Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = mesoscale eddy distribution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6665 KB  
Article
Impacts of Mesoscale Eddy Structural Characteristics on Matched-Field Localization Uncertainty
by Longquan Shang, Kaifeng Han, Ning Wang, Yanqun Wu, Guojun Xu, Pingzheng Li and Wei Guo
Sensors 2025, 25(22), 6842; https://doi.org/10.3390/s25226842 - 8 Nov 2025
Viewed by 337
Abstract
Matched-field processing localizes underwater acoustic targets by measuring the degree of correlation between the acoustic field and replica fields. The intrusion of mesoscale eddies can induce sound speed mismatch in the matched-field process. Therefore, it is essential to investigate the impact of mesoscale [...] Read more.
Matched-field processing localizes underwater acoustic targets by measuring the degree of correlation between the acoustic field and replica fields. The intrusion of mesoscale eddies can induce sound speed mismatch in the matched-field process. Therefore, it is essential to investigate the impact of mesoscale eddies on matched-field localization errors. In this study, the typical vertical structure of mesoscale eddies in a certain region of the Northwestern Pacific was synthesized using the mesoscale eddy dataset META 2.0 and Argo float data. Furthermore, by employing both an idealized eddy model and composite-analysis structure of eddy, the performance of the localization algorithm was evaluated under the influence of mesoscale eddies with different structures and in different regions. The results show that under specific conditions, the distribution of localization errors exhibits certain patterns, which is beneficial for inverting eddy parameters via matched-field processing. Finally, the mechanism behind the systematic distribution of localization errors is discussed and analyzed. In the simulations, the source frequency was swept from 50 to 75 Hz with a 1 Hz step, and a circular array was employed as the receiving aperture. These findings indicate that, in the absence of small-scale interference and within a certain range of sound speed mismatch, the localization error of underwater acoustic targets increases with the strengthening of mesoscale eddy disturbances. Full article
Show Figures

Figure 1

16 pages, 23546 KB  
Article
Optimizing Asymmetric Meso-Scale Vortex Combustors for Swirl-Induced Flame Stabilization: A Computational Analysis
by Azri Hariz Roslan, Mohd Al-Hafiz Mohd Nawi, Chu Yee Khor, Mohd Sharizan Md Sarip, Muhammad Lutfi Abd Latif, Mohammad Azrul Rizal Alias, Hazrin Jahidi Jaafar, Mohd Fathurrahman Kamarudin, Abdul Syafiq Abdull Sukor and Mohd Aminudin Jamlos
Eng 2025, 6(11), 293; https://doi.org/10.3390/eng6110293 - 1 Nov 2025
Viewed by 322
Abstract
Combustion at the meso-scale is constrained by large surface-to-volume ratios that shorten residence time and intensify wall heat loss. We perform steady, three-dimensional CFD of two asymmetric vortex combustors: Model A (compact) and Model B (larger-volume) over inlet-air mass flow rates m˙ [...] Read more.
Combustion at the meso-scale is constrained by large surface-to-volume ratios that shorten residence time and intensify wall heat loss. We perform steady, three-dimensional CFD of two asymmetric vortex combustors: Model A (compact) and Model B (larger-volume) over inlet-air mass flow rates m˙ (40–170 mg s−1) and equivalence ratios ϕ (0.7–1.5), using an Eddy-Dissipation closure for turbulence–chemistry interactions. A six-mesh independence study (the best mesh is 113,133 nodes) yields ≤ 1.5% variation in core fields and ~2.6% absolute temperature error at a benchmark station. Results show that swirl-induced CRZ governs mixing and flame anchoring: Model A develops higher swirl envelopes (S up to ~6.5) and strong near-inlet heat-flux density but becomes breakdown-prone at the highest loading; Model B maintains a centered, coherent Central Recirculation Zone (CRZ) with lower uθ (~3.2 m s−1) and S ≈ 1.2–1.6, distributing heat more uniformly downstream. Peak flame temperatures (~2100–2140 K) occur at ϕ ≈ 1.0–1.3, remaining sub-adiabatic due to wall heat loss and dilution. Within this regime and m˙ ≈ 85–130 mg s−1, the system balances intensity against flow coherence, defining a stable, thermally efficient operating window for portable micro-power and thermoelectric applications. Full article
Show Figures

