Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (350)

Search Parameters:
Keywords = metabolic compensation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 594 KB  
Article
Integrated Mechanical and Cardiopulmonary Adaptations During Repeated Jumps in Volleyball Players: Insights from CPET Analysis
by Ștefan Adrian Martin, Isabella Pelaghie, George Mihăiță Gavra, Gabriela Szabo and Roxana Maria Martin-Hadmaș
Sports 2026, 14(1), 34; https://doi.org/10.3390/sports14010034 - 8 Jan 2026
Viewed by 159
Abstract
Volleyball physical performance relies on the interaction between mechanical power, metabolic efficiency, and ventilatory regulation during repeated high-intensity actions. This study examined mechanical and cardiopulmonary responses during three consecutive 15 s countermovement jump bouts in female volleyball players, using simultaneous cardiopulmonary exercise testing. [...] Read more.
Volleyball physical performance relies on the interaction between mechanical power, metabolic efficiency, and ventilatory regulation during repeated high-intensity actions. This study examined mechanical and cardiopulmonary responses during three consecutive 15 s countermovement jump bouts in female volleyball players, using simultaneous cardiopulmonary exercise testing. Eighteen female athletes (18–28 years) completed the protocol with 60 s active recovery between efforts. Mechanical performance showed a progressive decline (p < 0.01), with jump height decreasing from 20.59 ± 3.04 cm to 19.30 ± 3.23 cm and power output from 15.80 ± 2.61 to 14.83 ± 2.25 W/kg (p = 0.001). Oxygen uptake (VO2) increased from 16.40 ± 6.73 to 20.87 ± 6.08 mL/min/kg (p = 0.002), while respiratory exchange ratio (RER) rose above 1.0, suggesting a growing anaerobic contribution. VE/VO2 and PetO2 also increased significantly (p < 0.001), indicating ventilatory adjustment to metabolic stress. Despite these adaptations, recovery between efforts appeared incomplete, reflected by persistent ventilatory and metabolic activation. These findings suggest moderate oxidative efficiency and partial fatigue compensation under short recovery conditions. The testing model may serve as a practical approach to evaluate the interplay between mechanical and metabolic performance and to refine individualized conditioning strategies in volleyball players. Full article
(This article belongs to the Special Issue Advances in Health-Optimized Athletic Training)
Show Figures

Figure 1

17 pages, 868 KB  
Review
Neuromarkers of Adaptive Neuroplasticity and Cognitive Resilience Across Aging: A Multimodal Integrative Review
by Jordana Mariane Neyra Chauca, Manuel de Jesús Ornelas Sánchez, Nancy García Quintana, Karen Lizeth Martín del Campo Márquez, Brenda Areli Carvajal Juarez, Nancy Rojas Mendoza and Martha Ayline Aguilar Díaz
Neurol. Int. 2026, 18(1), 10; https://doi.org/10.3390/neurolint18010010 - 5 Jan 2026
Viewed by 285
Abstract
Background: Aging is traditionally characterized by progressive structural and cognitive decline; however, increasing evidence shows that the aging brain retains a remarkable capacity for reorganization. This adaptive neuroplasticity supports cognitive resilience—defined as the ability to maintain efficient cognitive performance despite age-related neural vulnerability. [...] Read more.
Background: Aging is traditionally characterized by progressive structural and cognitive decline; however, increasing evidence shows that the aging brain retains a remarkable capacity for reorganization. This adaptive neuroplasticity supports cognitive resilience—defined as the ability to maintain efficient cognitive performance despite age-related neural vulnerability. Objective: To synthesize current molecular, cellular, neuroimaging, and electrophysiological neuromarkers that characterize adaptive neuroplasticity and to examine how these mechanisms contribute to cognitive resilience across aging. Methods: This narrative review integrates findings from molecular neuroscience, multimodal neuroimaging (fMRI, DTI, PET), electrophysiology (EEG, MEG, TMS), and behavioral research to outline multiscale biomarkers associated with compensatory and efficient neural reorganization in older adults. Results: Adaptive neuroplasticity emerges from the coordinated interaction of neurotrophic signaling (BDNF, CREB, IGF-1), glial modulation (astrocytic lactate metabolism, regulated microglial activity), synaptic remodeling, and neurovascular support (VEGF, nitric oxide). Multimodal neuromarkers—including preserved frontoparietal connectivity, DMN–FPCN coupling, synaptic density (SV2A-PET), theta–gamma coherence, and LTP-like excitability—consistently correlate with resilience in executive functions, memory, and processing speed. Behavioral enrichment, physical activity, and cognitive training further enhance these biomarkers, creating a bidirectional loop between experience and neural adaptability. Conclusions: Adaptive neuroplasticity represents a fundamental mechanism through which older adults maintain cognitive function despite biological aging. Integrating molecular, imaging, electrophysiological, and behavioral neuromarkers provides a comprehensive framework to identify resilience trajectories and to guide personalized interventions aimed at preserving cognition. Understanding these multilevel adaptive mechanisms reframes aging not as passive decline but as a dynamic continuum of biological compensation and cognitive preservation. Full article
(This article belongs to the Section Aging Neuroscience)
Show Figures

