Temporal Dynamics of Ecosystem Service Values in Aquaculture Ponds: A Case Study of Grass Carp Pond Systems in Songjiang District, Shanghai, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Calculation of Standard Equivalent Factor Value
2.3. Base Equivalents of Unit Area Ecosystem Service Values
2.4. Construction of Dynamic Equivalent Tables for Unit Area Ecosystem Service Values
2.4.1. Temperature Spatiotemporal Adjustment Factor ()
2.4.2. Social Development Coefficient Spatiotemporal Adjustment Factor
3. Results
3.1. Results of Ecosystem Service Values in the Grass Carp Aquaculture Life Cycle
3.2. Analysis of Ecosystem Service Values in the Grass Carp Aquaculture Life Cycle
4. Discussion
4.1. Scientific Significance of Improvements in the Assessment Method
4.2. Sustainable Development Suggestions
- (1)
- Adaptive pond management and nature-based water quality enhancement. Implement seasonally adaptive pond management by aligning stocking density, feeding regimes, aeration intensity, and aquatic vegetation management with temperature-driven shifts in gas regulation, environmental purification, and hydrological regulation so that peak service provision in warm months is reinforced while baseline functions are maintained during cold periods. In parallel, promote nature-based water quality enhancement by integrating constructed wetlands or ecological ditches with pond inflow–outflow pathways, coupled with routine sediment management and nutrient budgeting, to stabilize environmental purification capacity and reduce pollution risks without compromising production.
- (2)
- Watershed-oriented governance and ecological compensation. Establish a watershed-oriented ecological compensation scheme by linking payments to verified service outcomes—prioritizing hydrological regulation and water security functions given their dominant contribution to total ESV—and using the study’s dynamic accounting framework to set differentiated standards across months and management practices.
- (3)
- Value realization and cultural service expansion under safeguards. Develop market mechanisms for realizing regulating services by building MRV-compatible carbon and ecosystem service accounting protocols for pond systems, enabling carbon credit participation and other tradable instruments that internalize non-market benefits and incentivize low-carbon, resource-efficient practices. Expand cultural services under ecological safeguards by encouraging pond-based ecological education, research access, and low-impact recreation (e.g., landscape-oriented visitation) while applying carrying capacity controls and biosecurity measures so that cultural value grows without eroding regulating services.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fisheries and Fishery Administration, Ministry of Agriculture and Rural Affairs; National Aquatic Technology Extension Center; Chinese Society of Fisheries. China Fisheries Statistical Yearbook 2025; China Agriculture Press: Beijing, China, 2025; pp. 21–49.
- Costanza, R.; d’Arge, R.; Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Brander, L.M.; de Groot, R.; Schägner, J.P.; Guisado-Goñi, V.; van ‘t Hoff, V.; Solomonides, S.; McVittie, A.; Eppink, F.; Sposato, M.; Do, L.; et al. Economic values for ecosystem services: A global synthesis and way for ward. Ecosyst. Serv. 2024, 66, 101606. [Google Scholar] [CrossRef]
- Ouyang, Z.; Wang, R.; Zhao, J. Ecosystem Service Functions and Their Ecological-Economic Value Assessment. Chin. J. Appl. Ecol. 1999, 10, 635–640. [Google Scholar] [CrossRef]
- Ouyang, Z.; Wang, X.; Miao, H. A Preliminary Study on the Service Functions and Ecological-Economic Value of China’s Terrestrial Ecosystems. Acta Ecol. Sin. Chin. 1999, 69, 19–25. [Google Scholar]
- Zhao, T.; Ouyang, Z.; Wang, X.; Miao, H.; Wei, Y. Functional and Ecological-Economic Value Assessment of Terrestrial Surface Water Ecosystem Services in China. Chin. J. Nat. Resour. 2003, 18, 443–452. [Google Scholar] [CrossRef]