Figure 1

21 pages, 2271 KB  
Article
A Domain Adaptation-Based Ocean Mesoscale Eddy Detection Method Under Harsh Sea States
by Chen Zhang, Yujia Zhang, Shaotian Li, Xin Li and Shiqiu Peng
Remote Sens. 2025, 17(19), 3317; https://doi.org/10.3390/rs17193317 - 27 Sep 2025
Viewed by 421
Abstract
Under harsh sea states, the dynamic characteristics of ocean mesoscale eddies (OMEs) become significantly more complex, posing substantial challenges to their accurate detection and identification. In this study, we propose an artificial intelligence detection method for OMEs based on the domain adaptation technique [...] Read more.
Under harsh sea states, the dynamic characteristics of ocean mesoscale eddies (OMEs) become significantly more complex, posing substantial challenges to their accurate detection and identification. In this study, we propose an artificial intelligence detection method for OMEs based on the domain adaptation technique to accurately perform pixel-level segmentation and ensure its effectiveness under harsh sea states. The proposed model (LCNN) utilizes large kernel convolution to increase the model’s receptive field and deeply extract eddy features. To deal with the pronounced cross-domain distribution shifts induced by harsh sea states, an adversarial learning framework (ADF) is introduced into LCNN to enforce feature alignment between the source (normal sea states) and target (harsh sea states) domains, which can also significantly improve the segmentation performance in our constructed dataset. The proposed model achieves an accuracy, precision, and Mean Intersection over Union of 1.5%, 6.0%, and 7.2%, respectively, outperforming the existing state-of-the-art technologies. Full article
Show Figures

Figure 1

19 pages, 4151 KB  
Article
Three-Dimensional Heterogeneity of Salinity Extremes Modulated by Mesoscale Eddies Around the Hawaiian Islands
by Shiyan Li, Zhenhui Yi, Qiwei Sun, Hanshi Wang, Xiang Gao, Wenjing Zhang, Jian Shi, Hailong Guo, Jingxing Chen and Jie Wu
Remote Sens. 2025, 17(18), 3167; https://doi.org/10.3390/rs17183167 - 12 Sep 2025
Viewed by 568
Abstract
Salinity extremes (SEs) play a crucial role in marine ecosystems, ocean circulation, and climate variability. Understanding their distribution and drivers is essential for predicting changes in ocean salinity under climate change, particularly in dynamic regions such as the Hawaiian Islands, where mesoscale eddies [...] Read more.
Salinity extremes (SEs) play a crucial role in marine ecosystems, ocean circulation, and climate variability. Understanding their distribution and drivers is essential for predicting changes in ocean salinity under climate change, particularly in dynamic regions such as the Hawaiian Islands, where mesoscale eddies significantly modulate water mass properties. This study investigates the three-dimensional characteristics of SEs and their responses to mesoscale eddies using mooring observations and sea surface salinity data. We find that high salinity extremes (HSEs) generally occur more frequently than low salinity extremes (LSEs) in the study region, though LSEs exhibit greater duration and intensity. Mesoscale eddies modulate SEs significantly—anticyclonic eddies (AEs) enhance LSEs, whereas cyclonic eddies (CEs) promote HSEs in the upper layer. This relationship reverses in the deeper layer, with AEs favoring HSEs and CEs enhancing LSEs. These opposing effects are driven by a vertical displacement of the subsurface salinity maximum layer, where CEs lift high-salinity subsurface water to the upper ocean via upwelling, creating HSEs in the upper layer and LSEs in the deeper layer, while AEs subduct high-salinity water downward, reducing upper-layer salinity (LSEs) but increasing deeper-layer salinity (HSEs) via downwelling. Spatially, CEs exhibit a single-core high-salinity anomaly, displaced westward by 0.3 times of the eddy radius from the eddy center, with HSEs peaking in frequency and intensity near the core. In contrast, AEs display a dipole salinity anomaly (low northwest/high southeast), aligning with LSE frequency distribution, while HSEs show an inverse pattern. Mooring data further reveal that AE-LSE co-occurrence is highest within 1.2 times of the eddy radius, whereas CE-HSE probability declines with eddy intensity. Notably, AE-HSE and CE-LSE probabilities, though initially weaker, surpass AE-LSE and CE-HSE at certain depths, underlining the complexity of depth-dependent eddy modulation. These findings may advance understanding of ocean salinity dynamics and provide insights into how mesoscale processes modulate extreme events, with implications for marine biogeochemistry and climate modeling. Full article
Show Figures