Figure 1

21 pages, 2670 KB  
Article
Analysis of Photosynthetic Parameters, Yield, and Quality Correlations in Herbicide-Tolerant Transgenic Hybrid Cotton
by Ping He, Meiqi Liu, Haoyu Jiang, Zexing Zhang, Zitang Bian, Yongqiang Liu, Honglei Ma, Jianbo Zhu, Tianqi Jiao and Ruina Liu
Int. J. Mol. Sci. 2026, 27(1), 400; https://doi.org/10.3390/ijms27010400 - 30 Dec 2025
Viewed by 124
Abstract
Weed stress remains a major limiting factor in cotton production, and glyphosate-tolerant varieties provide an effective solution for chemical weed control. However, achieving a balance between herbicide tolerance and agronomic physiological traits remains challenging. In this study, three hybrid combinations were generated by [...] Read more.
Weed stress remains a major limiting factor in cotton production, and glyphosate-tolerant varieties provide an effective solution for chemical weed control. However, achieving a balance between herbicide tolerance and agronomic physiological traits remains challenging. In this study, three hybrid combinations were generated by crossing a glyphosate-tolerant cotton line (GGK2) with conventional elite lines and were comprehensively evaluated. Gene expression analysis revealed that the classical detoxification gene GAT was significantly downregulated in all hybrid combinations, whereas the expression of GR79-EPSPS, a gene associated with glutathione metabolism and oxidative stress response, was markedly elevated, particularly in the GGK2 × Y4 combination. This differential expression pattern suggests that GR79-EPSPS may compensate for the reduced function of GAT by conferring oxidative protection under herbicide stress. Physiological determination indicated that hybrid combinations with enhanced GR79-EPSPS expression, especially GGK2 × Y5, exhibited superior photosynthetic pigment composition and photosystem II (PSII) efficiency, validating the role of GR79-EPSPS in maintaining photosynthetic stability. Agronomic trait assessment demonstrated that GGK2 × Y4 achieved significant biomass accumulation and yield improvement through heterosis, although fiber quality improvement was limited. This study effectively enhanced the herbicide resistance of conventional cotton through crossbreeding and revealed that the interaction between GR79-EPSPS and GAT can improve cotton tolerance to herbicides, thereby providing a breeding strategy for developing cotton varieties with both herbicide tolerance and superior agronomic traits. Full article
(This article belongs to the Special Issue 25th Anniversary of IJMS: Updates and Advances in Molecular Biology)
Show Figures

Figure 1

18 pages, 2738 KB  
Case Report
Ultrasound Images That Speak: Assessing the Therapeutic Decision in the Emergency Department Regarding the Risk–Benefit Ratio of Systemic Thrombolysis in Intermediate-High-Risk Pulmonary Embolism—A Case Report
by Adela Golea, Raluca Mihaela Tat, Carina Adam, Sonia Luka, Mirela Anca Stoia and Ștefan Cristian Vesa
Diagnostics 2026, 16(1), 48; https://doi.org/10.3390/diagnostics16010048 - 23 Dec 2025
Viewed by 273
Abstract
Background: The management of acute pulmonary embolism (PE) in the Emergency Department (ED) remains challenging, particularly in hemodynamically and respiratory stable patients with minimal symptoms. Diagnostic and therapeutic difficulties are further compounded when the condition is complicated by a mobile right atrial [...] Read more.
Background: The management of acute pulmonary embolism (PE) in the Emergency Department (ED) remains challenging, particularly in hemodynamically and respiratory stable patients with minimal symptoms. Diagnostic and therapeutic difficulties are further compounded when the condition is complicated by a mobile right atrial (RA) thrombus, representing an extreme-risk phenotype. Case Presentation: We report the case of a 65-year-old male with a single known venous thromboembolism risk factor-chronic venous insufficiency-who presented to the ED following a transient episode of severe dyspnea at home. On admission, he was hemodynamically and respiratory stable, without the need for oxygen supplementation. Arterial blood gas analysis revealed a metabolically compensated acidosis with elevated lactate, while cardiac biomarkers were moderately increased. Emergency point-of-care transthoracic echocardiography (POCUS-TTE) demonstrated severe right ventricular (RV) dysfunction and a large, mobile intracardiac thrombus prolapsing through the tricuspid valve. Computed Tomography Pulmonary Angiography confirmed pulmonary embolism and revealed a massive and extensive bilateral thrombotic burden (Qanadli score 32 points). Given the extreme risk for fatal embolization, immediate full-dose systemic thrombolysis with Alteplase (100 mg over 2 h) was initiated in the ED. Thrombolysis was completed without hemorrhagic complications. Follow-up POCUS-TTE at 2 h showed complete resolution of the intracardiac thrombus and significant improvement of RV function (RV/RA gradient reduced from 40 mmHg to 28 mmHg). Conclusions: This case highlights the effectiveness and safety of early systemic thrombolysis guided by ED POCUS-TTE in PE with a massive thrombotic burden, complicated by a mobile intracardiac thrombus, even in the absence of shock. Such prompt intervention may reduce mortality risk in intermediate-to-high-risk PE subsets, despite limited guidance in current clinical recommendations. Full article
(This article belongs to the Special Issue New Trends in Ultrasound Imaging)
Show Figures

