roasted samples exhibited the highest leaching performance, while the vacuum- and N2-roasted samples showed relatively lower efficiency; however, the addition of H2O2 significantly enhanced leaching yields in these cases. Full article
(This article belongs to the Section Extractive Metallurgy)
Show Figures

Graphical abstract

15 pages, 8527 KB  
Article
Breaking Redox Barriers in Lithium-Oxygen Batteries via Multiscale Architecture of Pyridinic Nitrogen-Doped Carbon-Encapsulated Cobalt Catalysts
by Yinkun Gao, Mingyang Liu, Yongqing Wan, Shuyun Guan, Yiman Ma, Xiaojie Xu, Yongming Zhu and Xudong Li
Catalysts 2025, 15(10), 923; https://doi.org/10.3390/catal15100923 - 28 Sep 2025
Viewed by 786
Abstract
Lithium-oxygen batteries (LOBs) are limited by sluggish oxygen redox kinetics and cathode instability. Herein, we report a cobalt particle catalyst encapsulated in nitrogen-doped carbon (Co@NC) with a three-dimensional hierarchical architecture, synthesized via a chitosan-derived hierarchical porous carbon framework. This innovative design integrates uniformly [...] Read more.
Lithium-oxygen batteries (LOBs) are limited by sluggish oxygen redox kinetics and cathode instability. Herein, we report a cobalt particle catalyst encapsulated in nitrogen-doped carbon (Co@NC) with a three-dimensional hierarchical architecture, synthesized via a chitosan-derived hierarchical porous carbon framework. This innovative design integrates uniformly dispersed ultra-thin carbon shells (11.7 nm), pyridinic nitrogen doping, and Co particles (1.41 μm) stabilized through carbon-support electronic coupling. The hierarchical porosity facilitates rapid O2/Li+ mass transport, while pyridinic N sites act as dual-function electrocatalytic centers for Li2O2 nucleation and charge transfer kinetics. Co@NC achieves 11,213 mAh g−1 at 200 mA g−1 (126.5% higher than nitrogen-doped carbon) and maintains 1.54 V overpotential (500 mAh g−1). These metrics outperform benchmark catalysts, addressing kinetic and stability challenges in LOBs. The study advances electrocatalyst design by integrating structural optimization, heteroatom doping, and electronic coupling strategies for high-performance metal–air batteries. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Graphical abstract

15 pages, 2191 KB  
Review
An Overview of Electrocatalysts Derived from Recycled Lithium-Ion Batteries for Metal–Air Batteries: A Review
by Karmegam Dhanabalan, Ganesan Sriram and Tae Hwan Oh
Energies 2025, 18(18), 4933; https://doi.org/10.3390/en18184933 - 16 Sep 2025
Viewed by 1055
Abstract
Waste lithium-ion batteries (LIBs), which usually contain dangerous organic electrolytes and transition metals, including nickel, cobalt, iron, and manganese, can hurt the environment and human health. Substantial advancements have been achieved in employing high-efficiency, economical, and environmentally sustainable techniques for the recycling of [...] Read more.
Waste lithium-ion batteries (LIBs), which usually contain dangerous organic electrolytes and transition metals, including nickel, cobalt, iron, and manganese, can hurt the environment and human health. Substantial advancements have been achieved in employing high-efficiency, economical, and environmentally sustainable techniques for the recycling of spent LIBs. Converting exhausted LIBs into efficient energy conversion catalysts straightforwardly is a good strategy for addressing metal resource constraints and clean energy concerns. This transforms waste cathodes, anodes, binders, and separators from depleted LIBs into electrocatalysts free of platinum group metals for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR). The composite, including transition metal oxide, graphene oxide, and carbon mass, will be synthesized from spent LIBs, demonstrating enhanced electrocatalytic activity. Utilizing “waste-to-energy” methods for used LIBs as catalysts would provide substantial benefits in environmental preservation and the effective production of functional materials in metal–air batteries. Full article
(This article belongs to the Special Issue Advanced Energy Materials: Innovations and Challenges)
Show Figures