- Zhao, T.; Ouyang, Z.; Zheng, H.; Wang, X.; Miao, H. Functional and Value Evaluation of Forest Ecosystem Services in China. Chin. J. Nat. Resour. 2004, 19, 480–491. [Google Scholar] [CrossRef]
- Xie, G.; Zhen, L.; Lu, C.; Xiao, Y.; Chen, C. A Method for Valuing Ecosystem Services Based on Expert Knowledge. Chin. J. Nat. Resour. 2008, 23, 911–919. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhang, L.; Chen, W.; Li, S. Improvement of the Method for Valuing Ecosystem Services Based on Equi valent Factors of Value per Unit Area. Chin. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar] [CrossRef]
- Yang, H.; Wang, C.; Guo, Z.; Yang, Z. An Empirical Study on the Value of Air Regulation Services of Pond Aquaculture Ecosystems. Resour. Environ. Yangtze River Basin Chin. 2009, 18, 432–438. [Google Scholar] [CrossRef]
- Yang, H.; Li, S.; Yang, Z. Evaluation of Ecosystem Service Value of Pond Aquaculture: A Case Study of Conventional Fish Farming in Qingpu District, Shanghai. Chin. J. Resour. Sci. 2011, 33, 575–581. [Google Scholar]
- Yang, H.; Yang, Z. System Dynamic Modeling on the Valuation of Ecosystem Services in Oriental River Prawn (Macrobrachium nipponense) Aquaculture Ponds. Chin. J. Nat. Resour. 2012, 27, 1176–1185. [Google Scholar] [CrossRef]
- Yang, Z.; Tang, K.; Yang, H.; Fan, X. Spatio-temporal Difference Analysis of Ecosystem Service Value of Pond Aquaculture in Shanghai. Chin. J. Eco-Agric. 2013, 21, 217–226. Available online: https://m.natholic.com/cn/article/doi/10.3724/SP.J.1011.2013.0021 (accessed on 15 November 2025).
- Yang, Z.; Zhang, X.; Yang, H. Research on Ecological Compensation Policy for Pond Aquaculture Based on the Value of Ecosystem Services: A Case Study of Shanghai. Ecol. Econ. Chin. 2015, 31, 151–156. [Google Scholar]
- Xie, G.; Liu, C.; Leng, Y.; Zheng, D.; Li, S. Ecological assets valuation of the Tibetan Plateau. J. Nat. Resour. 2003, 18, 189–196. [Google Scholar] [CrossRef]
- Chen, W.; Li, J.; Zhu, L. Spatial heterogeneity and sensitivity analysis of ecosystem services value in the Middle Yangtze River region. Chin. J. Nat. Resour. 2019, 34, 325–337. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China Statistical Yearbook 2022; China Statistics Press: Beijing, China, 2022.
- National Bureau of Statistics of China. China Statistical Yearbook 2023; China Statistics Press: Beijing, China, 2023.
- Price Department, National Development and Reform Commission of China. National Compendium of Agricultural Product Cost and Benefit Data 2022; China Statistics Press: Beijing, China, 2022.
- Price Department, National Development and Reform Commission of China. National Compendium of Agricultural Product Cost and Benefit Data 2023; China Statistics Press: Beijing, China, 2023.
- Department of Rural Social and Economic Surveys, National Bureau of Statistics of China. China Agricultural Price Survey Yearbook 2022; China Statistics Press: Beijing, China, 2022.
- Department of Rural Social and Economic Surveys, National Bureau of Statistics of China. China Agricultural Price Survey Yearbook 2023; China Statistics Press: Beijing, China, 2023.
- Fan, X.; Yang, Z.; Tang, K.; Zhang, X.; Yang, H. Application of Count Data Models in the Evaluation of Recreational Service Value of Pond Aquaculture. Chin. J. Eco-Agric. 2014, 22, 120–126. [Google Scholar] [CrossRef]
- Li, S.; Yang, Z.; Yang, H.; Zhang, H.; Guo, Z. An Empirical Study on the Ecological Service Value of Microclimate Regulation in Aquaculture Ponds. J. Agro-Environ. Sci. 2010, 19, 432–437. [Google Scholar]
- Wilson, M.A.; Carpenter, S.R. Economic Valuation of Freshwater Ecosystem Services in the United Stat es: 1971–1997. Ecol. Appl. 1999, 9, 772–783. [Google Scholar] [CrossRef]
- National Climate Center, China Meteorological Administration. China Climate Bulletin 2021; CMA: Beijing, China, 2021.