Figure 1

14 pages, 1726 KB  
Article
Temporal Dynamics of Ecosystem Service Values in Aquaculture Ponds: A Case Study of Grass Carp Pond Systems in Songjiang District, Shanghai, China
by Binjie Xu, Deli Yang and Xinyang Xue
Sustainability 2026, 18(1), 82; https://doi.org/10.3390/su18010082 - 20 Dec 2025
Viewed by 261
Abstract
To systematically quantify the ecosystem service values in aquaculture ponds and reveal their temporal dynamics, this study provides a scientific basis for promoting sustainable green aquaculture and enhancing ecological and economic benefits. Using a 0.4 hm2 grass carp pond in Songjiang District, [...] Read more.
To systematically quantify the ecosystem service values in aquaculture ponds and reveal their temporal dynamics, this study provides a scientific basis for promoting sustainable green aquaculture and enhancing ecological and economic benefits. Using a 0.4 hm2 grass carp pond in Songjiang District, Shanghai as the study site, we developed an evaluation framework of “base equivalent—dynamic equivalent—value quantification” and incorporated temperature spatiotemporal adjustment factors and social development coefficients to refine traditional models. The results indicate significant seasonal fluctuations in ecosystem service values for grass carp ponds. The highest value occurs in July at 21,868.21 CNY, and the lowest occurs in February at 4110.22 CNY, with a peak-to-trough ratio of 5.3. Among the five service functions, hydrological regulation accounts for the largest share (approximately 55%), followed by gas regulation (20%) and climate regulation (10%), while environmental purification and aesthetic landscapes, though contributing smaller proportions, remain indispensable. Temperature adjustment factors significantly enhance aquatic plant photosynthesis and microbial metabolism during high-temperature periods (>25 °C), whereas low temperatures suppress these ecological processes. The integration of social development coefficients effectively corrects underestimations of willingness to pay for cultural services. Compared to traditional seasonal-scale assessments, the monthly-scale approach substantially improves the explanatory power for pond ecological processes, offering quantitative support for differentiated ecological compensation mechanisms and optimized aquaculture management practices. Full article
(This article belongs to the Special Issue Bringing Ecosystem Services into Decision-Making—2nd Edition)
Show Figures