Figure 1

19 pages, 1737 KB  
Article
Recovery of Valuable Raw Materials Using KOMAG Jig Beneficiation Laboratory Studies and Industrial Implementations
by Daniel Kowol, Piotr Matusiak, Dariusz Prostański, Rafał Baron, Paweł Friebe, Marcin Lutyński and Konrad Kołodziej
Minerals 2025, 15(9), 943; https://doi.org/10.3390/min15090943 - 4 Sep 2025
Cited by 1 | Viewed by 857
Abstract
Gravity beneficiation is a key operation in mineral processing and waste recycling, enabling the production of concentrates with required quality. Among gravity separators, pulsating jigs remain widely applied due to their robustness and adaptability. This study evaluates the KOMAG laboratory jig for upgrading [...] Read more.
Gravity beneficiation is a key operation in mineral processing and waste recycling, enabling the production of concentrates with required quality. Among gravity separators, pulsating jigs remain widely applied due to their robustness and adaptability. This study evaluates the KOMAG laboratory jig for upgrading diverse feedstocks: hard coal with variable ash content, gravel aggregates with organic impurities, post-mining waste, and battery scrap. Tests were performed on a two-chamber jig with an air-pulsation system and advanced control. The results confirmed the feasibility of obtaining coal concentrates with 8%–10% ash at 59%–71% yield, complete removal of organic contaminants from aggregates with minimal losses, and recovery of combustible fractions from post-mining waste with favourable separation parameters (d50 = 1.569 g/cm3, imperfection = 0.191). Beneficiation of shredded battery scrap achieved 74%–88% plastic removal and over 99% metallic recovery. Industrial implementations of KOMAG pulsating jigs validated these findings, showing high efficiency in coal, aggregate, and waste processing. This study demonstrates the versatility of pulsating jigging and its relevance in sustainable resource management, confirming that laboratory results can be effectively scaled to industrial practice. Full article
(This article belongs to the Special Issue Recycling of Mining and Solid Wastes)
Show Figures

Figure 1

31 pages, 7431 KB  
Review
Breaking the Polarization Bottleneck: Innovative Pathways to High-Performance Metal–Air Batteries
by Biao Ma, Deling Hong, Xiangfeng Wei and Jiehua Liu
Batteries 2025, 11(8), 315; https://doi.org/10.3390/batteries11080315 - 19 Aug 2025
Cited by 1 | Viewed by 3380
Abstract
Metal–air batteries have excellent theoretical energy density and economic advantages through abundant anode materials and open cathode structures. However, the actual energy efficiency of metal–air batteries is much lower than the theoretical value due to the effect of polarization voltage during battery operation, [...] Read more.
Metal–air batteries have excellent theoretical energy density and economic advantages through abundant anode materials and open cathode structures. However, the actual energy efficiency of metal–air batteries is much lower than the theoretical value due to the effect of polarization voltage during battery operation, limiting the power output and thus hindering their practical application. This review systematically dissects the origins of polarization: slow oxygen reduction/evolution reaction (ORR/OER) kinetics, interfacial resistance, and mass transfer bottlenecks. We highlight cutting-edge strategies to mitigate polarization, including atomic-level engineering of air cathodes (e.g., single-atom catalysts, low Pt catalysts), biomass-derived 3D porous electrodes, and electrolyte innovations (additives to inhibit corrosion, solid-state electrolytes to improve stability). In addition, breakthroughs in metal–H2O2 battery design using concentrated liquid oxygen sources are discussed. Together, these advances alleviate the battery polarization bottleneck and pave the way for practical applications of metal–air batteries in electric vehicles, drones, and deep-sea devices. Full article
(This article belongs to the Special Issue Batteries: 10th Anniversary)
Show Figures

Graphical abstract

15 pages, 4908 KB  
Article
Boosting the Bifunctional Catalytic Activity of La0.85Y0.15Ni0.7Fe0.3O3 Perovskite Air Electrode with Facile Hybrid Strategy of Metallic Oxide for Rechargeable Zn–Air Batteries
by Xiankai Yi, Guangwei Zhuang, Junhua Bai, Jiaxing Yan and Yifeng Zheng
Catalysts 2025, 15(8), 785; https://doi.org/10.3390/catal15080785 - 17 Aug 2025
Viewed by 1138
Abstract
Developing cost-effective, sustainable, and high-performance air electrode catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) remains a significant challenge in the advancement of rechargeable zinc–air batteries (ZABs). Herein, we successfully construct a vacancy-rich heterogeneous perovskite La0.85Y0.15 [...] Read more.
Developing cost-effective, sustainable, and high-performance air electrode catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) remains a significant challenge in the advancement of rechargeable zinc–air batteries (ZABs). Herein, we successfully construct a vacancy-rich heterogeneous perovskite La0.85Y0.15Ni0.7Fe0.3O3 (LYNF) hybridized with Co3O4 spinel nanoparticles using a simple chemical bath-assisted method. The Co3O4 composite LYNF material is systematically evaluated as the bifunctional catalyst for ZABs in the proportion of 25 wt%, 50w t%, and 75 wt% (denoted as LYNF-xCo3O4, x = 0.25, 0.5, 0.75). The results confirm an intimate coupling between the perovskite and spinel phases, along with a significant increase in oxygen vacancy concentration. Among the composites, LYNF-0.5Co3O4 exhibits the best performance, achieving an ORR onset potential of 0.813 V vs. RHE at −0.1 mA cm−2 and a lower OER overpotential of 441 mV at 10 mA cm−2. When applied as the air electrode catalyst in ZABs, LYNF-0.5Co3O4 displays the highest discharge voltage and a peak power density of 115 mW cm−2, representing a 20% improvement over pristine LYNF. The enhanced performance of the LYNF-0.5Co3O4 composite is attributed to the accumulation of Co3O4 nanoparticles within the LYNF matrix, which introduces numerous electrochemically active sites and facilitates the charge and mass transport during the catalytic process in ZABs. Full article
(This article belongs to the Special Issue Metal Oxide-Supported Catalysts)
Show Figures