Figure 1

18 pages, 5228 KB  
Article
Detection, Tracking, and Statistical Analysis of Mesoscale Eddies in the Bay of Bengal
by Hafez Ahmad, Felix Jose, Padmanava Dash and Shakila Islam Jhara
Oceans 2025, 6(3), 52; https://doi.org/10.3390/oceans6030052 - 20 Aug 2025
Viewed by 1506
Abstract
Mesoscale eddies have a significant influence on primary productivity and upper-ocean variability, particularly in stratified and monsoon-driven basins like the Bay of Bengal (BoB). This study analyzes mesoscale eddies in the BoB from January 2010 to March 2020 using post-processed and gridded daily [...] Read more.
Mesoscale eddies have a significant influence on primary productivity and upper-ocean variability, particularly in stratified and monsoon-driven basins like the Bay of Bengal (BoB). This study analyzes mesoscale eddies in the BoB from January 2010 to March 2020 using post-processed and gridded daily sea surface height anomaly (SLA) data from the Copernicus Marine Environment Monitoring Service. We used a hybrid detection method combining the Okubo–Weiss parameter and SLA contour analysis to identify 1880 anticyclonic and 1972 cyclonic eddies. Cyclonic eddies were mainly found in the western BoB along the east Indian coast, while anticyclonic eddies were less frequent in this area. Analysis of eddy lifespans revealed that short-lived (1-week) eddies were nearly equally distributed between anticyclonic (48.81%) and cyclonic (51.19%) types. However, for longer-lived eddies, cyclonic eddies became more prevalent, comprising 83.33% of 30-week eddies. A notable, consistent eddy presence was observed east of Sri Lanka, influencing the East India Coastal Current. Most eddies (91%) propagated west/southwestward along the western slope of the Andaman Archipelago, likely influenced by ocean currents and coastal topography, with concentrations in the Andaman Sea and central BoB. These patterns suggest significant interactions between eddies, coastal upwelling zones, and boundary currents, impacting nutrient transport and marine ecosystem productivity. This study contributes valuable insights into the dynamics of ocean circulation and the impacts of eddies, which can inform fisheries management strategies, advance climate resilience measures, expand scientific knowledge, and guide policies related to conservation and sustainable resource utilization. Full article
Show Figures

Figure 1

21 pages, 9015 KB  
Article
Energetics of Eddy–Mean Flow Interaction in the Kuroshio Current Region
by Yang Wu, Dalei Qiao, Chengyan Liu, Liangjun Yan, Kechen Liu, Jiangchao Qian, Qing Qin, Jianfen Wei, Heyou Chang, Kai Zhou, Zhengdong Qi, Xiaorui Zhu, Jing Li, Yuzhou Zhang and Hongtao Guo
J. Mar. Sci. Eng. 2025, 13(7), 1304; https://doi.org/10.3390/jmse13071304 - 3 Jul 2025
Viewed by 1205
Abstract
A comprehensive diagnosis of eddy–mean flow interaction in the Kuroshio Current (KC) region and the associated energy conversion pathway is conducted employing a state-of-the-art high-resolution global ocean–sea ice coupled model. The spatial distributions of the energy reservoirs and their conversions exhibit significant complexity. [...] Read more.
A comprehensive diagnosis of eddy–mean flow interaction in the Kuroshio Current (KC) region and the associated energy conversion pathway is conducted employing a state-of-the-art high-resolution global ocean–sea ice coupled model. The spatial distributions of the energy reservoirs and their conversions exhibit significant complexity. The cross-stream variation is found in the energy conversion pattern in the along-coast region, whereas a mixed positive–negative conversion pattern is observed in the off-coast region. Considering the area-integrated conversion rates between energy reservoirs, barotropic and baroclinic instabilities dominate the energy transferring from the mean flow to eddy field in the KC region. When the KC separates from the coast, it becomes highly unstable and the energy conversion rates intensify visibly; moreover, the local variations of the energy conversion are significantly influenced by the topography in the KC extension region. The mean available potential energy is the total energetic source to drive the barotropic and baroclinic energy pathway in the whole KC region, while the mean kinetic energy supplies the total energy in the extension region. For the whole KC region, the mean current transfers 84.9 GW of kinetic energy and 37.3 GW of available potential energy to the eddy field. The eddy kinetic energy is generated by mixed barotropic and baroclinic processes, amounting to 84.9 GW and 15.03 GW, respectively, indicating that topography dominates the generation of mesoscale eddy. Mean kinetic energy amounts to 11.08 GW of power from the mean available potential energy and subsequently supplies the barotropic pathway. Full article
Show Figures