Figure 1

26 pages, 1894 KB  
Article
Biochemical Associations with Depression, Anxiety, and Stress in Hemodialysis: The Role of Albumin, Calcium, and β2-Microglobulin According to Gender
by Gloria M. Zaragoza Fernández, Elena Jiménez Mayor, Avinash Chandu Nanwani, Celia Rodríguez Tudero, José C. De La Flor and Rafael Fernández Castillo
Biomedicines 2025, 13(12), 3092; https://doi.org/10.3390/biomedicines13123092 - 15 Dec 2025
Viewed by 391
Abstract
Background: Psychological distress is common in hemodialysis patients and is linked to worse clinical outcomes and lower quality of life. Nutritional and inflammatory disturbances may impact emotional well-being. Gender likely acts as a biological and psychosocial modifier. This study examined the link [...] Read more.
Background: Psychological distress is common in hemodialysis patients and is linked to worse clinical outcomes and lower quality of life. Nutritional and inflammatory disturbances may impact emotional well-being. Gender likely acts as a biological and psychosocial modifier. This study examined the link between depression, anxiety, and stress in hemodialysis patients and a broad range of biochemical markers, focusing on gender as a main factor. Methods: A cross-sectional study included 54 adults on maintenance hemodialysis at a hospital in Madrid, Spain. Emotional distress was measured using the DASS-21. Predialysis biochemical markers assessed were β2-microglobulin, albumin, hemoglobin, hematocrit, phosphorus, potassium, iron, calcium, and vitamin D. Statistical analyses included Spearman correlations, HC3-robust regressions with Gender × Biomarker interactions, false discovery rate correction (q = 0.10), penalized regressions (ridge/LASSO), partial least squares structural equation modeling (PLS-SEM), and mixed-cluster analysis. Results: Women reported higher depression, anxiety, and stress, and had lower albumin, calcium, and vitamin D (p < 0.05). Depression was independently linked to female gender, lower calcium, and the Gender × β2-microglobulin interaction (adjusted R2 = 0.30). In PLS-SEM analysis, a latent global psychological distress measure was directly related to β2-microglobulin and inversely related to albumin and calcium (R2 = 0.47). Nutritional markers partly mediated the gender–distress link. Cluster analysis found three biopsychosocial profiles: metabolically balanced, catabolic–emotional, and resilient–compensated. Conclusions: Gender shapes the relationships among inflammation, nutrition, and psychological distress in hemodialysis. Including gender-sensitive emotional and nutritional assessments in nephrology nursing could foster more personalized and practical care. Findings highlight the value of gender-aware psycho-nutritional screening in dialysis. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

12 pages, 913 KB  
Review
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): New Perspectives on an Evolving Epidemic
by Gerond Lake-Bakaar
J. Clin. Med. 2025, 14(24), 8872; https://doi.org/10.3390/jcm14248872 - 15 Dec 2025
Viewed by 536
Abstract
The absence of a unifying pathogenetic mechanism in metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), has significantly hindered therapeutic progress. Appreciation that the delivery of excessive amounts of calories to the liver via the portal circulation [...] Read more.
The absence of a unifying pathogenetic mechanism in metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), has significantly hindered therapeutic progress. Appreciation that the delivery of excessive amounts of calories to the liver via the portal circulation might be a key parallel between MASLD and the twin steatotic liver disease, alcohol-related liver disease (ALD), establishes a consolidated framework that could guide rational drug design and precise therapeutic approaches. This review contends that, in both ALD and MASLD, the unique dual blood supply to the liver, from both portal vein and hepatic artery as well as the distinctive blood flow control physiology, prevents hepatic arterial oxygen delivery from adequately compensating for the increased metabolic demands induced by excess caloric intake—alcohol in ALD and food in MASLD—resulting in hepatocellular injury. Over four decades ago, Lautt postulated that this ‘oxygen-nutrient mismatch’ could play a role in ALD. We have extended this paradigm to MASLD, theorizing that analogous mechanisms may be involved in both conditions. Evidence that comorbidities, which are associated with recurrent episodes of hypoxemia, such as obstructive sleep apnea (OSA), exacerbate MASLD progression, supports this. ALD is less strongly linked to metabolic syndrome than MASLD. This may be due to inherent differences in hepatic substrate processing. Carbohydrates, lipids, and proteins undergo diverse and flexible cytosolic metabolic pathways, especially under metabolic stress. In contrast, hepatic ethanol metabolism is predominantly linear and obligately oxidative, providing limited metabolic adaptability. Future perspectives could focus on rectifying the imbalance between hepatic oxygen delivery and nutrient availability. This might be accomplished by attenuating hepatic caloric excess using emerging pharmacotherapies for weight reduction, augmenting hepatic oxygenation through hyperbaric oxygen therapy, or increasing hepatic arterial blood flow with agents such as obeticholic acid. Furthermore, enhancement of hepatic basal metabolic activity with thyroid hormone receptor-β agonists, like resmiritom may confer similar therapeutic effects. Full article
Show Figures