- National Climate Center China Meteorological Administration. China Climate Bulletin 2022; CMA: Beijing, China, 2022.
- Peng, J.; Liu, Q.; Xu, Z.; Lyu, D.; Du, Y.; Qiao, R.; Wu, J. How to effectively mitigate urban heat island effect? A perspective of waterbody patch size threshold. Landsc. Urban Plan. 2020, 202, 103873. [Google Scholar] [CrossRef]
- Zhao, L.; Li, T.; Przybysz, A.; Liu, H.; Zhang, B.; An, W.; Zhu, C. Effects of urban lakes and neighbouring green spaces on air temperatur e and humidity and seasonal variabilities. Sustain. Cities Soc. 2023, 91, 104438. [Google Scholar] [CrossRef]


| Year | Total Grain Area | Rice Area | Wheat Area | Corn Area | Rice Yield | Wheat Yield | Corn Yield | Nat. Avg. Rice Price | Nat. Avg. Price Wheat | Nat. Avg. Price Corn |
|---|---|---|---|---|---|---|---|---|---|---|
| 2021 | 117.4 | 103.8 | 10.9 | 1 | 85.1 | 7.4 | 0.7 | 3.09 | 2.83 | 2.79 |
| 2022 | 122.8 | 103.7 | 15.4 | 1 | 82.7 | 10.7 | 0.6 | 3.06 | 3.19 | 2.86 |
| Service Type | Function Type | Aquaculture Area |
|---|---|---|
| Regulating services | Gas regulation | 1.11 |
| Climate regulation | 0.57 | |
| Environmental purification | 0.17 | |
| Hydrological regulation | 2.72 | |
| Cultural services | Aesthetic landscape | 0.09 |
| Date | Mean Monthly Pond Temp. (°C) | National Annual Mean Temp. (°C) | Temp. Spatiotemporal Adj. Factor |
|---|---|---|---|
| May 2021 | 23.0 | 10.50 | 2.19 |
| Jun 2021 | 25.5 | 10.50 | 2.43 |
| Jul 2021 | 29.5 | 10.50 | 2.81 |
| Aug 2021 | 29.0 | 10.50 | 2.76 |
| Sep 2021 | 27.0 | 10.50 | 2.57 |
| Oct 2021 | 21.0 | 10.50 | 2.00 |
| Nov 2021 | 14.0 | 10.50 | 1.33 |
| Dec 2021 | 8.5 | 10.50 | 0.81 |
| Jan 2022 | 6.5 | 10.51 | 0.62 |
| Feb 2022 | 6.0 | 10.51 | 0.57 |
| Mar 2022 | 13.5 | 10.51 | 1.28 |
| Apr 2022 | 17.5 | 10.51 | 1.67 |
| May 2022 | 21.0 | 10.51 | 2.00 |
| Year | Engel Coefficient (En) | Social Development Coefficient Spatiotemporal Adjustment Factor () | |
|---|---|---|---|
| Shanghai | National | ||
| 2021 | 0.26 | 0.30 | 1.20 |
| 2022 | 0.27 | 0.30 | 1.15 |
| Date | Gas Reg. | Climate Reg. | Env. Purif. | Hydro. Reg. | Aesthetic Land. |
|---|---|---|---|---|---|
| May 2021 | 2.92 | 1.50 | 0.45 | 7.15 | 0.24 |
| June 2021 | 3.24 | 1.66 | 0.50 | 7.93 | 0.26 |
| July 2021 | 3.74 | 1.92 | 0.57 | 9.17 | 0.30 |
| August 2021 | 3.68 | 1.89 | 0.56 | 9.02 | 0.30 |
| September 2021 | 3.43 | 1.76 | 0.52 | 8.40 | 0.28 |
| October 2021 | 2.67 | 1.37 | 0.41 | 6.53 | 0.22 |
| November 2021 | 1.78 | 0.91 | 0.27 | 4.35 | 0.14 |
| December 2021 | 1.08 | 0.55 | 0.17 | 2.64 | 0.09 |
| January 2022 | 0.79 | 0.41 | 0.12 | 1.93 | 0.06 |
| February 2022 | 0.73 | 0.37 | 0.11 | 1.78 | 0.06 |
| March 2022 | 1.64 | 0.84 | 0.25 | 4.02 | 0.13 |