Figure 1

17 pages, 8553 KB  
Article
Observation of Near-Inertial Oscillation in an Anticyclonic Eddy in the Northern South China Sea
by Botao Xie, Tao Liu, Bigui Huang, Chujin Liang and Feilong Lin
J. Mar. Sci. Eng. 2025, 13(6), 1079; https://doi.org/10.3390/jmse13061079 - 29 May 2025
Viewed by 673
Abstract
Anticyclonic mesoscale eddies are known to trap and modulate near-inertial kinetic energy (NIKE); however, the spatial distribution of NIKE within the eddy core and periphery, as well as the mechanisms driving its energy cascade to smaller scales, remains inadequately understood. This study analyzed [...] Read more.
Anticyclonic mesoscale eddies are known to trap and modulate near-inertial kinetic energy (NIKE); however, the spatial distribution of NIKE within the eddy core and periphery, as well as the mechanisms driving its energy cascade to smaller scales, remains inadequately understood. This study analyzed the evolution of NIKE in anticyclonic eddies using satellite altimetry and field observations from four mooring arrays. By extracting near-inertial oscillations (NIOs) and subharmonic wave kinetic energy across mooring stations during the same period, we characterized the spatial structure of NIKE within the eddy field. The results revealed that NIKE was concentrated in the eddy core, where strong NIOs (peak velocity ~0.23 m/s) persisted for ~7 days, with energy primarily distributed at depths of 200–400 m and propagating inward from the periphery. Subharmonic waves fD1 generated by interactions between NIOs and diurnal tides highlighted the role of the vertical nonlinear term in energy transfer. A further analysis indicated that under vorticity confinement, NIKE accumulated in the core of the eddy and dissipated through shear instability and nonlinear wave interactions. The migrating anticyclonic eddy thus acted as a localized energy source, driving mixing and energy dissipation in the ocean interior. Full article
(This article belongs to the Special Issue Ocean Internal Waves and Circulation Dynamics in Climate Change)
Show Figures

Figure 1

29 pages, 7837 KB  
Article
Automated Eddy Identification and Tracking in the Northwest Pacific Based on Conventional Altimeter and SWOT Data
by Lan Zhang, Cheinway Hwang, Han-Yang Liu, Emmy T. Y. Chang and Daocheng Yu
Remote Sens. 2025, 17(10), 1665; https://doi.org/10.3390/rs17101665 - 9 May 2025
Cited by 1 | Viewed by 1349
Abstract
Eddy identification and tracking are essential for understanding ocean dynamics. This study employed the elliptical Gaussian function (EGF) simulations and the py-eddy-tracker (PET) algorithm, validated by Surface Velocity Program (SVP) drifter data, to track eddies in the western North Pacific Ocean. The PET [...] Read more.
Eddy identification and tracking are essential for understanding ocean dynamics. This study employed the elliptical Gaussian function (EGF) simulations and the py-eddy-tracker (PET) algorithm, validated by Surface Velocity Program (SVP) drifter data, to track eddies in the western North Pacific Ocean. The PET method effectively identified large- and mesoscale eddies but struggled with submesoscale features, indicating areas for improvement. Simulated satellite altimetry by EGF, mirroring Surface Water and Ocean Topography (SWOT)’s high-resolution observations, confirmed PET’s capability in processing fine-scale data, though accuracy declined for submesoscale eddies. Over 22 years, 1,188,649 eddies were identified, mainly concentrated east of Taiwan. Temporal analysis showed interannual variability, more cyclonic than anticyclonic eddies, and a seasonal peak in spring, likely influenced by marine conditions. Short-lived eddies were uniformly distributed, while long-lived ones followed major currents, validating PET’s robustness with SVP drifters. The launch of the SWOT satellite in 2022 has enhanced fine-scale ocean studies, enabling the detection of submesoscale eddies previously unresolved by conventional altimetry. SWOT observations reveal intricate eddy structures, including small cyclonic features in the northwestern Pacific, demonstrating its potential for improving eddy tracking. Future work should refine the PET algorithm for SWOT’s swath altimetry, addressing data gaps and unclosed contours. Integrating SWOT with in situ drifters, numerical models, and machine learning will further enhance eddy classification, benefiting ocean circulation studies and climate modeling. Full article
(This article belongs to the Special Issue Satellite Remote Sensing for Ocean and Coastal Environment Monitoring)
Show Figures