Figure 1

14 pages, 2021 KB  
Article
Metabolic and Neuroenergetic Effects of Intranasal Vitamin C Application in the Human Brain
by Lena-Christin Ingwersen, Alina Kistenmacher, Uwe H. Melchert and Kerstin M. Oltmanns
Nutrients 2025, 17(24), 3875; https://doi.org/10.3390/nu17243875 - 11 Dec 2025
Viewed by 492
Abstract
Background: Compared with normal weight, obese individuals display a variety of deviant measures in neuroenergetic status, food intake behavior, glucose metabolism, and circulating vitamin C levels. A chronically lowered neuroenergetic content is associated with increased food intake and disturbed glucose metabolism in [...] Read more.
Background: Compared with normal weight, obese individuals display a variety of deviant measures in neuroenergetic status, food intake behavior, glucose metabolism, and circulating vitamin C levels. A chronically lowered neuroenergetic content is associated with increased food intake and disturbed glucose metabolism in obesity. In turn, a vitamin C deficiency found in obesity may be connected to these disturbances. Therefore, we investigated the effects of vitamin C application in the human brain. Methods: We intranasally applied vitamin C (80 mg ascorbic acid/day) vs. placebo for 8 consecutive days in 15 normal weight (BMI 20–25 kg/m2) and 15 obese (BMI > 30 kg/m2) men. The neuroenergetic content of adenosine triphosphate (ATP) and phosphocreatine (PCr) was assessed by 31phosphorous magnetic resonance spectroscopy, a non-invasive real-time technique to measure high-energy phosphate compounds in living tissues. Peripheral vitamin C, glucose, and insulin concentrations were measured, and spontaneous food intake was quantified by the standardized buffet test. Results: In the obese group, vitamin C application acutely suppressed the physiological insulin response on the first experimental day (p = 0.003). The following eight days of intranasal vitamin C led to higher serum vitamin C concentrations as compared to placebo (p = 0.011), compensated for the missing food intake-induced serum vitamin C rise (p ≤ 0.002), and attenuated a PCr decline (p = 0.008) in this group. Correlation analyses revealed a general link between serum vitamin C concentrations and the neuroenergetic state in both groups (p ≤ 0.033). Food intake was not influenced. Conclusions: Intranasal vitamin C application acutely improves insulin sensitivity, compensates for a vitamin C deficiency, and may act in a neuroprotective way in obese men. It could therefore be a future candidate as an adjuvant therapeutic option in obesity treatment. Full article
(This article belongs to the Special Issue Dietary Factors and Interventions for Cognitive Neuroscience)
Show Figures

Figure 1

16 pages, 2641 KB  
Article
Synaptic Changes in Mice Lacking Alpha- and Gamma-Synucleins
by Anastasia M. Krayushkina, Olga Morozova, Anastasia Khizeva, Tamara A. Ivanova, Natalia Ninkina and Kirill Chaprov
Biomedicines 2025, 13(12), 2866; https://doi.org/10.3390/biomedicines13122866 - 25 Nov 2025
Viewed by 515
Abstract
Background: Alpha-synuclein is a key protein involved in the pathogenesis of Parkinson disease (PD). Its intermediate aggregated forms disturb the normal function of dopaminergic (DA) neurons. Furthermore, the loss of intraneuronal connections may precede nerve cell death in PD. Disturbance of presynaptic functions [...] Read more.
Background: Alpha-synuclein is a key protein involved in the pathogenesis of Parkinson disease (PD). Its intermediate aggregated forms disturb the normal function of dopaminergic (DA) neurons. Furthermore, the loss of intraneuronal connections may precede nerve cell death in PD. Disturbance of presynaptic functions of alpha-synuclein and its family members, beta- and gamma-synuclein, can apparently be the first step in nigrostriatal system dysfunction. Based on their structure homology and subcellular localization, the three synuclein proteins could have overlapping functions. This also indicates necessitates to study each protein in isolation. Methods: We have established a unique mouse line with conditional knockout (KO) of alpha-synuclein inactivation on the background of gamma-synuclein KO. Results: During the early phase of alpha-synuclein loss of function, mice demonstrate reduced explorer activity, decreased gene expression of Mao-B in the midbrain, and transiently increased levels of beta-synuclein protein in the striatum after alpha-synuclein inactivation, as results, metabolism of dopamine stays unscathed. These changes can be caused by specific regulation of Mao-B by alpha-synuclein or can be a physiological reaction aimed at restoring alpha-synuclein levels. No significant changes in gene expression patterns of dopamine-related enzymes in the midbrain or protein levels in the striatum and midbrain were observed. Conclusions: Our data suggest that sudden alpha-synuclein depletion leads to an increase in beta-synuclein levels, likely as functional replacement. This result supports that beta-synuclein can compensate the loss of alpha-synuclein. In general, this process may characterize synapse reconstruction in early alpha-synuclein dysfunction with gamma-synuclein absence and form the basis for replacement therapeutic strategies in PD. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