Graphical abstract

27 pages, 10870 KB  
Review
Recent Advances in Improving the Alkaline Oxygen Reduction Performance of Atomically Dispersed Metal–Nitrogen–Carbon Catalysts
by Jian Chen, Zheng Li, Xiong Du, Mengran Wang, Simin Li, Qiyu Wang, Yangen Zhou and Yanqing Lai
Nanomaterials 2025, 15(16), 1257; https://doi.org/10.3390/nano15161257 - 15 Aug 2025
Viewed by 1971
Abstract
Atomically dispersed metal–nitrogen–carbon (M-N-C) catalysts are regarded as ideal catalytic materials for the oxygen reduction reaction (ORR) under alkaline conditions. Compared with other ORR catalysts, M-N-C catalysts exhibit notable advantages, including low cost, high atomic utilization efficiency, and considerable catalytic potential. We provide [...] Read more.
Atomically dispersed metal–nitrogen–carbon (M-N-C) catalysts are regarded as ideal catalytic materials for the oxygen reduction reaction (ORR) under alkaline conditions. Compared with other ORR catalysts, M-N-C catalysts exhibit notable advantages, including low cost, high atomic utilization efficiency, and considerable catalytic potential. We provide a systematic review of recent research advances in enhancing the ORR performance of M-N-C catalysts, focusing on catalytic activity and stability. First, the reaction mechanism of the ORR on the surfaces of the M-N-C catalysts is elucidated. Second, the primary strategies employed in recent years to improve their catalytic activity and stability are summarized. Finally, critical research directions that should be prioritized to expedite the commercialization of M-N-C catalysts are outlined. Full article
Show Figures

Figure 1

38 pages, 6998 KB  
Review
Silicon Carbide (SiC) and Silicon/Carbon (Si/C) Composites for High-Performance Rechargeable Metal-Ion Batteries
by Sara Adnan Mahmood, Nadhratun Naiim Mobarak, Arofat Khudayberdieva, Malika Doghmane, Sabah Chettibi and Kamel Eid
Int. J. Mol. Sci. 2025, 26(16), 7757; https://doi.org/10.3390/ijms26167757 - 11 Aug 2025
Cited by 2 | Viewed by 5043
Abstract
Silicon carbide (SiC) and silicon nanoparticle-decorated carbon (Si/C) materials are electrodes that can potentially be used in various rechargeable batteries, owing to their inimitable merits, including non-flammability, stability, eco-friendly nature, low cost, outstanding theoretical capacity, and earth abundance. However, SiC has inferior electrical [...] Read more.
Silicon carbide (SiC) and silicon nanoparticle-decorated carbon (Si/C) materials are electrodes that can potentially be used in various rechargeable batteries, owing to their inimitable merits, including non-flammability, stability, eco-friendly nature, low cost, outstanding theoretical capacity, and earth abundance. However, SiC has inferior electrical conductivity, volume expansion, a low Li+ diffusion rate during charge–discharge, and inevitable repeated formation of a solid–electrolyte interface layer, which hinders its commercial utilization. To address these issues, extensive research has focused on optimizing preparation methods, engineering morphology, doping, and creating composites with other additives (such as carbon materials, metal oxides, nitrides, chalcogenides, polymers, and alloys). Owing to the upsurge in this research arena, providing timely updates on the use of SiC and Si/C for batteries is of great importance. This review summarizes the controlled design of SiC-based and Si/C composites using various methods for rechargeable metal-ion batteries like lithium-ion (LIBs), sodium-ion (SIBs), zinc-air (ZnBs), and potassium-ion batteries (PIBs). The experimental and predicted theoretical performance of SiC composites that incorporate various carbon materials, nanocrystals, and non-metal dopants are summarized. In addition, a brief synopsis of the current challenges and prospects is provided to highlight potential research directions for SiC composites in batteries. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

Back to TopTop