Figure 1

22 pages, 28104 KB  
Article
Spatial and Temporal Characteristics of Mesoscale Eddies in the North Atlantic Ocean Based on SWOT Mission
by Aiqun Cui, Zizhan Zhang, Haoming Yan and Baomin Han
Remote Sens. 2025, 17(8), 1469; https://doi.org/10.3390/rs17081469 - 20 Apr 2025
Cited by 1 | Viewed by 1257
Abstract
Mesoscale eddies play a crucial role as primary transporters of heat, salinity, and freshwater in oceanic systems. Utilizing the latest Surface Water and Ocean Topography (SWOT) dataset, this study employed the py-eddy-tracker (PET) algorithm to identify and track mesoscale eddies in the North [...] Read more.
Mesoscale eddies play a crucial role as primary transporters of heat, salinity, and freshwater in oceanic systems. Utilizing the latest Surface Water and Ocean Topography (SWOT) dataset, this study employed the py-eddy-tracker (PET) algorithm to identify and track mesoscale eddies in the North Atlantic (NA). Our investigation focused on evaluating the influence of applying varying filter wavelengths (800, 600, 400, and 200 km) for absolute dynamic topography (ADT) on the detection of spatiotemporal patterns and dynamic properties of mesoscale eddies, encompassing eddy kinetic energy (EKE), effective radius, rotational velocity, amplitude, lifespan, and propagation distance. The analysis reveals a cyclonic to anticyclonic eddy ratio of approximately 1.1:1 in the study region. The dynamic parameters of mesoscale eddies identified at filter wavelengths of 800 km and 600 km are similar, while a marked reduction in these parameters becomes evident at the 200 km wavelength. Parameter comparative analysis indicates that effective radius exhibits the highest sensitivity to wavelength reduction, followed by amplitude, whereas rotational velocity remains relatively unaffected by filtering variations. The lifespan distribution analysis shows that the majority of eddies persist for 7–21 days, with only a small number of robust mesoscale eddies maintaining activity beyond 45 days. These long-lived, strong mesoscale eddies are primarily generated in the high-energy current zones associated with the Gulf Stream (GS). Full article
Show Figures