17 pages, 2818 KB  
Article
Brine Shrimp Feeding Contributes to Fast Growth and Enhanced Immune Capacity of Reattached Polyps of Scleractinian Coral Pocillopora damicornis
by Haifeng Huang, Yi Wang and Zhaoqun Liu
Animals 2025, 15(22), 3318; https://doi.org/10.3390/ani15223318 - 17 Nov 2025
Viewed by 412
Abstract
Reef restoration is the major way to compensate the loss of scleractinian corals, which requires huge amounts of transplantation donors. Previous study revealed that some species of corals can conduct polyp bailout and reattachment under environmental stress, which contributes to the living of [...] Read more.
Reef restoration is the major way to compensate the loss of scleractinian corals, which requires huge amounts of transplantation donors. Previous study revealed that some species of corals can conduct polyp bailout and reattachment under environmental stress, which contributes to the living of coral communities and offer a novel way to produce numerous coral colonies for reef restoration. In the present study, physiological and transcriptomic approaches were conducted to illustrate the effects and molecular mechanisms of brine shrimp feeding on the newly attached polyps of coral Poccillopora damicornis. It was observed that brine shrimp feeding significantly prompted the growth of reattached polyps by elevating polyp diameter, number of new polyps, weight of the calcified skeleton, symbiont density, chlorophyll a + c2 content and Ea values. Transcriptomic analysis also inferred that signaling pathways responsive for energy metabolism, cell growth and biomineralization were dramatically activated. Furthermore, brine shrimp feeding enhanced the immunity of the reattached polyps by suppressing caspase-3 activation level and elevating antioxidant capacity. These results collectively reveals the influence and detailed molecular mechanisms of brine shrimp feeding on the growth of newly reattached coral polyps, which shed light on the potential application of such methods in the cultivation of coral transplantation donors. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

21 pages, 2863 KB  
Article
Evaluation of Functional Marine Protein Hydrolysates as Fish Meal Replacements in Low-Fish-Meal Diets: Effects on Growth Performance, Feed Utilization, and Health Status of Asian Seabass (Lates calcarifer)
by Dachawat Poonnual, Siriporn Tola and Bundit Yuangsoi
Animals 2025, 15(22), 3285; https://doi.org/10.3390/ani15223285 - 13 Nov 2025
Viewed by 835
Abstract
An eight-week study was conducted to evaluate the effects of dietary marine protein hydrolysates as fish meal replacements in low-fish-meal diets on the growth performance, feed utilization, and health status of Asian seabass (Lates calcarifer). The high-fish-meal (HFM) diet contained 25% [...] Read more.
An eight-week study was conducted to evaluate the effects of dietary marine protein hydrolysates as fish meal replacements in low-fish-meal diets on the growth performance, feed utilization, and health status of Asian seabass (Lates calcarifer). The high-fish-meal (HFM) diet contained 25% fish meal, while the low-fish-meal (LFM) diet replaced 60% of the fish meal with soybean meal. Three experimental diets were formulated by supplementing the LFM diet with 5% tuna hydrolysate (TH), 2% shrimp hydrolysate (SH), and 5% salmon silage (SS), each replacing an equivalent amount of fish meal. These diets were designated as LFM + TH, LFM + SH, and LFM + SS, respectively. The results showed that the LFM + TH diet significantly improved the percentage of weight gain, average daily growth, specific growth rate, protein efficiency ratio, and feed conversion ratio compared to the LFM diet (p < 0.05), without negatively affecting feed intake or metabolic markers. Histological analysis revealed improved villus length and goblet cell count in the intestine, indicating better nutrient absorption (p < 0.05). However, no significant differences were observed in hematological and immunological parameters, blood plasma metabolic markers, or carcass proximate composition (p > 0.05). Furthermore, the LFM + TH diet exhibited superior survival rates under ammonia stress, highlighting its potential to enhance stress tolerance. These findings suggest that marine protein hydrolysates, particularly 5%TH, can serve as a sustainable and efficient alternative to fish meal protein in diets with up to 60% in soybean meal compensation, promoting better growth and survival in Asian seabass. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