| April 2022 | 2.12 | 1.09 | 0.33 | 5.20 | 0.17 |
| May 2022 | 2.55 | 1.31 | 0.39 | 6.25 | 0.21 |
| Date | Gas Reg. | Climate Reg. | Env. Purif. | Hydro. Reg. | Aesthetic Land. | Total Value |
|---|---|---|---|---|---|---|
| May 2021 | 4061.22 | 2085.49 | 621.99 | 9951.81 | 329.29 | 17,049.79 |
| June 2021 | 4502.65 | 2312.17 | 689.6 | 11,033.53 | 365.08 | 18,903.03 |
| July 2021 | 5208.95 | 2674.87 | 797.77 | 12,764.28 | 422.35 | 21,868.21 |
| August 2021 | 5120.66 | 2629.53 | 784.25 | 12,547.93 | 415.19 | 21,497.56 |
| September 2021 | 4767.52 | 2448.18 | 730.16 | 11,682.56 | 386.56 | 20,014.97 |
| October 2021 | 3708.07 | 1904.14 | 567.9 | 9086.44 | 300.65 | 15,567.2 |
| November 2021 | 2472.04 | 1269.43 | 378.6 | 6057.62 | 200.44 | 10,378.13 |
| December 2021 | 1500.88 | 770.72 | 229.87 | 3677.84 | 121.69 | 6301.01 |
| January 2022 | 1060.63 | 544.65 | 162.44 | 2599.02 | 86 | 4452.74 |
| February 2022 | 979.04 | 502.75 | 149.94 | 2399.1 | 79.38 | 4110.22 |
| March 2022 | 2202.85 | 1131.19 | 337.37 | 5397.97 | 178.61 | 9248 |
| April 2022 | 2855.55 | 1466.36 | 437.34 | 6997.37 | 231.53 | 11,988.15 |
| May 2022 | 3426.65 | 1759.63 | 524.8 | 8396.85 | 277.84 | 14,385.78 |
| ESVs Functional Type | Mean () (CNY) | Standard Deviation (σ) (CNY) | Coefficient of Variation (CVs) |
|---|---|---|---|
| Gas Regulation | 2912.35 | 1600.06 | 0.549 |
| Climate Regulation | 1497.71 | 822.42 | 0.549 |
| Environmental Purification | 447.85 | 245.45 | 0.548 |
| Hydrological Regulation | 7151.49 | 3928.31 | 0.55 |
| Aesthetic Landscape | 236.49 | 130.07 | 0.55 |
| Total Ecosystem Service Value | 11,550.08 | 6340.23 | 0.549 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Xu, B.; Yang, D.; Xue, X. Temporal Dynamics of Ecosystem Service Values in Aquaculture Ponds: A Case Study of Grass Carp Pond Systems in Songjiang District, Shanghai, China. Sustainability 2026, 18, 82. https://doi.org/10.3390/su18010082
Xu B, Yang D, Xue X. Temporal Dynamics of Ecosystem Service Values in Aquaculture Ponds: A Case Study of Grass Carp Pond Systems in Songjiang District, Shanghai, China. Sustainability. 2026; 18(1):82. https://doi.org/10.3390/su18010082
Chicago/Turabian StyleXu, Binjie, Deli Yang, and Xinyang Xue. 2026. "Temporal Dynamics of Ecosystem Service Values in Aquaculture Ponds: A Case Study of Grass Carp Pond Systems in Songjiang District, Shanghai, China" Sustainability 18, no. 1: 82. https://doi.org/10.3390/su18010082
APA StyleXu, B., Yang, D., & Xue, X. (2026). Temporal Dynamics of Ecosystem Service Values in Aquaculture Ponds: A Case Study of Grass Carp Pond Systems in Songjiang District, Shanghai, China. Sustainability, 18(1), 82. https://doi.org/10.3390/su18010082