Figure 1

18 pages, 6382 KB  
Article
Spatial Distribution of Illex argentinus in Different Life Stages of Mesoscale Eddies in Patagonian Waters
by Lichuan Zhang, Ping Zhang, Zhong Zhang and Wei Yu
J. Mar. Sci. Eng. 2025, 13(2), 288; https://doi.org/10.3390/jmse13020288 - 4 Feb 2025
Cited by 1 | Viewed by 1073
Abstract
Mesoscale eddies are known to influence the abundance and distribution of oceanic cephalopods. However, little is known about these effects in the southwest Atlantic Ocean. Therefore, this study analyzed the variations in environmental conditions and the resource abundance, spatial distribution, and habitat suitability [...] Read more.
Mesoscale eddies are known to influence the abundance and distribution of oceanic cephalopods. However, little is known about these effects in the southwest Atlantic Ocean. Therefore, this study analyzed the variations in environmental conditions and the resource abundance, spatial distribution, and habitat suitability of Illex argentinus within different life stages of cyclonic (CE) and anticyclonic (AE) eddies in Patagonian waters. From a comparison of squid abundance between CEs and AEs at each life stage, it was found that I. argentinus gradually increased in abundance after eddy formation, that abundance peaked during eddy maturation and that it subsequently decreased during the eddies’ decay phase. Spatially, squid resources in AEs were primarily concentrated in the northwest and southeast peripheral regions of the eddy, while in CEs, resources were more concentrated in the outer regions, on the western side of the eddy. Environmental factor analysis revealed that sea surface temperature (SST) and temperature at 200 m depth (T200m) in both CEs and AEs reached their lowest values during the intensification and maturation phases of the eddies. Chlorophyll a (Chl-a) concentrations were significantly higher in CEs than in AEs from the formation to the maturation phase; however, during eddy decay, Chl-a concentrations were higher in AEs. According to a comparison of the suitability index (SI) for each environmental factor and the habitat suitability index (HSI) model, SISST, SIT200m, and SIChl-a in AEs increased and then decreased with eddy evolution, with optimal SI values occurring during the intensification phase. In CEs, SISST and SIT200m also increased and then decreased, with optimal SISST and SIT200m occurring during the intensification and maturation phases, respectively, with little variation in SIChl-a across the life cycle of CEs. The HSI in both types of eddies gradually increased from the formation phase, reached a peak during maturation, and significantly decreased during eddy decay. Overall, this study indicated that habitat suitability and resource abundance for I. argentinus were highest during the maturation phase of the eddies. Full article
(This article belongs to the Section Marine Ecology)
Show Figures

Figure 1

21 pages, 8944 KB  
Article
BiST-SA-LSTM: A Deep Learning Framework for End-to-End Prediction of Mesoscale Eddy Distribution in Ocean
by Yaoran Chen, Zijian Zhao, Yaojun Yang, Xiaowei Li, Yan Peng, Hao Wu, Xi Zhou, Dan Zhang and Hongyu Wei
J. Mar. Sci. Eng. 2025, 13(1), 52; https://doi.org/10.3390/jmse13010052 - 31 Dec 2024
Cited by 1 | Viewed by 1507
Abstract
Mesoscale eddies play a critical role in sea navigation and route planning, yet traditional prediction methods have often overlooked their spatial relationships, relying on indirect approaches to capture their distribution across extensive maps. To address this limitation, we present BiST-SA-LSTM, an end-to-end prediction [...] Read more.
Mesoscale eddies play a critical role in sea navigation and route planning, yet traditional prediction methods have often overlooked their spatial relationships, relying on indirect approaches to capture their distribution across extensive maps. To address this limitation, we present BiST-SA-LSTM, an end-to-end prediction framework that combines Bidirectional Spatial Temporal LSTM and Self-Attention mechanisms. Utilizing data sourced from the South China Sea and its surrounding regions, which are renowned for their intricate maritime dynamics, our methodology outperforms similar models across a range of evaluation metrics and visual assessments. This is particularly evident in our ability to provide accurate long-term forecasts that extend for up to 10 days. Furthermore, integrating sea surface variables enhances forecasting accuracy, contributing to advancements in oceanic physics. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 8559 KB  
Article
A Deep Learning Method for Inversing 3D Temperature Fields Using Sea Surface Data in Offshore China and the Northwest Pacific Ocean
by Xiangyu Wu, Mengqi Zhang, Qingchang Wang, Xidong Wang, Jian Chen and Yinghao Qin
J. Mar. Sci. Eng. 2024, 12(12), 2337; https://doi.org/10.3390/jmse12122337 - 20 Dec 2024
Cited by 2 | Viewed by 1702
Abstract
Three-dimensional ocean temperature field data with high temporal-spatial resolution bears a significant impact on ocean dynamic processes such as mesoscale eddies. In recent years, with the rapid development of remote sensing data, deep learning methods have provided new ideas for the reconstruction of [...] Read more.
Three-dimensional ocean temperature field data with high temporal-spatial resolution bears a significant impact on ocean dynamic processes such as mesoscale eddies. In recent years, with the rapid development of remote sensing data, deep learning methods have provided new ideas for the reconstruction of ocean information. In the present study, based on sea surface data, a deep learning model is constructed using the U-net method to reconstruct the three-dimensional temperature structure of the Northwest Pacific and offshore China. Next, the correlation between surface data and underwater temperature structure is established, achieving the construction of a three-dimensional ocean temperature field based on sea surface height and sea surface temperature. A three-dimensional temperature field for the water layers within the depth of 1700 m in the Northwest Pacific and offshore China is reconstructed, featuring a spatial resolution of 0.25°. Control experiments are conducted to explore the impact of different input variables, labels, and loss functions on the reconstruction results. This study’s results show that the reconstruction accuracy of the model is higher when the input variables are anomalies of sea surface temperature and sea surface height. The reconstruction results using the mean square error (MSE) and mean absolute error (MAE) loss functions are highly similar, indicating that these two loss functions have no significant impact on the results, and only in the upper ocean does the MSE value slightly outperform MAE. Overall, the results show a rather good spatial distribution, with relatively large errors only occurring in areas where the temperature gradient is strong. The reconstruction error remains quite stable over time. Furthermore, an analysis is conducted on the temporal-spatial characteristics of some mesoscale eddies in the inversed temperature field. It is shown that the U-net network can effectively reconstruct the temporal-spatial distribution characteristics of eddies at different times and in different regions, providing a good fit for the eddy conditions in offshore China and the Northwest Pacific. The inversed eddy features are in high agreement with the eddies in the original data. Full article
Show Figures