17 pages, 7821 KB  
Article
Systematic Analysis of Fertility Conversion via WGCNA Implicates a Compensatory Regulatory Network in a Reverse Thermosensitive Genic Male Sterility Line of Eggplant (Solanum melongena L.)
by Bing Li, Yongpeng Li, Peng Tian, Jingjing Zhang, Wei Liu, Xiurui Gao and Yanrong Wu
Int. J. Mol. Sci. 2025, 26(22), 10873; https://doi.org/10.3390/ijms262210873 - 9 Nov 2025
Viewed by 458
Abstract
Thermosensitive genic male sterility (TGMS) lines are vital for two-line hybrid breeding. However, the molecular mechanism in the reverse TGMS line 05ms in eggplant remains unclear. Weighted gene co-expression network analysis (WGCNA) of RNA-seq data revealed modules correlated with fertility conversion enriched in [...] Read more.
Thermosensitive genic male sterility (TGMS) lines are vital for two-line hybrid breeding. However, the molecular mechanism in the reverse TGMS line 05ms in eggplant remains unclear. Weighted gene co-expression network analysis (WGCNA) of RNA-seq data revealed modules correlated with fertility conversion enriched in carbohydrate metabolism, lipid metabolism, and mRNA surveillance pathways. Hub genes within these modules were predominantly associated with sugar-related processes, fatty acid metabolism, and nucleotide processing. BSA-seq defined candidate genomic intervals. Integrated analysis of BSA-seq intervals and transcriptomic data identified a candidate gene, SmHTH, with consistently lower expression in 05ms compared to S63. Its homologs exhibited temperature-induced expression, possibly compensating for SmHTH deficiency under high temperatures to restore fertility. The homologs co-expressed with three transcription factors are likely intricately linked to this response. We propose a compensatory model demonstrating that low SmHTH expression at low temperatures disrupts key metabolic pathways, causing male sterility. Conversely, elevated expression of homologous genes and transcription factors (TFs) at higher temperatures compensates for the loss of SmHTH function, thereby restoring fertility. The findings of this research not only deepen the theoretical understanding of plant male sterility mechanisms but also provide valuable resources for developing stress-resilient vegetable varieties through modern breeding techniques. Full article
Show Figures

Figure 1

26 pages, 3160 KB  
Review
Gut Microbiota and Ferroptosis in Colorectal Cancer: A Comprehensive Review of Mechanisms and Therapeutic Strategies to Overcome Immune Checkpoint Resistance
by Yingchang Cai, Feng Zhao and Xiaofei Cheng
Biomolecules 2025, 15(11), 1546; https://doi.org/10.3390/biom15111546 - 3 Nov 2025
Cited by 1 | Viewed by 1688
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related mortality worldwide. Although immune checkpoint inhibitors (ICIs) have achieved striking clinical efficacy in the subset of CRCs with mismatch repair deficiency/high microsatellite instability (dMMR/MSI-H), the vast majority of patients—those with proficient mismatch repair/microsatellite-stable (pMMR/MSS) [...] Read more.
Colorectal cancer (CRC) remains a leading cause of cancer-related mortality worldwide. Although immune checkpoint inhibitors (ICIs) have achieved striking clinical efficacy in the subset of CRCs with mismatch repair deficiency/high microsatellite instability (dMMR/MSI-H), the vast majority of patients—those with proficient mismatch repair/microsatellite-stable (pMMR/MSS) tumors—derive little benefit from current immunotherapies. Ferroptosis, an iron-dependent form of regulated cell death driven by lethal accumulation of lipid peroxides, has emerged as a promising antitumor mechanism that can interact with and modulate antitumor immunity. Concurrently, the gut microbiota exerts powerful control over host metabolism and immune tone through microbial community structure and metabolite production; accumulating evidence indicates that microbiota-derived factors can either sensitize tumors to ferroptosis (for example, via short-chain fatty acids) or confer resistance (for example, indole-3-acrylic acid produced by Peptostreptococcus anaerobius acting through the AHR→ALDH1A3→FSP1/CoQ axis). In this review we synthesize mechanistic data linking microbial ecology, iron and lipid metabolism, and immune regulation to ferroptotic vulnerability in CRC. We discuss translational strategies to exploit this “microbiota–ferroptosis” axis—including precision microbiome modulation, dietary interventions, pharmacologic ferroptosis inducers, and tumor-targeted delivery systems—and we outline biomarker frameworks and trial designs to evaluate combinations with ICIs. We also highlight major challenges, such as interindividual microbiome variability, potential collateral harm to ferroptosis-sensitive immune cells, adaptive antioxidant compensation (e.g., NRF2/FSP1 activation), and safety/regulatory issues for live biotherapeutics. In summary, this review highlights that targeting the microbiota-ferroptosis axis may represent a rational and potentially transformative approach to reprogramming the tumor microenvironment and overcoming immune checkpoint resistance in pMMR/MSS colorectal cancer; however, further research is essential to validate this concept and address existing challenges. Full article
Show Figures

Figure 1

14 pages, 2457 KB  
Article
Effect of High-Temperature Stress on Fatty Acid Composition and Undecylprodiginine Biosynthesis in Streptomyces coelicolor M511
by Youngjong Han, Yujun Park, Kyudong Han and SangJoon Mo
Microorganisms 2025, 13(11), 2520; https://doi.org/10.3390/microorganisms13112520 - 1 Nov 2025
Viewed by 722
Abstract
Actinomycetes are a representative group of bacteria that inhabit soil; in particular, Streptomyces coelicolor M511 produces actinorhodin and undecylprodiginine. Among them, undecylprodiginine has antibiotic and immunosuppression activity and is a secondary metabolite with high potential applications in biotechnological and pharmaceutical fields. High temperature [...] Read more.
Actinomycetes are a representative group of bacteria that inhabit soil; in particular, Streptomyces coelicolor M511 produces actinorhodin and undecylprodiginine. Among them, undecylprodiginine has antibiotic and immunosuppression activity and is a secondary metabolite with high potential applications in biotechnological and pharmaceutical fields. High temperature stress (37 °C) reduced the biosynthesis of undecylprodiginine and induced specific branched chain alkylprodiginine derivatives, compared with the optimal growth temperature (30 °C). Also, the stress stimulated the synthesis of straight-chain FA for enhancing membrane rigidity. The inhibition of undecylprodiginine biosynthesis under high temperature stress seems to be induced by the heat sensitivity of the RedP enzyme, and this inhibition is compensated by FAS FabH. Since FabH, a homologue of RedP, has a broader substrate specificity, it leads to the production of methylundecylprodiginine and methyldodecylprodiginine. The external addition of isoleucine (as well as that of leucine and valine to a far lesser extent) enhances the synthesis of these derivatives since isoleucine catabolism generates precursors used for the biosynthesis of these compounds. These findings reveal temperature-dependent changes in precursor utilization and prodiginine diversity, providing insights into metabolic plasticity and strategies establishing a foundation for secondary metabolite derivatives engineering strategies through precursor supplementation or temperature regulation. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

18 pages, 12737 KB  
Article
Ultrastructural and Proteomic Analyses Revealed the Mechanism by Which Foliar Spraying of Se Nanoparticles Alleviated the Toxicity of Microplastics in Pistia stratiotes L.
by Sixi Zhu, Haobin Yang, Yutian Lv, Suxia Sun, Wei Zhao and Zhongbing Chen
Toxics 2025, 13(11), 938; https://doi.org/10.3390/toxics13110938 - 30 Oct 2025
Viewed by 627
Abstract
The uptake and accumulation of nanoplastics by plants have emerged as a major research focus. Exogenous selenium nanoparticles (SeNPs) are widely used to mitigate the toxicity of abiotic stresses, such as nanoplastics (NPs) and polyethylene (PE—NPs) nanoplastics, and represent a feasible strategy to [...] Read more.
The uptake and accumulation of nanoplastics by plants have emerged as a major research focus. Exogenous selenium nanoparticles (SeNPs) are widely used to mitigate the toxicity of abiotic stresses, such as nanoplastics (NPs) and polyethylene (PE—NPs) nanoplastics, and represent a feasible strategy to enhance plant performance. However, the molecular mechanisms by which SeNPs alleviate the phytotoxicity of microplastics and nanoplastics remain poorly defined. To address this gap, we used Pistia stratiotes L. (P. stratiotes) as a model and silicon dioxide nanoparticles (SiO2NPs) as a comparator, integrating physiological assays, ultrastructural observations, and proteomic analyses. We found that NP stress caused ultrastructural damage in root tips, exacerbated oxidative stress, and intensified membrane lipid peroxidation. SeNPs treatment significantly mitigated NP-induced oxidative injury and metabolic suppression. Compared to the NPs group, SeNPs increased T-AOC by 38.2% while reducing MDA and ·OH by 33.3% and 89.6%, respectively. Antioxidant enzymes were also elevated, with CAT and POD rising by 47.1% and 39.2%. SeNPs further enhanced the photosynthetic capacity and osmotic adjustment, reflected by increases in chlorophyll a, chlorophyll b, and soluble sugar by 49.7%, 43.8%, and 27.0%, respectively. In contrast, proline decreased by 17.4%, indicating stress alleviation rather than an osmotic compensation response. Overall, SeNPs outperformed SiO2NPs. These results indicate that SeNPs broadly strengthen anti-oxidative defenses and metabolic regulation in P. stratiotes, effectively alleviating NP-induced oxidative damage. Proteomics further showed that SeNPs specifically activated the MAPK signaling cascade, phenylpropanoid biosynthesis, and energy metabolic pathways, enhancing cell-wall lignification to improve the mechanical barrier and limiting NPs translocation via a phytochelatin-mediated vacuolar sequestration mechanism. SiO2NPs produced similar but weaker alleviative effects. Collectively, these findings elucidate the molecular basis by which SeNPs mitigate NPs’ phytotoxicity and provide a theoretical foundation and practical outlook for using nanomaterials to enhance phytoremediation in aquatic systems. Full article
Show Figures

Graphical abstract

Back to TopTop