Figure 1

24 pages, 33437 KB  
Article
Global Assessment of Mesoscale Eddies with TOEddies: Comparison Between Multiple Datasets and Colocation with In Situ Measurements
by Artemis Ioannou, Lionel Guez, Rémi Laxenaire and Sabrina Speich
Remote Sens. 2024, 16(22), 4336; https://doi.org/10.3390/rs16224336 - 20 Nov 2024
Cited by 4 | Viewed by 2358
Abstract
The present study introduces a comprehensive, open-access atlas of mesoscale eddies in the global ocean, as identified and tracked by the TOEddies algorithm implemented on a global scale. Unlike existing atlases, TOEddies detects eddies directly from absolute dynamic topography (ADT) without spatial filtering, [...] Read more.
The present study introduces a comprehensive, open-access atlas of mesoscale eddies in the global ocean, as identified and tracked by the TOEddies algorithm implemented on a global scale. Unlike existing atlases, TOEddies detects eddies directly from absolute dynamic topography (ADT) without spatial filtering, preserving the natural spatial variability and enabling precise, high-resolution tracking of eddy dynamics. This dataset provides daily information on eddy characteristics, such as size, intensity, and polarity, over a 30-year period (1993–2023), capturing complex eddy interactions, including splitting and merging events that often produce networks of interconnected eddies. This unique approach challenges the traditional single-trajectory perspective, offering a nuanced view of eddy life cycles as dynamically linked trajectories. In addition to traditional metrics, TOEddies identifies both the eddy core (characterized by maximum azimuthal velocity) and the outer boundary, offering a detailed representation of eddy structure and enabling precise comparisons with in situ data. To demonstrate its value, we present a statistical overview of eddy characteristics and spatial distributions, including generation, disappearance, and merging/splitting events, alongside a comparative analysis with existing global eddy datasets. Among the multi-year observations, TOEddies captures coherent, long-lived eddies with lifetimes exceeding 1.5 years, while highlighting significant differences in the dynamic properties and spatial patterns across datasets. Furthermore, this study integrates TOEddies with 23 years of colocalized Argo profile data (2000–2023), allowing for a novel examination of eddy-induced subsurface variability and the role of mesoscale eddies in the transport of global ocean heat and biogeochemical properties. This atlas aims to be a valuable resource for the oceanographic community, providing an open dataset that can support diverse applications in ocean dynamics, climate research, and marine resource management. Full article
(This article belongs to the Special Issue Recent Advances on Oceanic Mesoscale Eddies II)
Show Figures

Figure 1

17 pages, 7040 KB  
Article
Observation of Statistical Characteristics and Vertical Structures of Surface Warm Cyclonic Eddies and Cold Anticyclonic Eddies in the North Pacific Subtropical Countercurrent Region
by Yaowei Ma, Qinghong Li, Xiangjun Yu, Song Li and Xingyu Zhou
J. Mar. Sci. Eng. 2024, 12(10), 1783; https://doi.org/10.3390/jmse12101783 - 8 Oct 2024
Viewed by 1713
Abstract
Conventional wisdom about mesoscale eddies is that cyclonic (anticyclonic) eddies are commonly associated with cold(warm) surface cores. Nevertheless, plenties of surface warm cyclonic eddies (WCEs) and cold anticyclonic eddies (CAEs) in the North Pacific Subtropical Countercurrent (STCC) region are observed by a synergistic [...] Read more.
Conventional wisdom about mesoscale eddies is that cyclonic (anticyclonic) eddies are commonly associated with cold(warm) surface cores. Nevertheless, plenties of surface warm cyclonic eddies (WCEs) and cold anticyclonic eddies (CAEs) in the North Pacific Subtropical Countercurrent (STCC) region are observed by a synergistic investigation based on data from satellite altimetry, microwave radiometer, and Argo float profiles in this study. The results indicate that these two types of abnormal eddies (WCEs and CAEs) are prevalent in the STCC region, comprising approximately 30% of all eddies detected via satellite observations. We then analyze their spatial-temporal distribution characteristics and composite vertical structures. A statistical comparison with surface cold cyclonic eddies (CCEs) and warm anticyclonic eddies (WAEs) reveals notable differences between the anomalous and typical eddies. Additionally, we present the composite vertical structures of temperature and salinity anomalies for the anomalous eddies across five delineated subregions within an eddy-coordinate system. Furthermore, the close relationship between these abnormal eddies and subsurface-intensified mesoscale eddies are discussed. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

19 pages, 7635 KB  
Article
Enhanced Transformer Framework for Multivariate Mesoscale Eddy Trajectory Prediction
by Yanling Du, Jiahao Huang, Jiasheng Chen, Ke Chen, Jian Wang and Qi He
J. Mar. Sci. Eng. 2024, 12(10), 1759; https://doi.org/10.3390/jmse12101759 - 4 Oct 2024
Cited by 5 | Viewed by 1697
Abstract
Accurately predicting the trajectories of mesoscale eddies is essential for comprehending the distribution of marine resources and the multiscale energy cascade in the ocean. Nevertheless, current approaches for predicting mesoscale eddy trajectories frequently exhibit inadequate examination of the intrinsic multiscale temporal data, resulting [...] Read more.
Accurately predicting the trajectories of mesoscale eddies is essential for comprehending the distribution of marine resources and the multiscale energy cascade in the ocean. Nevertheless, current approaches for predicting mesoscale eddy trajectories frequently exhibit inadequate examination of the intrinsic multiscale temporal data, resulting in diminished predictive precision. To address this challenge, our research introduces an enhanced transformer-based framework for predicting mesoscale eddy trajectories. Initially, a multivariate dataset of mesoscale eddy trajectories is constructed and expanded, encompassing eddy properties and pertinent ocean environmental information. Additionally, novel feature factors are delineated based on the physical attributes of eddies. Subsequently, a multi-head attention mechanism is introduced to bolster the modeling of the multiscale time-varying connections within eddy trajectories. Furthermore, the original positional encoding is substituted with Time-Absolute Position Encoding, which considers the dimensions and durations of the sequence mapping, thereby improving the distinguishability of embedded vectors. Ultimately, the Soft-DTW loss function is integrated to more accurately assess the overall discrepancies among mesoscale eddy trajectories, thereby improving the model’s resilience to erratic and diverse trajectory sequences. The effectiveness of the proposed framework is assessed using the eddy-abundant South China Sea. Our framework exhibits exceptional predictive accuracy, achieving a minimum central error of 8.507 km over a seven-day period, surpassing existing state-of-the-art models. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

Back to TopTop